JPS61153232A - Method for setting furnace temperature of continuous heating furnace - Google Patents

Method for setting furnace temperature of continuous heating furnace

Info

Publication number
JPS61153232A
JPS61153232A JP28146784A JP28146784A JPS61153232A JP S61153232 A JPS61153232 A JP S61153232A JP 28146784 A JP28146784 A JP 28146784A JP 28146784 A JP28146784 A JP 28146784A JP S61153232 A JPS61153232 A JP S61153232A
Authority
JP
Japan
Prior art keywords
furnace
slab
temperature
temp
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28146784A
Other languages
Japanese (ja)
Inventor
Tomio Yamada
富美夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28146784A priority Critical patent/JPS61153232A/en
Publication of JPS61153232A publication Critical patent/JPS61153232A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets

Abstract

PURPOSE:To calculate the furnace temp. to minimize the evaluation function defined by the prescribed equation and to set the furnace temp. of a continuous heating furnace in such a manner that the ejection temp. of each material to be heated attains a target temp. simultaneously while maintaining the low fuel consumption with the calculated furnace temp. as a set furnace temp. CONSTITUTION:The 1st term of the equation is the total sum of the value obtd. by multiplying the square of the difference between the slab temp. thetai and target ejection temp. thetaiREF at the ejection time tfi of each material to be heated, for example, a slab Si by a weight coefft. omegai with respect to m-pieces of the slabs S1-Sm. The 2nd term is the integration of the square sum of the fuel flow rate fj in the respective zones, for example, preheating zone, heating zone and soaking zone made as, for example, f1.f2.f3 for the time from the present time t0 till the intended ejection time tfm of the slab Sm. More specifically, the 1st term is the penalty term to express the deviation from the target temp. and the 2nd term is the penalty term to express the fuel consumption. The furnace temp. to minimize such evaluation function j is the optimum furnace temp.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はスラブ等の被加熱材料を加熱する連続加熱炉の
炉温設定方法に関し、特に、連続的に炉に供給される被
加熱材料を目標温度に加熱するための1.II tll
にお【プる炉温設定方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a furnace temperature setting method for a continuous heating furnace for heating materials to be heated such as slabs, and in particular, to a method for setting a furnace temperature for a material to be heated that is continuously supplied to the furnace. 1. for heating to temperature. II tll
Regarding how to set the furnace temperature.

〔発明の技術的背景および背景技術の問題点〕連続加熱
炉(以下、加熱炉と言う)では、被加熱材料例えばスラ
ブの加熱に要する燃料消費量を抑えむがら、スラブを後
工程に適した温度に加熱するとともに目標の生産量を確
保するよう操業しなければならない。
[Technical background of the invention and problems with the background art] Continuous heating furnaces (hereinafter referred to as heating furnaces) reduce the amount of fuel consumed to heat the material to be heated, such as slabs, while at the same time It must be heated to a certain temperature and operated to ensure the target production volume.

この加熱炉を操業する上で問題となるのは、炉内スラブ
の負荷が変動した場合、例えば、寸法の故なるスラブが
同じ炉内に混在する場合、炉温をどのように設定するか
が問題となる。このことを図を用いて説明する。
The problem when operating this heating furnace is how to set the furnace temperature when the load on the slabs in the furnace fluctuates, for example, when slabs of different dimensions are mixed in the same furnace. It becomes a problem. This will be explained using figures.

第2図は基本的な連続加熱炉で、予熱帯111、加熱帯
H2、均熱帯[13を有している。簡単化のため下部を
省略し、上部だけについて説明するが、下部も上部と略
同様に対称的に構成されている。
Figure 2 shows a basic continuous heating furnace, which has a pre-heating zone 111, a heating zone H2, and a soaking zone [13]. Although the lower part will be omitted and only the upper part will be explained for the sake of simplicity, the lower part is also symmetrically constructed in substantially the same way as the upper part.

加熱炉多帯には、温度計1、バーナ2、温度制御装置3
を備えた加熱装置が設けられ、炉名書が、熱制御される
。加熱炉には、抽出口から装入口に向ってスラブ81〜
Soが配列され炉外にスラブS  〜SNが配列されて
おり、抽出ピッチ毎にn+1 抽出口にあるスラブは抽出され、同時に残りのスラブ列
は炉内を抽出口に向けて移動する。一定寸法のスラブが
連続して装入される間は炉温の設定は名書とも一定でよ
く炉は定常操業の状態にある。
The heating furnace has a thermometer 1, a burner 2, and a temperature control device 3.
A heating device with a furnace is provided and the furnace is thermally controlled. In the heating furnace, slabs 81 to 81 are placed from the extraction port to the charging port.
Slabs S to SN are arranged outside the furnace, and at every extraction pitch, the slab at the n+1 extraction port is extracted, and at the same time, the remaining slab rows move inside the furnace toward the extraction port. While slabs of a certain size are continuously charged, the furnace temperature setting remains constant and the furnace is in steady operation.

今、第3図のように、スラブS。+1以降に寸法の大き
なスラブが装入された場合、即ち非定常操業状態になっ
た場合、名書の炉温を時々刻々どのように設定すれば、
抽出スラブを目標温度に加熱し、かつ、燃料消費を最小
に抑えた操業が行なえるかが問題となる。
Now, as shown in Figure 3, slab S. If a slab with large dimensions is charged after +1, that is, if the operation becomes unsteady, how should the furnace temperature be set from time to time?
The problem is whether the extraction slab can be heated to the target temperature and the operation can be performed while minimizing fuel consumption.

スラブ寸法が異なるだけでなく抽出ピッチや抽出目標温
度の異なるスラブが装入された場合にも上記と同様非定
常操業状態になり同様の問題が発生する。
If slabs not only with different slab dimensions but also with different extraction pitches and extraction target temperatures are charged, an unsteady operating state similar to the above will occur and similar problems will occur.

また、加熱炉多帯の設定炉温は、炉壁の耐熱性上の制約
から許容上限値以上には設定できない。
Further, the set furnace temperature of the multi-zone heating furnace cannot be set higher than the allowable upper limit due to restrictions on the heat resistance of the furnace wall.

従って、抽出口に来たスラブ1個だけを対象した炉温設
定では、寸法の小さいスラブに続いて、寸法の大きいス
ラブが抽出口に来るような場合に、寸法の大きいスラブ
が抽出口に来た時に炉温を許容上限値まで上げても抽出
目標温度以下になる、いわゆる焼は不足が生じることが
ある。このため、全対象スラブについて抽出目標温度に
加熱できる炉温を予測計算する、いわゆるフィードフオ
ワード制御を行なう必要がある。さらに、加熱炉におい
ては、均熱帯で消費される燃料は廃ガス顕然として、下
流帯である加熱帯、予熱帯に流れ込み名書での炉温上昇
に寄与する性質がある。このため、省エネルギー操業を
行なうために、各帯炉温と各帯燃料流量との関係を把握
しておく必要がある。
Therefore, if the furnace temperature is set for only one slab that has come to the extraction port, if a slab of large size comes to the extraction port after a slab of small size, the slab of large size will come to the extraction port. Even if the furnace temperature is raised to the allowable upper limit, the temperature may fall below the extraction target temperature, so-called baking may result in a shortage. Therefore, it is necessary to perform so-called feedforward control, which predicts and calculates the furnace temperature at which all target slabs can be heated to the extraction target temperature. Furthermore, in a heating furnace, the fuel consumed in the soaking zone is a waste gas that flows into the downstream heating zone and preheating zone and contributes to the rise in furnace temperature. Therefore, in order to perform energy-saving operation, it is necessary to understand the relationship between each zone furnace temperature and each zone fuel flow rate.

このように炉温の設定は種々の条件を考慮して行なう必
要があるが、従来炉温の設定は加熱炉オペレータの経験
と勘に頼ってきた。しかし、対象スラブ列に対して、き
め細かい炉温設定を行なうためには、スラブ列に関する
寸法情報、温度情報、抽出目標温度情報、抽出ピッチ情
報を把握する必要があり、加熱炉オペレータの判断によ
る操業には限界があった。
As described above, it is necessary to set the furnace temperature in consideration of various conditions, but conventionally, the setting of the furnace temperature has relied on the experience and intuition of the heating furnace operator. However, in order to make detailed furnace temperature settings for the target slab row, it is necessary to know the dimension information, temperature information, extraction target temperature information, and extraction pitch information regarding the slab row. had its limits.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情を考慮してなされたもので、オ
ペレータの勘に依ることなく燃料消費量を抑えながら同
時に被加熱材料の抽出温度を目標温度にするための連続
加熱炉の炉温設定方法を提供することを目的とする。
The present invention has been made in consideration of these circumstances, and is a method for setting the furnace temperature of a continuous heating furnace to reduce fuel consumption and at the same time bring the extraction temperature of the heated material to the target temperature without relying on the intuition of the operator. The purpose is to provide a method.

〔発明の概要〕[Summary of the invention]

本発明は、下式で定義される評価関数J1即ち(ただし
、tfiは各スラブSiの抽出時刻、θ1は該抽出時刻
における各スラブ S1の温度(抽出温度)、 EF θ1 は各スラブStの抽出目標温度、ωiは各スラブ
S1に対して定められ る重み係数、 mは前歯の対象にするスラブの最後の ものの番号、 fjは8帯における燃1流量速度、 kは帯の数、 toは現在時刻、 tfmはスラブ5Illの抽出予定時刻である。) を最小にする炉温を算出し、この算出された炉温を設定
炉温とするものである。
The present invention is based on the evaluation function J1 defined by the following formula (where tfi is the extraction time of each slab Si, θ1 is the temperature (extraction temperature) of each slab S1 at the extraction time, and EF θ1 is the extraction time of each slab St). Target temperature, ωi is the weighting coefficient determined for each slab S1, m is the number of the last slab targeted by the front teeth, fj is the fuel 1 flow rate in 8 zones, k is the number of zones, to is the current time , tfm is the scheduled extraction time of slab 5Ill.) The furnace temperature that minimizes is calculated, and this calculated furnace temperature is set as the set furnace temperature.

(発明の実施例) まず(1)式の意義について説明する。(Example of the invention) First, the significance of equation (1) will be explained.

(1)式の第1項は各被加熱1F!例えばスラブS・の
抽出時刻tfiにおけるスラブ温戊θiと抽R[F 出目IIA渇度θ・ との差の自乗に重み係数ωiを掛
けたものの、81〜Slのm個のスラブについての総和
である。
The first term of equation (1) is each heated 1F! For example, the square of the difference between the slab temperature θi at the extraction time tfi of the slab S and the extraction R It is.

又、第2項は、8帯例えば予熱帯、加熱帯、均熱帯での
燃料流量速度をfl例えばf  、f  。
The second term is the fuel flow rate in eight zones, such as the preheating zone, the heating zone, and the soaking zone, as fl, for example, f and f.

J     12 f3として、自乗和を現在時刻t。からスラブSIの抽
出予定時刻tr−でflI間積9したものである。
J 12 f3, the sum of squares is the current time t. It is obtained by multiplying the flI interval product by 9 from the slab SI extraction scheduled time tr-.

即ち、第1項が目標温度からのずれを表わすペナルティ
環で、第2項は燃料消費を表わすペナルティ環であり、
この評価関数Jを最小にする炉温が最適な設定か温とな
る。
That is, the first term is a penalty ring that represents the deviation from the target temperature, and the second term is a penalty ring that represents fuel consumption.
The furnace temperature that minimizes this evaluation function J is the optimal temperature setting.

各スラブS1の温度θiは次のようにして求め得る。ま
ず、未だ加熱炉に装入されていないスラブについてはセ
ンサー(図示しない)により実測し、あるいは経験に基
づいて推測することができる。一方、加熱炉内のスラブ
については装入時の温度、炉温およびスラブの在炉時的
に基づいて、かつ下記のスラブの伝熱計算式を利用して
梼出し得る。
The temperature θi of each slab S1 can be determined as follows. First, for slabs that have not yet been charged into the heating furnace, they can be actually measured using a sensor (not shown) or estimated based on experience. On the other hand, the slab in the heating furnace can be pumped out based on the temperature at the time of charging, the furnace temperature, and the time the slab is in the furnace, and by using the following slab heat transfer calculation formula.

X(1−に、、(θ(t)+ 273)  )    ・・・・・・・・・(2)(但
し、θ(t)二時刻tにおけるスラブ温度、θ(t+Δ
、t)二時刻(を十Δt)におけるスラブ温度、 ■、:炉渇炉 温1.に2ニスラブの性質、寸法に係わる定数。) (2)式を用いれば、炉内にあるスラブの温度は、該当
する帯の炉温Tgを用いて時々刻々の計算が可能である
X(1-,,(θ(t)+273)) ・・・・・・・・・(2)(However, θ(t) is the slab temperature at the second time t, θ(t+Δ
, t) Slab temperature at two times (10Δt), ①: Furnace temperature 1. 2 Constants related to the properties and dimensions of the varnish slab. ) By using equation (2), the temperature of the slab in the furnace can be calculated moment by moment using the furnace temperature Tg of the corresponding zone.

又、8帯、例えば予熱帯、加熱帯、均熱帯の炉温と燃料
流量速度をそれぞれTgj、fj例えば1g3.■、2
.T、3.f4.f 、f3とすると、その関係は で表わせる(Fl、F2.F3は関数を表わす。)但し
、h、h2.h3はそれぞれ予熱帯、加熱帯、均熱帯の
、想定しているある時刻(例えば演棹時刻)における、
在炉スラブの平均スラブ厚である。
In addition, the furnace temperature and fuel flow rate in eight zones, for example, the pre-heating zone, heating zone, and soaking zone, are set to Tgj, fj, for example, 1g3. ■, 2
.. T, 3. f4. When f and f3 are assumed, the relationship can be expressed as (Fl, F2.F3 represents a function).However, h, h2. h3 is the pre-heating zone, heating zone, and soaking zone at a certain assumed time (for example, the drawing time), respectively.
This is the average slab thickness of in-furnace slabs.

さらに、制約条件として、設定炉温許容上限値” 0H
AX以下にするため Toj”oj□。   ・・・・・・・・・(4)(j
は例えば1.2.3) を満足する必要がある。
Furthermore, as a constraint, the allowable upper limit of the set furnace temperature is 0H.
Toj”oj□ to make it less than AX. ・・・・・・・・・(4)(j
For example, 1.2.3) must be satisfied.

即ち、本発明により(1)式の最小値を求めるに当って
は(2)、(3)式を利用し、また(4)式の制限を考
癒しな番プればならないが、いずれにせよ評価関数((
1)式)の最小化を行なう動的最適化問題として、周知
の数値解法によって解くことができる。
That is, in order to find the minimum value of equation (1) according to the present invention, equations (2) and (3) must be used, and the limitations of equation (4) must be taken into account, but in either case, Let's evaluate the function ((
As a dynamic optimization problem that minimizes Equation 1), it can be solved by a well-known numerical method.

第1図は本発明による炉温設定方法を第2図の加熱炉に
適用Jる場合に用いられる装置の一例を示したものであ
る。
FIG. 1 shows an example of an apparatus used when the furnace temperature setting method according to the present invention is applied to the heating furnace shown in FIG. 2.

同図で11は全スラブの現在温度を演算するスラブ温度
演算装置で、先にも述べたように、未だ加熱炉に装入さ
れていないスラブについてはセンサー(図示しない)に
より検出された値または推定値を出力とする。一方加熱
炉内のスラブについては、装入時の温度、検出炉温およ
びスラブの在炉時間に基づいて、かつ(2)式、(3)
式を利用して算出する。
In the figure, 11 is a slab temperature calculation device that calculates the current temperature of all slabs.As mentioned earlier, for slabs that have not yet been charged into the heating furnace, the value detected by a sensor (not shown) or The estimated value is output. On the other hand, regarding the slab in the heating furnace, based on the temperature at the time of charging, the detected furnace temperature, and the time in the furnace of the slab, and formula (2), (3)
Calculate using the formula.

12は加熱炉の後■稈、例えば圧延■稈の所要時間等に
応じて、在炉する全スラブの抽出予定時刻を演算する抽
出ピッチ演算装置である。
Reference numeral 12 denotes an extraction pitch calculation device that calculates the scheduled extraction time of all the slabs in the furnace according to the time required for the rear culm of the heating furnace, for example, the rolling culm.

また、13はスラブ寸法(例えば厚さ)や目標抽出温度
などのスラブ情報を記憶したメモリテーブルで、記憶さ
れたデータは逐次更新される。
Further, 13 is a memory table that stores slab information such as slab dimensions (for example, thickness) and target extraction temperature, and the stored data is updated sequentially.

14は将来必要な炉温を算出する将来炉温演算装置で、
装置11で演算されたスラブ温度、装置12で演算され
た抽出ピッチ、i−プル13に記憶されたスラブ情報に
基づいて、上記(1)式の評価関数Jを最小にする名書
の将来炉温を算出する。
14 is a future furnace temperature calculation device that calculates the furnace temperature required in the future;
Based on the slab temperature calculated by the device 11, the extraction pitch calculated by the device 12, and the slab information stored in the i-pull 13, the future furnace of the book that minimizes the evaluation function J of the above formula (1) Calculate the temperature.

15は操業上許容される許容炉温(上限値)を記憶する
メモリテーブルで、演算装置14は上記の演算をするに
当り、名書の設定可能な炉温の上限値ないしは制限条件
をテーブル15から取り込んで計粋に使用する。即ち、
(4)式の条件を満足させるように(る。
Reference numeral 15 denotes a memory table for storing allowable furnace temperatures (upper limit values) that are permissible for operation, and when performing the above calculation, the arithmetic unit 14 stores the upper limit values or limiting conditions of the furnace temperature that can be set in the name book in the table 15. Take it from here and use it wisely. That is,
(4) so as to satisfy the condition of equation (4).

16は出力装置で、演算装置14で演算された将来炉温
を炉温設定値として炉内温度制御系に出力する。
Reference numeral 16 denotes an output device that outputs the future furnace temperature calculated by the calculation device 14 to the furnace temperature control system as a furnace temperature set value.

尚−上記の諸演算および炉温の設定は1つのスラブが抽
出される度に、または一定時間毎に、またオペレータが
指示した時に発生される起動信号Gが与えられたときに
開始される。
Incidentally, the above calculations and furnace temperature setting are started each time one slab is extracted, or at regular intervals, or when a start signal G, which is generated when instructed by an operator, is given.

上記の実施例では、加熱炉が予熱帯、加熱帯、均熱帯の
3つの帯から成るものであったが、本発明の適用は惜敗
に制限されない。
In the above embodiment, the heating furnace was composed of three zones: a pre-heating zone, a heating zone, and a soaking zone, but the application of the present invention is not limited to this.

〔発明の効果〕〔Effect of the invention〕

以−トの説明によって明らかなように、本発明の連続加
熱炉の炉温設定方法によれば、スラブ寸法、抽出ピッチ
、抽出目標温度の異なるスラブ列に対しても、抽出口よ
りm個のスラブについて、抽出温度が抽出目標澗(資)
になるよう炉温が設定されるので、安定した加熱炉操業
ができる。
As is clear from the explanation below, according to the furnace temperature setting method for a continuous heating furnace of the present invention, even for slab rows with different slab dimensions, extraction pitches, and extraction target temperatures, m Regarding the slab, the extraction temperature is the extraction target
The furnace temperature is set so that the heating furnace can operate stably.

又、評価関数の重み係数を調整することにより、特定の
スラブに対して、精度良く抽出目標温度に焼き上げるこ
とができる。さらに、消費燃料流量も名書の合計が小さ
くなるよう炉温設定されるので省エネルギー操業をなし
得る利点がある。
Further, by adjusting the weighting coefficient of the evaluation function, it is possible to bake a specific slab to the extraction target temperature with high accuracy. Furthermore, since the furnace temperature is set so that the total fuel consumption flow rate is small, there is an advantage that energy-saving operation can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の炉温設定方法を実施する炉温設定装
置の一例を示すブロック図、 第2図は一般的な連続加熱炉の炉温I制御系と被加熱材
料の配置状態を示した断面図、 第3図は、この被加熱材料の配置状態の変化を示した説
明図である。 1・・・炉内wA痩計、2・・・バーナ、3・・・炉温
制御装置、11・・・スラブm*演梼装置、12・・・
抽出ピッチ演算装置、13・・・スラブ情報メモリテー
ブル、14・・・将来炉温演算装置、15・・・炉温メ
モリテーブル、16・・・出力装置、G・・・起動信号
Figure 1 is a block diagram showing an example of a furnace temperature setting device that implements the furnace temperature setting method of the present invention, and Figure 2 shows the furnace temperature I control system of a general continuous heating furnace and the arrangement of materials to be heated. The sectional view shown in FIG. 3 is an explanatory diagram showing a change in the arrangement state of the material to be heated. DESCRIPTION OF SYMBOLS 1... In-furnace wA thinning gauge, 2... Burner, 3... Furnace temperature control device, 11... Slab m* drilling device, 12...
Extraction pitch calculation device, 13... Slab information memory table, 14... Future furnace temperature calculation device, 15... Furnace temperature memory table, 16... Output device, G... Starting signal.

Claims (1)

【特許請求の範囲】 1、複数の加熱帯から成り、連続的に供給される被加熱
材料を加熱してその抽出口において目標温度にする連続
加熱炉において、下式で定義される評価関数J、即ち j=Σ^m_i_=_1ω_i〔θ_i(t_f_i)
−θ^R^E^F_i〕^2+∫^(t_f)_t__
oΣ^k_i_=_1f^2_Jdt・・・・・・・・
・(1)(ただし、t_f_iは各スラブS_iの抽出
時刻、θ_iは該抽出時刻における各スラブ S_iの温度(抽出温度)、 θ^R^E^F_iは各スラブS_iの抽出目標温度ω
_iは各スラブS_iに対して定められ る重み係数、 mは考慮の対象にするスラブの最後の ものの番号、 f_jは各帯における燃量流量速度、 kは帯の数、 t_oは現在時刻、 t_f_mはスラブS_mの抽出予定時刻である。) を最小にする炉温を算出し、この算出された炉温を設定
炉温とすることを特徴とする連続加熱炉の炉温設定方法
。 2、特許請求の範囲第1項記載の方法において、加熱炉
内のスラブについては装入時の温度、炉温およびスラブ
の在炉時内に基づいて、かつ下記のスラブの伝熱計算式
、即ち θ(t+Δt)=θ(t)+K_1{(T_g+273
)^4−(θ(t)+273)^4}×{1−K_2(
θ(t)+ 273)^3}・・・・・・・・・(2) (但し、θ(t):時刻tにおけるスラブ温度、θ(t
+Δt):時刻(t+Δt)にお けるスラブ温度、 T_g:炉温、 K_1、K_2:スラブの性質、寸法に係わる定数。) を用いてスラブ温度θ_iを算出することを特徴とする
方法。
[Claims] 1. In a continuous heating furnace consisting of a plurality of heating zones and heating a continuously supplied material to be heated to a target temperature at its extraction port, an evaluation function J defined by the following formula is used. , that is, j=Σ^m_i_=_1ω_i [θ_i(t_f_i)
-θ^R^E^F_i〕^2+∫^(t_f)_t__
oΣ^k_i_=_1f^2_Jdt・・・・・・・・・
・(1) (where t_f_i is the extraction time of each slab S_i, θ_i is the temperature (extraction temperature) of each slab S_i at the extraction time, θ^R^E^F_i is the extraction target temperature ω of each slab S_i
_i is the weighting coefficient determined for each slab S_i, m is the number of the last slab to be considered, f_j is the fuel flow rate in each zone, k is the number of zones, t_o is the current time, t_f_m is the This is the scheduled extraction time of slab S_m. ) A furnace temperature setting method for a continuous heating furnace, characterized in that the furnace temperature is calculated to minimize the temperature, and the calculated furnace temperature is set as the set furnace temperature. 2. In the method described in claim 1, the slab in the heating furnace is based on the temperature at the time of charging, the furnace temperature, and the time the slab is in the furnace, and the following slab heat transfer calculation formula, That is, θ(t+Δt)=θ(t)+K_1{(T_g+273
)^4-(θ(t)+273)^4}×{1-K_2(
θ(t)+273)^3}・・・・・・・・・(2) (However, θ(t): slab temperature at time t, θ(t
+Δt): Slab temperature at time (t+Δt), T_g: Furnace temperature, K_1, K_2: Constants related to slab properties and dimensions. ) is used to calculate the slab temperature θ_i.
JP28146784A 1984-12-26 1984-12-26 Method for setting furnace temperature of continuous heating furnace Pending JPS61153232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28146784A JPS61153232A (en) 1984-12-26 1984-12-26 Method for setting furnace temperature of continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28146784A JPS61153232A (en) 1984-12-26 1984-12-26 Method for setting furnace temperature of continuous heating furnace

Publications (1)

Publication Number Publication Date
JPS61153232A true JPS61153232A (en) 1986-07-11

Family

ID=17639586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28146784A Pending JPS61153232A (en) 1984-12-26 1984-12-26 Method for setting furnace temperature of continuous heating furnace

Country Status (1)

Country Link
JP (1) JPS61153232A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545854A (en) * 1993-12-29 1996-08-13 Yazaki Corporation Grommet for wire sealing
JP2009068518A (en) * 2007-09-10 2009-04-02 Hi-Lex Corporation Grommet assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545854A (en) * 1993-12-29 1996-08-13 Yazaki Corporation Grommet for wire sealing
JP2009068518A (en) * 2007-09-10 2009-04-02 Hi-Lex Corporation Grommet assembly

Similar Documents

Publication Publication Date Title
JPS5848011B2 (en) Furnace combustion control method
CN105018718A (en) Heating furnace process furnace temperature control method based on thermal load distribution
US4394121A (en) Method of controlling continuous reheating furnace
JPS61153232A (en) Method for setting furnace temperature of continuous heating furnace
JPS6051535B2 (en) Optimal control device for billet heating furnace
JPS5913575B2 (en) Control method for heating furnace for steel ingots
JPS5845325A (en) Furnace temperature setting method of continuous heating furnace
JPH0532448B2 (en)
JP4239419B2 (en) Heat treatment furnace and its heating control device
JPH0160529B2 (en)
JPS6036452B2 (en) Control method for continuous heating furnace
JPH0532447B2 (en)
JPS6115928B2 (en)
JPH0361726B2 (en)
JPS5812325B2 (en) Control method for continuous heating furnace
JPS5893818A (en) Optimum controller for ingot heating furnace
JPS61199013A (en) Method for controlling continuous heating furnace
JPS5818401B2 (en) Continuous heating furnace control method
JPH0360887B2 (en)
SU753793A1 (en) Thermal conditions control system of glass-smelting furnace
JPS609087B2 (en) Heating control method for continuous heating furnace
JPS61199019A (en) Method for controlling continuous heating furnace
CN117588937A (en) Real-time temperature control system and method for rotary kiln and storage medium
JPH0232330B2 (en) RENZOKUKANETSURONONENSHOSEIGYOHOHO
JPS61199023A (en) Method for determining heating-up curve of material in heating furnace