JPS6055569B2 - Heating temperature control method for seamless steel pipes - Google Patents

Heating temperature control method for seamless steel pipes

Info

Publication number
JPS6055569B2
JPS6055569B2 JP6201680A JP6201680A JPS6055569B2 JP S6055569 B2 JPS6055569 B2 JP S6055569B2 JP 6201680 A JP6201680 A JP 6201680A JP 6201680 A JP6201680 A JP 6201680A JP S6055569 B2 JPS6055569 B2 JP S6055569B2
Authority
JP
Japan
Prior art keywords
heating
shell
set temperature
heating time
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6201680A
Other languages
Japanese (ja)
Other versions
JPS56158825A (en
Inventor
春穂 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6201680A priority Critical patent/JPS6055569B2/en
Publication of JPS56158825A publication Critical patent/JPS56158825A/en
Publication of JPS6055569B2 publication Critical patent/JPS6055569B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 本発明は、炉内に装入される鋼材の加熱温度制御方法に
関し、特に、継目無鋼管の加熱炉において、該鋼管の寸
法形状あるいは抽出サイクルタイムなどが変化する場合
に最適な加熱時間および炉内設定温度を決定し、これに
よつて該鋼管の過熱防止および省エネルギーを図つた加
熱温度決定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating temperature control method for steel materials charged into a furnace, and particularly in a heating furnace for seamless steel pipes, when the dimensions and shape of the steel pipes or the extraction cycle time change. The present invention relates to a heating temperature determining method for determining the optimal heating time and furnace temperature setting, thereby preventing overheating of the steel pipe and saving energy.

継目無鋼管の製造においては、加熱炉で鋼片(ビレツト
)を所定温度に加熱し、1次、2次のせん孔を行なつた
後、再加熱炉で再び加熱し、サイザーで所定外径に仕上
げする。
In the production of seamless steel pipes, a billet is heated in a heating furnace to a predetermined temperature, and after performing primary and secondary drilling, it is heated again in a reheating furnace, and then cut to a predetermined outer diameter with a sizer. Finish.

この加熱処理において加熱温度が不適切な場合は偏向あ
るいはきずの原因となるので、各鋼種に応じ最も加工性
のよい温度でしかも均一に加熱する必要がある。ところ
で前記加熱炉、再加熱炉内では、一般に複数個の鋼片あ
るいは中空素材が間欠的に複数の温度帯を通り抽出口か
ら順次取出される。これらの鋼片などが1つの炉内で間
欠的に1目移動する時間を1サイクルタイムと称してい
る。一般に、冷間シェルの再加熱炉内における加熱時間
Tは、設定温度が同一の場合、次式で表わされる。
In this heat treatment, if the heating temperature is inappropriate, it may cause deflection or flaws, so it is necessary to uniformly heat the steel at a temperature that provides the best workability for each type of steel. By the way, in the heating furnace or reheating furnace, generally a plurality of steel pieces or hollow materials are intermittently passed through a plurality of temperature zones and sequentially taken out from the extraction port. The time it takes for these pieces of steel to move intermittently within one furnace is called one cycle time. Generally, the heating time T of the cold shell in the reheating furnace is expressed by the following equation when the set temperature is the same.

T=に−m)m=d(D/d)/D ただし、に;比例定数、d;肉厚、D;外径である。T=to-m)m=d(D/d)/D However, d is the constant of proportionality, d is the wall thickness, and D is the outer diameter.

この計算式により前記再加熱炉の在炉時間が求まり、鋼
管1本当りのサイクルタイムが決められる。
This calculation formula determines the in-furnace time of the reheating furnace, and determines the cycle time for one steel pipe.

しかしこの計算式はある定まつた温度からの加熱には適
用できるが、炉内の装入温度が、(イ)シェル外径、(
口)シェル肉厚、およびヤ→圧延サイクルタイムによつ
て変化する場合には別途定めなければならない。上述の
(イ)〜←→に対する装入温度の変化を種々の測定によ
り検討した結果、炉への装入温度とシェルの肉厚とは比
例関係にあることが判明した。即ち、シェル肉厚が厚い
程、シェルの保有熱したがつて装入温度が高く、抽出温
度との差が小さい。特にmがある値以上になると、かえ
つて加熱時間は短かくてよいという結果が得られた。こ
の測定結果を図示すれば第1図の実線の如くなる。従来
は、シェル肉厚に関係なく装入温度が一定としており、
mの増加に対して加熱時間を直線的に増加させている。
第1図で示せば鎖線の如く一律に増加させている。即ち
従来は、シェル装入温度の変化を考慮に入れず無駄な熱
エネルギーを使つていることになる。本発明は上述の実
験結果にもとづき、従来の理論計算による設定温度に対
してある減率を求め、この減率分だけ低い温度、即ち少
ないエネルギーを加熱処理することにより、抽出サイク
ルタイムの短縮および省エネルギーを図ることを目的と
するものであり、上述のmで表わされるシェル形状と加
熱時間との関係を最適熱効率となるように実験で求め、
この関係を用いて得た最適加熱時間から設定温度減率を
求めるようにしたものである。
However, this calculation formula can be applied to heating from a certain fixed temperature, but the charging temperature in the furnace is (a) shell outer diameter, (
口) If it changes depending on shell thickness and rolling cycle time, it must be determined separately. As a result of examining the change in charging temperature for the above (a) to ←→ by various measurements, it was found that there is a proportional relationship between the charging temperature into the furnace and the wall thickness of the shell. That is, the thicker the shell, the higher the heat retained by the shell and therefore the charging temperature, and the smaller the difference from the extraction temperature. In particular, when m exceeds a certain value, the heating time may actually be shortened. If this measurement result is illustrated, it will look like the solid line in FIG. Conventionally, the charging temperature was kept constant regardless of the shell thickness.
The heating time is increased linearly with respect to the increase in m.
In FIG. 1, it increases uniformly as shown by the chain line. That is, in the conventional method, thermal energy is wasted without taking into account changes in the shell charging temperature. Based on the above-mentioned experimental results, the present invention calculates a certain reduction rate with respect to the set temperature based on conventional theoretical calculations, and performs heat treatment at a lower temperature by this reduction rate, that is, with less energy, thereby shortening the extraction cycle time. The purpose is to save energy, and the relationship between the shell shape expressed by m above and the heating time is experimentally determined to achieve the optimal thermal efficiency.
The set temperature lapse rate is determined from the optimum heating time obtained using this relationship.

そしてこの設定温度減率に基いて加熱帯の設定温度を制
御する。即ち本発明による継目無鋼管の加熱温度制御方
法は、シェル肉厚、外径、抽出サイクルタイムなどが変
化する場合のシェル形状と加熱時間との関係を基にして
、次の各工程により加熱帯の設定温度を制御するもので
ある。(イ)冷間のシェルが装入される条件から最大加
熱時間を求める工程、(0)装入されるシェルの保有熱
を加味して実験的に最適熱効率となるような加熱時間T
をT=Km+cとして求める工程、 ただし、 K;比例定数、 c;実験的に求められる定数、 m=d(D−d)/D d:シエル肉厚、 D;シェル外径、 (ハ)前記最適熱効率となる加熱時間と前記(イ)で求
められた最大加熱時間を比較し、その超過分に応じて設
定温度減率を求める工程、(ニ)前記設定温度減率に基
いて加熱帯の設定温度を制御する工程。
Then, the set temperature of the heating zone is controlled based on this set temperature lapse rate. That is, the heating temperature control method for seamless steel pipes according to the present invention is based on the relationship between the shell shape and heating time when the shell thickness, outer diameter, extraction cycle time, etc. change, and the heating zone is controlled by the following steps. This is to control the set temperature. (b) The process of determining the maximum heating time from the conditions under which cold shells are charged, (0) The heating time T that experimentally provides the optimum thermal efficiency by taking into account the heat retained in the shells to be charged.
The process of finding T=Km+c, where K: proportionality constant, c: experimentally determined constant, m=d(D-d)/D d: shell thickness, D: shell outer diameter, (c) the above A step of comparing the heating time that yields the optimum thermal efficiency with the maximum heating time determined in (a) above, and determining the set temperature lapse rate according to the excess; (d) determining the heating zone temperature based on the set temperature lapse rate. The process of controlling the set temperature.

このように本発明は、再加熱炉において装入されるシェ
ルの保有熱がシェル肉厚によつて大きな差があることに
着目し、加熱帯の設定温度をきめ細かに制御し、加熱に
使用する燃料を調節する結果、大きな省エネルギー効果
が図られる。
In this way, the present invention focuses on the fact that the heat retained in the shell charged in the reheating furnace varies greatly depending on the shell thickness, and finely controls the set temperature of the heating zone and uses it for heating. As a result of adjusting the fuel, significant energy savings can be achieved.

以下、図面を参照して本発明を具体的に説明する。Hereinafter, the present invention will be specifically described with reference to the drawings.

第1図の実験結果が示すように、肉厚が大となるにつれ
てシェル装入温度が直線的に高くなることから、熱効率
上最適な加熱時間はK=10以上で横軸と平行になる。
As shown in the experimental results in FIG. 1, the shell charging temperature increases linearly as the wall thickness increases, so the optimal heating time in terms of thermal efficiency becomes parallel to the horizontal axis when K=10 or more.

この例における最適熱効率の関係を数式で示すと、醪●
V )易1J1)Av●VS具 υVOVV〜
′曝.ノm≧10.8でT=ー1.77m+39.7
2従来の場合ど比較すれば、図中mのある値においてa
の分だけ加熱時間が節約できる。
The relationship between optimal thermal efficiency in this example is expressed mathematically as follows:
V) Easy 1J1) Av●VS tool υVOVV~
'Exposure. When m≧10.8, T=-1.77m+39.7
2 If we compare the conventional case, at a certain value of m in the figure, a
You can save heating time by that amount.

いま、あるmのシェルが加熱炉に装入されたとする。こ
れがサイクルタイムt(秒)で炉内を1ポケット送られ
た場合、t×(ポケット数)=Tでこのシェルは加熱炉
を通過するとする。先の設例ではこのときの最適な在炉
時間はb(秒)であつて、従来の加熱時間の超過分はa
(秒)となる。このaと加熱帯設定温度の減率との関係
を図示すれば、第2図の如くになる。具体例として外径
360!!r!11、肉厚10.0WIRのシェルが炉
内に装入されたとき、m=9.72、b=330(秒)
で10ポケットの場合、1サイクルは33(秒)である
。一方冷間シェルが装入されたときには第1図の鎖線で
示される最大加熱時間から求められる最大サイクルタイ
ムは、t=55(秒)で1ピッチ(ポケット)移動され
たとすると、a=t×(ポケット数)−b=220(秒
)となり、この場合での設定温度の減率は第2図から0
.947となる。
Suppose that a certain number of m shells are loaded into the heating furnace. If this shell is sent through the furnace in one pocket at a cycle time of t (seconds), it is assumed that this shell passes through the heating furnace at t×(number of pockets)=T. In the previous example, the optimal furnace time at this time is b (seconds), and the excess of the conventional heating time is a.
(seconds). The relationship between a and the lapse rate of the heating zone temperature setting is illustrated in FIG. 2. As a specific example, the outer diameter is 360! ! r! 11. When a shell with a wall thickness of 10.0 WIR is charged into the furnace, m = 9.72, b = 330 (seconds)
In the case of 10 pockets, one cycle is 33 (seconds). On the other hand, when the cold shell is charged, the maximum cycle time determined from the maximum heating time shown by the chain line in Fig. 1 is, assuming that it is moved one pitch (pocket) at t = 55 (seconds), a = t x (number of pockets) - b = 220 (seconds), and in this case, the rate of decrease in the set temperature is 0 from Figure 2.
.. It becomes 947.

したがつて例えば9000Cの設定であれば、900℃
×0.947=8539Cの設定温度に変更される。第
3図は実際のシェル加熱炉の概略的な側面断面図であつ
て、20X.のシェル4が炉体ケーシング10内の加熱
帯に1鉢、均熱帯に8本存在し、ウオーキングビーム2
の各ポケット9に担持されて順次矢印方向へ移動してい
く状態を示している。
Therefore, for example, if the setting is 9000C, the temperature will be 900℃.
The set temperature is changed to ×0.947=8539C. FIG. 3 is a schematic side sectional view of an actual shell heating furnace. There are one shell 4 in the heating zone and eight shells in the soaking zone in the furnace casing 10, and a walking beam 2.
The figure shows the state in which it is carried in each pocket 9 and sequentially moves in the direction of the arrow.

装入ローラ3はバイブ位置を検知して停止し、モータ7
の回転が開始される。カム6を介してビームフレーム5
およびこれに連結されたウオーキングビーム2が鎖線の
方向に回動し、シェル4を1本づつ搬送ローラ1に送り
出していく。この送り出し完了時点から次材送り出し完
了時点までを炉床下に取付けられたリミットスイッチ8
が検出し、その間の時間を計測して1サイクルタイムと
する。このシェルの理論上のサイクルタイムは、第1図
の実線で示す関係にある加熱時間から(加熱時間)/2
鉢として算出する。この理論サイクルタイムと前述のサ
イクルタイムt(秒)とを比較して加熱帯における設定
温度を求める。前述の超過時間分aの演算は、装入され
るシェル毎に行なわれるため、加熱炉設定温度は刻々変
化する。
The charging roller 3 detects the vibrator position and stops, and the motor 7
starts rotating. Beam frame 5 via cam 6
The walking beam 2 connected thereto rotates in the direction of the chain line and sends out the shells 4 one by one to the conveying roller 1. A limit switch 8 installed under the hearth controls the time from the completion of this delivery to the completion of delivery of the next material.
is detected, and the time in between is measured and defined as one cycle time. The theoretical cycle time of this shell is (heating time)/2 from the heating time shown by the solid line in Figure 1.
Calculated as a pot. This theoretical cycle time and the aforementioned cycle time t (seconds) are compared to determine the set temperature in the heating zone. Since the calculation of the above-mentioned excess time a is performed for each loaded shell, the heating furnace set temperature changes every moment.

この場合、あまりの急激な変化を防止するために次のよ
うな条件をとる。(イ)炉温の最低値の制限 (口)同一ロツト内ではその理論サイクルタイムは最長
のものに合わせる。
In this case, the following conditions are adopted to prevent too sudden changes. (a) Limits on the minimum value of furnace temperature (1) Within the same lot, the theoretical cycle time should be adjusted to the longest one.

例えば炉温巾を1(代)とする。(ハ)長期停止時には
人が介入する。
For example, assume that the furnace temperature width is 1 (generation). (c) Human intervention during long-term outages.

本発明によれば、シェル肉厚、外径等により、シェルの
最適在炉時間から加熱炉の設定温度を省エネルギ上最も
効率のよい温度にすることができる。
According to the present invention, the temperature setting of the heating furnace can be set to the most efficient temperature in terms of energy saving based on the shell thickness, outer diameter, etc., and the optimum furnace life time of the shell.

バイブの過熱防止、サイクルタイムの短縮がもたらされ
、また圧延の状況によつて10%近い省エネルギー化が
期待される。
This will prevent overheating of the vibrator, shorten cycle time, and is expected to save energy by nearly 10% depending on rolling conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は最適熱効率におけるシェル形状mと加熱時間と
の関係を示した図、第2図は加熱時間の超過分aに対す
る設定温度減率の関係を示した図、第3図は本発明の適
用される加熱炉の1例を示した概略的な側面断面図であ
る。 1・・・・・・搬送ローラ、2・・・・・・ウオーキン
グビーム、3・・・・・・装入ローラ、4・・・・・・
シェル、9・・・・・・ポケット、10・・・・・・炉
体ケーシング。
Figure 1 shows the relationship between the shell shape m and heating time at optimum thermal efficiency, Figure 2 shows the relationship between the set temperature lapse rate and the heating time excess a, and Figure 3 shows the relationship between the shell shape m and the heating time at the optimum thermal efficiency. FIG. 2 is a schematic side sectional view showing an example of an applied heating furnace. 1... Conveyance roller, 2... Walking beam, 3... Charging roller, 4...
Shell, 9...pocket, 10...furnace casing.

Claims (1)

【特許請求の範囲】 1 シェル肉厚、外径、抽出サイクルタイムなどが変化
する場合のシェル形状と加熱時間との関係を基にして、
次の各工程により加熱帯の設定温度を制御することを特
徴とする継目無鋼管の加熱温度制御方法。 (イ)冷間のシェルが装入される条件から最大加熱時間
を求める工程、(ロ)装入されるシェルの保有熱を加味
して実験的に最適熱効率となるような加熱時間TをT=
Km+cとして求める工程、 ただし、 K;比例定数、 c;実験的に求められる定数、 m=d(D−d)/D d;シェル肉厚、 D;シェル外径、 (ハ)前記最適熱効率となる加熱時間と前記(イ)で求
められた最大加熱時間を比較し、その超過分に応じて設
定温度減率を求める工程、(ニ)前記設定温度減率に基
いて加熱帯の設定温度を制御する工程。
[Claims] 1. Based on the relationship between shell shape and heating time when shell thickness, outer diameter, extraction cycle time, etc. change,
A heating temperature control method for seamless steel pipe, characterized by controlling the set temperature of a heating zone through the following steps. (a) The process of determining the maximum heating time from the conditions under which cold shells are charged; (b) The process of determining the heating time T that gives the optimum thermal efficiency experimentally by taking into account the heat retained in the shells to be charged. =
Process determined as Km+c, where K: proportionality constant, c: constant determined experimentally, m=d(D-d)/D d: shell thickness, D: shell outer diameter, (c) the above-mentioned optimum thermal efficiency and A step of comparing the heating time obtained in the above (a) with the maximum heating time obtained in the above (a) and determining a set temperature lapse rate according to the excess, (d) setting the set temperature of the heating zone based on the above set temperature lapse rate. Process to control.
JP6201680A 1980-05-10 1980-05-10 Heating temperature control method for seamless steel pipes Expired JPS6055569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6201680A JPS6055569B2 (en) 1980-05-10 1980-05-10 Heating temperature control method for seamless steel pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6201680A JPS6055569B2 (en) 1980-05-10 1980-05-10 Heating temperature control method for seamless steel pipes

Publications (2)

Publication Number Publication Date
JPS56158825A JPS56158825A (en) 1981-12-07
JPS6055569B2 true JPS6055569B2 (en) 1985-12-05

Family

ID=13187936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6201680A Expired JPS6055569B2 (en) 1980-05-10 1980-05-10 Heating temperature control method for seamless steel pipes

Country Status (1)

Country Link
JP (1) JPS6055569B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039165A1 (en) 2017-08-23 2019-02-28 日本ゼオン株式会社 Polymerizable liquid crystal material, polymerizable liquid crystal composition, polymer, optical film, optical anisotropic body, polarizer, antireflective film, display device and method for manufacturing polymerizable liquid crystal composition
WO2020149205A1 (en) * 2019-01-17 2020-07-23 住友化学株式会社 Polymerizable liquid crystal composition, retardation plate, elliptically polarizing plate and organic el display device
US11480721B2 (en) 2018-02-14 2022-10-25 Fujifilm Corporation Polymerizable liquid crystal composition, method for producing polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039165A1 (en) 2017-08-23 2019-02-28 日本ゼオン株式会社 Polymerizable liquid crystal material, polymerizable liquid crystal composition, polymer, optical film, optical anisotropic body, polarizer, antireflective film, display device and method for manufacturing polymerizable liquid crystal composition
US11492552B2 (en) 2017-08-23 2022-11-08 Zeon Corporation Polymerizable liquid crystal material, polymerizable liquid crystal composition, polymer, optical film, optically anisotropic body, polarizing plate, anti-reflection film, display device, and method of producing polymerizable liquid crystal composition
US11480721B2 (en) 2018-02-14 2022-10-25 Fujifilm Corporation Polymerizable liquid crystal composition, method for producing polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
WO2020149205A1 (en) * 2019-01-17 2020-07-23 住友化学株式会社 Polymerizable liquid crystal composition, retardation plate, elliptically polarizing plate and organic el display device

Also Published As

Publication number Publication date
JPS56158825A (en) 1981-12-07

Similar Documents

Publication Publication Date Title
JPS6055569B2 (en) Heating temperature control method for seamless steel pipes
US4913748A (en) Method and apparatus for continuous annealing
JPH10277620A (en) Method for controlling temperature in continuous hot rolling of steel tube
EP0350173A1 (en) Method and apparatus for continuous annealing
JP3297741B2 (en) Furnace temperature control method for continuous heating furnace
JP3928314B2 (en) Method for predicting and determining heating furnace extraction time and heating furnace control method
JPH08246058A (en) Automatic combustion control method in continuous type heating furnace
JP3982042B2 (en) Combustion control method for continuous heating furnace
JPH0377851B2 (en)
JPH0232330B2 (en) RENZOKUKANETSURONONENSHOSEIGYOHOHO
JP3369241B2 (en) Extraction billet temperature control method for rotary hearth heating furnace
JPS5812325B2 (en) Control method for continuous heating furnace
JPS56152918A (en) Continuously heating furnace for ingot
JPS6356293B2 (en)
JPS6133884B2 (en)
JPS6144128A (en) Operating method of heat treating furnace for pipe attached with upset
JPH032213B2 (en)
SU855015A1 (en) Automatic line for thermal treatment of parts
JPS584412A (en) Controlling method of continuous heating furnace
JPH0733542B2 (en) Steel material heating method in continuous heating furnace
JPH09157760A (en) Method of controlling furnace temperature in continuous heating furnace
JPS62124225A (en) Continuous heating method for hot rolling slab
JPS6032687B2 (en) Temperature control method and device for continuous heating equipment
JPS55131129A (en) Skelp heating furnace provided with jet preheating furnace
JPH0217611B2 (en)