JPH0232330B2 - RENZOKUKANETSURONONENSHOSEIGYOHOHO - Google Patents

RENZOKUKANETSURONONENSHOSEIGYOHOHO

Info

Publication number
JPH0232330B2
JPH0232330B2 JP11954783A JP11954783A JPH0232330B2 JP H0232330 B2 JPH0232330 B2 JP H0232330B2 JP 11954783 A JP11954783 A JP 11954783A JP 11954783 A JP11954783 A JP 11954783A JP H0232330 B2 JPH0232330 B2 JP H0232330B2
Authority
JP
Japan
Prior art keywords
zone
temperature
flow rate
furnace
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11954783A
Other languages
Japanese (ja)
Other versions
JPS6013026A (en
Inventor
Kazunori Tachiki
Yasunori Endo
Yasuyoshi Shirai
Hidemitsu Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11954783A priority Critical patent/JPH0232330B2/en
Publication of JPS6013026A publication Critical patent/JPS6013026A/en
Publication of JPH0232330B2 publication Critical patent/JPH0232330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • F27B2009/3638Heaters located above and under the track
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0034Regulation through control of a heating quantity such as fuel, oxidant or intensity of current
    • F27D2019/004Fuel quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2001/00Composition, conformation or state of the charge
    • F27M2001/15Composition, conformation or state of the charge characterised by the form of the articles
    • F27M2001/1539Metallic articles
    • F27M2001/1547Elongated articles, e.g. beams, rails
    • F27M2001/1552Billets, slabs

Description

【発明の詳細な説明】 本発明は、スラブ,ビレツト,粗形鋼片等の鋼
片を連続加熱炉で加熱燃焼制御する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the heating and combustion of steel billets such as slabs, billets, and rough shaped steel billets in a continuous heating furnace.

従来、熱間圧延工程の前段に設けられる鋼片の
連続加熱炉を制御する手段は各種提案されている
が、近時の複雑な加熱炉操業条件に応じて制御精
度を高くかつ省エネルギーを計ることは極めて困
難になりつつある。すなわち、近時は省エネルギ
ー、省工程を目的としてホツトチヤージあるいは
直送圧延が実施されるようになり、加熱炉には
冷、温、熱鋼片が不規則な順序で装入されるため
熱履歴が異なる鋼片を効率よく目標抽出温度に加
熱制御するには従来の手段では対応できにくくな
つている。
In the past, various methods have been proposed for controlling continuous heating furnaces for steel billets, which are installed at the front stage of the hot rolling process. is becoming extremely difficult. In other words, hot charge or direct rolling has recently been implemented for the purpose of saving energy and processes, and cold, hot, and hot steel billets are charged into the heating furnace in an irregular order, resulting in different thermal histories. It has become difficult to efficiently control the heating of steel slabs to a target extraction temperature using conventional means.

従来の制御方式は大きく分けて温度制御と流量
制御の2つに区分される。温度制御は炉内雰囲気
温度を直接測定し、その測定温度に応じた制御を
行なうため、熱履歴がほぼ同じ鋼片が続く場合制
御精度が良いという利点がある反面、前述の冷・
熱鋼片が混在する場合には鋼片温度に対して燃料
投入量がうまく追従できず、流量変動が必要以上
に大きくなり、均一な加熱が得られにくくまた燃
料原単位が悪化するという難点があつた。一方、
流量制御方式は熱精算によつて鋼片の熱容量を求
め焼上温度を予測するのであるが、雰囲気温度測
定を必要としないで流量を直接制御するため不必
要な流量変動を抑える利点があるものの、温度制
御精度が充分でないという問題があつた。
Conventional control methods can be broadly divided into two types: temperature control and flow rate control. Temperature control directly measures the furnace atmosphere temperature and performs control according to the measured temperature, which has the advantage of good control accuracy when steel slabs with approximately the same thermal history continue, but on the other hand, the above-mentioned cooling and
When hot steel pieces are mixed, the amount of fuel input cannot follow the temperature of the steel pieces well, and the flow rate fluctuation becomes larger than necessary, making it difficult to obtain uniform heating and worsening the fuel consumption rate. It was hot. on the other hand,
The flow rate control method calculates the heat capacity of the steel billet by thermal calculation and predicts the firing temperature, but it has the advantage of suppressing unnecessary flow rate fluctuations because it directly controls the flow rate without requiring atmospheric temperature measurement. However, there was a problem that the temperature control accuracy was not sufficient.

本発明は上記従来の温度制御および流量制御各
方式の利点を生かし、連続加熱炉の長さ方向に燃
焼制御ゾーンを分割し、前段のゾーンでは流量制
御を、後段ゾーンでは炉温制御を行なうことによ
つて鋼片の温度予測と焼上げ温度精度を向上し、
省エネルギーを計ることを目的とするものであ
る。以下に本発明の実施例を図面にもとづいて説
明する。
The present invention makes use of the advantages of the conventional temperature control and flow rate control methods described above, and divides the combustion control zone in the length direction of the continuous heating furnace, controlling the flow rate in the front zone and controlling the furnace temperature in the rear zone. improve billet temperature prediction and baking temperature accuracy,
The purpose is to measure energy conservation. Embodiments of the present invention will be described below based on the drawings.

第1図は本発明を実施する連続加熱炉の側面概
略図であり、炉本体の構造は周知の6帯式連続加
熱炉である。装入口1から装入された被加熱鋼片
2はスキツド搬送面30上を予熱帯3a、加熱帯
3b、均熱帯3cの3つの燃焼帯域を経て加熱・
均熱され抽出口4から次工程の圧延ラインへ送出
される。前記各帯には燃焼バーナ5と、炉内の雰
囲気温度を測定する検出器6が各々設けられ、装
入口1の近傍には装入時の鋼片温度を測定するた
めの温度検出器61が設けられている。演算制御
装置7は前記各温度検出器からの入力信号および
各種の設定条件を与える条件設定器8からの信号
によつて、必要燃料流量もしくは必要雰囲気温度
を計算し、その結果から燃焼制御装置9を介して
各帯域の燃焼バーナ5の制御を行なうものであ
る。
FIG. 1 is a schematic side view of a continuous heating furnace for carrying out the present invention, and the structure of the furnace body is a well-known six-zone continuous heating furnace. The heated steel billet 2 charged from the charging port 1 passes through three combustion zones: a preheating zone 3a, a heating zone 3b, and a soaking zone 3c on the skid conveying surface 30, where it is heated and heated.
It is heated uniformly and sent out from the extraction port 4 to the rolling line for the next process. Each zone is provided with a combustion burner 5 and a detector 6 for measuring the atmospheric temperature in the furnace, and a temperature detector 61 for measuring the temperature of the billet at the time of charging is provided near the charging port 1. It is provided. The arithmetic and control unit 7 calculates the required fuel flow rate or the required atmospheric temperature based on the input signals from each of the temperature detectors and the signals from the condition setter 8 that provides various setting conditions, and uses the results to calculate the required fuel flow rate or the required ambient temperature. The combustion burner 5 in each zone is controlled through the control section.

なお、本発明では前記の予熱、加熱、均熱各帯
の制御を2つの制御ゾーンに分けて行なう点が従
来と異なる。すなわち、予熱帯3aを第1制御ゾ
ーン10a、加熱帯3b、均熱帯3cを一括して
第2制御ゾーン10bとして区分する。本実施例
の6帯式連続加熱炉の他、炉長方向に3帯以上に
分けられた例えば5帯式の場合は装入側の少なく
とも1帯以上を第1制御ゾーン、抽出側の2帯以
上を第2制御ゾーンとするが、その組合せは1:
4,2:3,3:2の3ケースがあるが、このう
ちのいずれを選択するかは後述する全帯域の必要
投入熱量と第2制御ゾーンでの投入熱量および被
加熱鋼片の装入温度の関係によつて定まるもので
ある。
The present invention is different from the conventional method in that the preheating, heating, and soaking zones are controlled in two control zones. That is, the preheating zone 3a, the first control zone 10a, the heating zone 3b, and the soaking zone 3c are collectively divided into a second control zone 10b. In addition to the 6-zone continuous heating furnace of this embodiment, for example, in the case of a 5-zone type which is divided into three or more zones in the furnace length direction, at least one zone on the charging side is the first control zone, and two zones on the extraction side. The above is the second control zone, and the combination is 1:
There are three cases: 4, 2:3, and 3:2, but which one to choose depends on the required input heat amount for all zones, the input heat amount in the second control zone, and the charging of the heated steel billet, which will be explained later. It is determined by the relationship of temperature.

次に本発明の制御手段を第2図のフローチヤー
トにもとづきさらに詳細に説明する。なお第2図
で1〜Mは炉内全鋼片を示し、jは帯No.で1は均
熱帯、2は加熱帯、3は予熱帯である。※印のつ
いた枠内の処理はj帯内の鋼片について行なう。
まず、加熱炉内の全装入鋼片について、加熱炉装
入時に予め設定される圧延工程の仕上出側目標温
度から圧延工程での温度降下量を逆算して加熱炉
抽出目標温度TAIMを決定する。具体的な決定方
法には、仕上出側目標温度を従属変数とし成品厚
み、圧延前厚み、通板速度、所要圧延パワー、板
幅等を独立変数とする重回帰モデルあるいは従来
の操業データの蓄積によるテーブル化など周知の
計算方式を任意に用いることができる。次に加熱
炉装入時の実測鋼片温度にもとづき装入温度T0
を決定する。冷片の場合は例えば30℃一定と仮定
してもよいが熱片の場合、実測温度は表面温度で
あるため鋼片中央部の温度を求めるには鋼片厚み
方向の温度分布を数次曲線または正弦曲線によつ
て近似し、かつ鋼片表面の熱収支による伝熱量か
ら中央部温度を計算して求めることができる。な
お、加熱炉内から鋼片表面への熱伝達のほとんど
が放射による伝熱と考え、熱伝達量を周知の総括
熱吸収率法より求め、鋼片の内部温度については
熱伝達量を用いて熱伝導方式を周知の数値解法に
よつて任意の制御間隔時間、例えば2分間隔で全
鋼片の炉内現在位置における鋼片温度T1を求め
ておく。続いて鋼片装入時に装入鋼片iについ
て、上記抽出目標温度TAIMおよび装入温度T0
ら所要含熱量H(i)を(1),(2)式によつて求める。
Next, the control means of the present invention will be explained in more detail based on the flowchart of FIG. In Fig. 2, 1 to M indicate all the slabs in the furnace, j is the zone number, 1 is the soaking zone, 2 is the heating zone, and 3 is the preheating zone. *The processing within the marked box is performed on the steel pieces in band j.
First, for all the billets charged in the heating furnace, calculate the temperature drop in the rolling process from the finish exit target temperature of the rolling process, which is set in advance at the time of charging the heating furnace, to calculate the target temperature T AIM for extraction from the heating furnace. decide. Specific determination methods include a multiple regression model in which the target finishing exit temperature is the dependent variable and the finished product thickness, pre-rolling thickness, strip threading speed, required rolling power, strip width, etc. are independent variables, or the accumulation of conventional operational data. Any well-known calculation method such as tabulation by . Next, the charging temperature T 0 is determined based on the actually measured billet temperature when charging the heating furnace.
Determine. In the case of a cold slab, for example, it may be assumed that the temperature is constant at 30°C, but in the case of a hot slab, the actual measured temperature is the surface temperature, so to find the temperature at the center of the slab, the temperature distribution in the thickness direction of the slab is calculated using a multidimensional curve. Alternatively, it can be approximated by a sine curve and the central temperature can be calculated from the amount of heat transfer due to the heat balance on the surface of the steel piece. It is assumed that most of the heat transfer from the inside of the heating furnace to the surface of the steel billet is due to radiation, and the amount of heat transfer is calculated using the well-known overall heat absorption rate method, and the internal temperature of the steel billet is calculated using the amount of heat transfer. The temperature T 1 of the steel billet at the current position in the furnace of all the steel billets is determined at arbitrary control intervals, for example, at intervals of 2 minutes, using a well-known numerical method for heat conduction. Subsequently, when charging the billet, the required heat content H(i) for the billet i is determined from the extraction target temperature T AIM and the charging temperature T 0 using equations (1) and (2).

h=∫TAIM T0CdT ……(1) H(i)=h×W ……(2) 但しh:重量当り含熱量(KCal/Kg) C:比熱(KCal/Kg・℃) T0:装入温度(℃) TAIM:抽出目標温度(℃) W:鋼片重量(Kg) H(i):1本毎の所要含熱量(KCal) 次にi鋼片の所要含熱量H(i)を必要燃料投入流
量G(i)に(3)式によつて変換する。
h=∫ TAIM T0 CdT ……(1) H(i)=h×W ……(2) However, h: Heat content per weight (KCal/Kg) C: Specific heat (KCal/Kg・℃) T 0 : Equipment Input temperature (℃) T AIM : Extraction target temperature (℃) W: Billet weight (Kg) H(i): Required heat content for each piece (KCal) Next, the required heat content of i steel billet H(i) is converted into the required fuel input flow rate G(i) using equation (3).

G(i)=H(i)×1/q×1/η ……(3) 但しG(i):投入すべき燃料量(Nm2) q:燃料発熱量(KCal/Nm2) η:燃焼効率 またi鋼片の装入時に予め予定される抽出ピツ
チと該鋼片の幅寸法あるいは加熱炉各帯の長さか
ら、各帯域での在炉時間を求める。本実施例での
加熱炉は予熱、加熱、均熱の3帯からなつている
のでi鋼片のそれぞれの各帯における在炉時間が
決まれば各帯域の必要燃料投入量は各帯域の単位
時間当りの流量と前記各在炉時間との積で求める
ことができ、その積の総和が前記必要燃料投入流
量G(i)に等しくなるはずであるからその関係は(4)
式で表わせる。
G(i)=H(i)×1/q×1/η ……(3) However, G(i): Amount of fuel to be input (Nm 2 ) q: Fuel calorific value (KCal/Nm 2 ) η: Combustion Efficiency Also, the furnace time in each zone is determined from the extraction pitch and the width of the steel billet or the length of each zone in the heating furnace, which are planned in advance when charging the steel billet. The heating furnace in this example consists of three zones: preheating, heating, and soaking, so if the in-furnace time in each zone of the i-slab is determined, the required amount of fuel input for each zone is determined by the unit time for each zone. It can be determined by the product of the per unit flow rate and each of the above-mentioned furnace hours, and the sum of the products should be equal to the above-mentioned required fuel input flow rate G(i), so the relationship is (4).
It can be expressed by a formula.

G(i)=gp(i)×tzp(i)+gH(i) ×tZH(i)+gs(i)×tZS(i) ……(4) 但しgp(i):iスラブの予熱帯での単位時間当り
燃料流量(Nm3/hr) gH(i):iスラブの加熱帯での単位時間当り
燃料流量(Nm3/hr) gs(i):iスラブの均熱帯での単位時間当り
燃料流量(Nm2/hr) tZp(i):iスラブの予熱帯の在炉時間(hr) tZH(i):iスラブの加熱帯の在炉時間(hr) tZS(i):iスラブの均熱帯の在炉時間(hr) 上記(1)〜(4)式によつて第1制御ゾーン内の鋼片
1本毎の必要燃料投入量G(i)を求め、第1制御ゾ
ーン内の全鋼片本数nについて必要燃料投入量Q
(i)を求める。
G(i)=g p(i) ×t zp(i) +g H(i) ×t ZH(i) +g s(i) ×t ZS(i) ……(4) However, g p(i) : Fuel flow rate per unit time in the preheating zone of the i slab (Nm 3 /hr) g H(i) : Fuel flow rate per unit time in the heating zone of the i slab (Nm 3 /hr) g s(i) : i slab Fuel flow rate per unit time in the soaking zone (Nm 2 /hr) t Zp(i) : Furnace time in the preheating zone of slab i (hr) t ZH(i) : Furnace time in the heating zone of slab i ( hr) t ZS(i) : I slab in-furnace time in the soaking zone (hr) Using equations (1) to (4) above, the required fuel input amount G( i), and the required fuel input amount Q for the total number n of steel slabs in the first control zone.
Find (i).

Q0oi=1 〔gp(i)×tZP(i)〕 +oi=1 〔gH(i)×tZH(i)〕 +oi=1 〔gS(i)×tZS(i)〕 ……(5) ところで、第1制御ゾーンには、冷,温,熱鋼
片が混在しているため雰囲気温度検出による炉温
制御は適切でないことから、本発明では第1制御
ゾーンに流量制御を適用し、該ゾーンでそれぞれ
の鋼片の温度をほぼ均一に加熱しておけば、その
後のゾーンすなわち第2制御ゾーンでは炉温制御
を行なうことによつて精度の高い制御が行なえる
ことに着目した。すなわち第1制御ゾーンでは制
御精度の厳密さよりも、むしろ各鋼片の温度レベ
ルの差を一定の許容範囲に入るようにして、第2
制御ゾーンでの制御可能な余裕を残しておけばよ
いことになる。従つて前記(5)式の第1制御ゾーン
での必要燃料投入量oi=1 〔gp(i)×tZp(i)〕は粗い精度
でも差支えなく、またQ0,各帯の在炉時間tZp(i)
tZH(i)およびtZS(i)は既知であるから、加熱帯および
均熱帯での単位時間当りの燃料流量gH,gSを下記
(5′)式で仮定する。なお、各帯の在炉時間tZp(i)
tZH(i),tZS(i)は計算上各帯毎に一つの代表値を求め
る必要があるため各鋼片の在炉時間の平均値を用
いるはもしくは帯域内鋼片の最長あるいは最短在
炉時間を用いればよい。従つて前記(5)式は(5′)
式のように簡単に表わすことができる。
Q 0 = oi=1 [g p(i) ×t ZP(i) ] + oi=1 [g H(i) ×t ZH(i) ] + oi=1 [g S( i) ×t ZS(i) ] ...(5) By the way, since the first control zone contains cold, warm, and hot steel pieces, it is not appropriate to control the furnace temperature by detecting the ambient temperature. In the invention, if flow rate control is applied to the first control zone and the temperature of each steel slab is heated almost uniformly in this zone, the furnace temperature is controlled in the subsequent zone, that is, the second control zone. We focused on the ability to perform highly accurate control. In other words, in the first control zone, the difference in temperature level of each piece of steel is kept within a certain tolerance range, rather than the strictness of control accuracy.
It is sufficient to leave a margin for control in the control zone. Therefore, the required fuel input amount oi=1 [g p(i) ×t Zp(i) ] in the first control zone in equation (5) can be determined with rough accuracy, and Q 0 and each zone Furnace time t Zp(i) ,
Since t ZH(i) and t ZS(i) are known, the fuel flow rates g H and g S per unit time in the heating zone and soaking zone are assumed by the following equation (5'). In addition, the in-furnace time t Zp(i) of each zone,
For tZH(i) and tZS (i) , it is necessary to calculate one representative value for each zone, so the average value of the furnace time of each slab is used, or the longest or shortest value of the slabs in the zone is used. It is sufficient to use the time in the furnace. Therefore, the above equation (5) becomes (5')
It can be easily expressed as the formula.

Q0oi=1 gp(i)×tZp +gH×tZH+gS×tZS ……(5′) 但しgH:加熱帯の単位時間当り最大設備能力流
量×αH(Nm3/hr) gS:均熱体の単位時間当り最大設備能力流
量×αS(Nm3/hr) αH,αSは在炉時間が長ければできるだけ設備能
力MAXに近い流量を供給し、在炉時間が短けれ
ば流量を制限し制御余裕を残すようにして、でき
るだけ後段高負荷状態で燃料原単位の向上を計れ
るよう定める係数であるが実際の加熱炉に応じた
操業経験から定めればよい。(5′)式を整理する
と(6)式になる。
Q 0 = oi=1 g p(i) ×t Zp +g H ×t ZH +g S ×t ZS ……(5′) However, g H : Maximum equipment capacity flow rate per unit time of heating zone × α H ( Nm 3 /hr) g S : Maximum equipment capacity flow rate per unit time of the soaking element x α S (Nm 3 /hr) α H and α S are the flow rates that are as close to the equipment capacity MAX as possible when the furnace is in use for a long time. If the furnace time is short, the flow rate is restricted to leave a control margin, and the coefficient is determined to improve the fuel consumption rate as much as possible under high load conditions in the later stages. Bye. Rearranging equation (5') gives equation (6).

Q0=Q1+Q2 ……(6) 但しQ1oi=1 gp(i)×tZp→第1制御ゾーンでの必要
燃料投入量(Nm3) Q2:gH×tZH+gS×tZS→第2制御ゾーンで
の基準燃料投入流量(Nm3) (6)式のgpoi=1 gp(i)を第1制御ゾーンの設定流量
(Nm3/hr)として決定する。次に第2制御ゾー
ン内の各帯にある鋼片の抽出予定ピツチで定まる
抽出までの予測残り在炉時間Lを求め、同時に抽
出目標温度を確保できるまでの焼上げに必要な残
り在炉時間L′を各帯の許容最高雰囲気温度に設定
したと仮定して求める。第3図はその関係を示す
もので予測残り残炉時間Lと必要残り在炉時間
L′の差ΔLを該鋼片の焼けにくさを判定する指標
と定め、各帯の全鋼片についてこのΔLを計算し、
LとL′の差が最も小さい鋼片を該ゾーンの制御対
象鋼片とすることで、同ゾーン内の他の鋼片は問
題なく抽出目標温度を達成できる。なお符号Pn
は、各帯を許容最高雰囲気温度にした時の昇温パ
ターンを示す。
Q 0 = Q 1 + Q 2 ...(6) However, Q 1 : oi=1 g p(i) ×t Zp → Required amount of fuel input in the first control zone (Nm 3 ) Q 2 : g H × t ZH + g S × t ZS → Standard fuel injection flow rate in the second control zone (Nm 3 ) g p in equation (6) = oi=1 g p(i) is the set flow rate in the first control zone (Nm 3 /hr). Next, calculate the predicted remaining furnace time L until extraction determined by the extraction scheduled pitch of the steel billet in each zone in the second control zone, and at the same time calculate the remaining furnace time required for firing until the extraction target temperature can be secured. It is calculated assuming that L' is set to the maximum allowable ambient temperature for each zone. Figure 3 shows the relationship between the predicted remaining furnace time L and the required remaining furnace time.
The difference ΔL in L' is determined as an index for determining the resistance to burning of the steel slab, and this ΔL is calculated for all the steel slabs in each band,
By setting the steel piece with the smallest difference between L and L' as the steel piece to be controlled in the zone, the other steel pieces in the same zone can achieve the extraction target temperature without any problem. Note that the code P n
shows the temperature increase pattern when each zone is brought to the maximum allowable ambient temperature.

さて、燃料原単位を最小にするためには周知の
通りできる限り抽出直前で鋼片を加熱するという
基本的な考え方にもとずいて、該ゾーンの設定雰
囲気温度を決定するが以下その手順を説明する。
すなわち、第4図に示すように前記制御対象鋼片
の予測残り在炉時間Lを前半在炉時間l1と後半在
炉時間l2とに区分し、まず後半在炉時間l2を許容
最高雰囲気温度Tnなると仮定し、また前半在炉
時間l1を一旦、現在の雰囲気温度Tpと同じにする
として、制御対象鋼片の現在温度T1から抽出時
の温度T2を推定計算する。この抽出時の推定温
度T2と予め計算されている抽出目標温度TAIM
比較し、両者がほぼ一致しておれば前記の前半在
炉時間において仮定した雰囲気温度を該ゾーンの
設定温度とする。この場合の許容温度差は実用上
±5℃程度内であれば問題ない。一方推定温度
T2が抽出目標温度TAIMに比較して許容温度差よ
りも低ければ、前半在炉時間の雰囲気温度を高目
に、高ければ雰囲気温度を低目に仮定し直して、
制御対象鋼片の抽出時の温度を再計算し、許容温
度差内に入るように前半在炉時間での雰囲気温度
を調整し該ゾーンの設定温度とする。以上の手順
で決定された第1制御ゾーンおよび第2制御ゾー
ンにおける設定流量あるいは設定温度は定時間毎
あるいは鋼片装入毎または抽出毎に再計算を行な
い燃焼制御装置に出力する。符号Tpは現在雰囲
気温度を、そして符号P1は雰囲気温度パターン
1、符号P2は同2を示す。C1は雰囲気温度パタ
ーン1での鋼片昇温曲線、またC2は同パターン
2での鋼片昇温曲線である。
Now, as is well known, in order to minimize the fuel consumption rate, the set atmospheric temperature for the zone is determined based on the basic idea of heating the steel billets as soon as possible just before extraction. explain.
That is, as shown in Fig. 4, the predicted remaining furnace time L of the steel billet to be controlled is divided into the first half furnace time l1 and the second half furnace time l2 , and first the second half furnace time l2 is set to the maximum allowable furnace time. Assuming that the ambient temperature is T n , and assuming that the first furnace life time l 1 is once the same as the current ambient temperature T p , estimate the temperature T 2 at the time of extraction from the current temperature T 1 of the control target steel slab. . This estimated temperature T 2 at the time of extraction is compared with the pre-calculated extraction target temperature T AIM , and if the two almost match, the atmospheric temperature assumed during the first half of the furnace life is set as the set temperature for the zone. . In this case, there is no problem as long as the allowable temperature difference is within about ±5° C. in practice. On the other hand, the estimated temperature
If T 2 is lower than the allowable temperature difference compared to the extraction target temperature T AIM , the atmospheric temperature during the first half of the furnace life is assumed to be higher, and if it is higher, the atmospheric temperature is re-assumed to be lower.
The temperature at the time of extraction of the steel slab to be controlled is recalculated, and the atmospheric temperature during the first half of the furnace life is adjusted so that it falls within the allowable temperature difference, and this is set as the set temperature for the zone. The set flow rates or set temperatures in the first control zone and the second control zone determined by the above procedure are recalculated at regular intervals, each time a billet is charged, or each time a billet is extracted, and output to the combustion control device. The symbol T p indicates the current ambient temperature, the symbol P 1 indicates the ambient temperature pattern 1, and the symbol P 2 indicates the ambient temperature pattern 2. C 1 is a steel billet temperature increase curve in atmospheric temperature pattern 1, and C 2 is a steel billet temperature increase curve in pattern 2.

なお前記制御対象材を決定するに際しては、例
えば圧延ラインに中間加熱装置を有する等鋼材温
度を任意に制御する手段を備えておれば、制御対
象材として、最も焼けにくい鋼片を選択する必要
はなく、温度補償能力を考慮して制御対象材ある
いは設定温度を変更することも勿論可能である。
また、本実施例の炉長方向に予熱・加熱・均熱の
3つの帯域に分割された加熱炉以外の例えば4〜
6帯でなる場合は、第2制御ゾーン(温度制御帯
域)の基準流量の和が全帯域の必要燃料投入流量
の50%以上になるよう制御ゾーンを設定すれば本
発明の効果は充分に発揮できる。
When determining the material to be controlled, for example, if the rolling line is equipped with a means to arbitrarily control the temperature of the steel material, such as having an intermediate heating device, it is not necessary to select the steel piece that is least likely to burn as the material to be controlled. Of course, it is also possible to change the material to be controlled or the set temperature in consideration of the temperature compensation ability.
In addition, for example, a heating furnace other than the three zones of preheating, heating, and soaking in the furnace length direction of this embodiment
In the case of 6 zones, the effects of the present invention can be fully exerted by setting the control zones so that the sum of the reference flow rates of the second control zone (temperature control zone) is 50% or more of the required fuel input flow rate of all zones. can.

以上詳述したように本発明によれば、熱履歴が
異なる冷,温,熱鋼片が不規則な順序で装入され
ても第1制御ゾーンでの不必要な流量変動を抑制
し、省エネルギーが達成できると共に、第2制御
ゾーンでは温度制御の利点を生かし、精度の高い
制御が可能となる等、工業的に有用な燃焼制御方
法である。
As detailed above, according to the present invention, even if cold, hot, and hot steel billets with different thermal histories are charged in an irregular order, unnecessary flow rate fluctuations in the first control zone can be suppressed and energy can be saved. This is an industrially useful combustion control method, as it is possible to achieve this, and also to take advantage of the temperature control in the second control zone, enabling highly accurate control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する連続加熱炉の概略説
明図、第2図は本発明制御法のフローを示す図、
第3図は在炉時間の関係を示す説明図、第4図は
雰囲気温度パターンを示す説明図である。 1:装入口、2:鋼片、30:スキツド搬送
面、3a:予熱帯、3b:加熱帯、3c:均熱
帯、4:抽出口、5:燃焼バーナ、6,61:温
度検出器、7:演算制御装置、8:条件設定器、
9:燃焼制御装置、10a:第1制御ゾーン、1
0b:第2制御ゾーン。
Fig. 1 is a schematic explanatory diagram of a continuous heating furnace in which the present invention is implemented, Fig. 2 is a diagram showing the flow of the control method of the present invention,
FIG. 3 is an explanatory diagram showing the relationship between the furnace use time, and FIG. 4 is an explanatory diagram showing the atmospheric temperature pattern. 1: Charging port, 2: Steel billet, 30: Skid conveyance surface, 3a: Pre-preparation zone, 3b: Heating zone, 3c: Soaking zone, 4: Extraction port, 5: Combustion burner, 6, 61: Temperature detector, 7 : Arithmetic control device, 8: Condition setting device,
9: Combustion control device, 10a: First control zone, 1
0b: second control zone.

Claims (1)

【特許請求の範囲】[Claims] 1 燃焼帯域が炉長方向に3帯以上に区分された
連続加熱炉でスラブ等の鋼片を加熱するに際し、
予め前記燃焼帯域のうちの装入側の一帯以上を第
1制御ゾーン、残りの抽出側の少なくとも2帯以
上を第2制御ゾーンとして区分しておき第1制御
ゾーン内の鋼片について装入温度T0と抽出目標
温度TAIMから全帯域の必要燃料投入流量Q0を求
め、続いて前記第2制御ゾーンでの在炉時間と単
位時間当りの最大設備能力流量から該ゾーンの基
準燃料投入流量Q2を求めたのち前記全帯域必要
燃料投入量Q0から基準燃料投入流量Q2を差し引
いた残りの流量Q1によつて第1制御ゾーンの流
量制御を行ない、続いて前記第2制御ゾーンでの
残り在炉時間内の雰囲気温度パターンを仮定し、
該雰囲気温度パターンと現在の鋼片温度T1およ
び残り在炉時間から抽出時の鋼片温度T2を求め、
該鋼片温度T2抽出目標温度TAIMを比較しT2
TAIMがほぼ一致するように前記雰囲気温度パタ
ーンを変更し、該雰囲気温度パターンにもとずい
て第2制御ゾーンの温度制御を行なうことを特徴
とする連続加熱炉の燃焼制御方法。
1. When heating slabs or other steel pieces in a continuous heating furnace where the combustion zone is divided into three or more zones in the furnace length direction,
One or more zones on the charging side of the combustion zone are divided in advance into a first control zone, and at least two zones on the remaining extraction side are divided into a second control zone. The required fuel input flow rate Q 0 for the entire zone is determined from T 0 and the extraction target temperature T AIM , and then the standard fuel input flow rate for the zone is determined from the reactor occupancy time in the second control zone and the maximum equipment capacity flow rate per unit time. After determining Q 2 , the flow rate in the first control zone is controlled using the remaining flow rate Q 1 obtained by subtracting the reference fuel input flow rate Q 2 from the required fuel input amount Q 0 in all zones, and then the flow rate in the second control zone is controlled. Assuming the atmospheric temperature pattern during the remaining furnace time at
Obtain the billet temperature T 2 at the time of extraction from the atmospheric temperature pattern, the current billet temperature T 1 and the remaining furnace time, and
Compare the billet temperature T 2 and the extraction target temperature T AIM with T 2 .
A combustion control method for a continuous heating furnace, characterized in that the atmospheric temperature pattern is changed so that T AIM substantially coincides with each other, and the temperature of the second control zone is controlled based on the atmospheric temperature pattern.
JP11954783A 1983-07-01 1983-07-01 RENZOKUKANETSURONONENSHOSEIGYOHOHO Expired - Lifetime JPH0232330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11954783A JPH0232330B2 (en) 1983-07-01 1983-07-01 RENZOKUKANETSURONONENSHOSEIGYOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11954783A JPH0232330B2 (en) 1983-07-01 1983-07-01 RENZOKUKANETSURONONENSHOSEIGYOHOHO

Publications (2)

Publication Number Publication Date
JPS6013026A JPS6013026A (en) 1985-01-23
JPH0232330B2 true JPH0232330B2 (en) 1990-07-19

Family

ID=14764002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11954783A Expired - Lifetime JPH0232330B2 (en) 1983-07-01 1983-07-01 RENZOKUKANETSURONONENSHOSEIGYOHOHO

Country Status (1)

Country Link
JP (1) JPH0232330B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249712A (en) * 2008-04-09 2009-10-29 Nippon Steel Corp Apparatus, system, method and program for controlling temperature in heating furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359208B1 (en) * 2011-12-08 2014-02-06 주식회사 포스코 Apparatus and method of controlling furnace temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249712A (en) * 2008-04-09 2009-10-29 Nippon Steel Corp Apparatus, system, method and program for controlling temperature in heating furnace

Also Published As

Publication number Publication date
JPS6013026A (en) 1985-01-23

Similar Documents

Publication Publication Date Title
US4257767A (en) Furnace temperature control
US3604695A (en) Method and apparatus for controlling a slab reheat furnace
CN106636610A (en) Time-and-furnace-length-based double-dimensional stepping type heating curve optimizing setting method of heating furnace
JPS5947324A (en) Controlling method of heating in heating furnace
CA1175649A (en) Method and system for controlling multi-zone reheating furnaces
CA1085611A (en) Method for enhancing the heating efficiency of continuous slab reheating furnaces
JPH0232330B2 (en) RENZOKUKANETSURONONENSHOSEIGYOHOHO
JPS5913575B2 (en) Control method for heating furnace for steel ingots
JPS61261433A (en) Method for controlling temperature of heating furnace
JP3982042B2 (en) Combustion control method for continuous heating furnace
JPS5818401B2 (en) Continuous heating furnace control method
JPS5819435A (en) Controlling method for continuous heating furnace
JPH032213B2 (en)
JPS5950196B2 (en) How to determine whether a coke oven has caught fire
JPS6016490B2 (en) How to operate a slab heating furnace
Andreev et al. Obtaining reliable information on energy-saving regimes for the heating of continuous-cast semifinished products prior to rolling
JPS6133884B2 (en)
JPS60200319A (en) Controller for furnace temperature
JPS62177090A (en) Control of combustion in coke oven
JPS62124225A (en) Continuous heating method for hot rolling slab
JPS6055569B2 (en) Heating temperature control method for seamless steel pipes
JPH09209044A (en) Operation of continuous type steel cast slab heating furnace
JPS609087B2 (en) Heating control method for continuous heating furnace
JPS5941489B2 (en) How to set the furnace temperature correction amount for a multi-zone continuous heating furnace
JPS6125771B2 (en)