JP3369241B2 - Extraction billet temperature control method for rotary hearth heating furnace - Google Patents

Extraction billet temperature control method for rotary hearth heating furnace

Info

Publication number
JP3369241B2
JP3369241B2 JP06291593A JP6291593A JP3369241B2 JP 3369241 B2 JP3369241 B2 JP 3369241B2 JP 06291593 A JP06291593 A JP 06291593A JP 6291593 A JP6291593 A JP 6291593A JP 3369241 B2 JP3369241 B2 JP 3369241B2
Authority
JP
Japan
Prior art keywords
temperature
billet
hearth
heating furnace
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06291593A
Other languages
Japanese (ja)
Other versions
JPH06248360A (en
Inventor
宏之 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP06291593A priority Critical patent/JP3369241B2/en
Publication of JPH06248360A publication Critical patent/JPH06248360A/en
Application granted granted Critical
Publication of JP3369241B2 publication Critical patent/JP3369241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、主として継目無鋼管
製造ラインの回転炉床式加熱炉の抽出ビレット温度制御
方法に関する。 【0002】 【従来の技術】傾斜圧延方式による継目無鋼管の製造
は、一般的には先ずビレットを加熱炉に装入して製管可
能温度まで加熱し、傾斜ロール穿孔機であるピアサーに
て中空素管を製造した後、延伸圧延機にて延伸圧延し、
最後に定径圧延機にて製品寸法に縮径圧延される。継目
無鋼管製造ラインのビレット加熱工程においては、一般
に回転炉床式加熱炉が広く用いられている。上記継目無
鋼管の製造工程においては、ピアサーによる穿孔圧延時
にビレットの周方向に偏熱があると、周方向の温度差に
よる変形抵抗の違いによって高温部が薄く、低温部が厚
くなる周方向偏肉が発生し、穿孔後の中空素管の肉厚が
不均一となって最終製品の偏肉として残ることとなる。
ピアサーによる穿孔圧延時のビレット周方向偏熱は、加
熱炉抽出時に決まるので、周方向偏肉を目標範囲内にお
さえるためには、加熱炉抽出時のビレット周方向偏熱を
目標範囲内に抑制することが必要である。 【0003】回転炉床式加熱炉では、最終抽出ゾーンで
ビレットが抽出された炉床が装入口まで回転し、その炉
床上にビレットが装入載置される。しかし、ビレット装
入時の炉床温度は、操業条件によって大きく異なる。す
なわち、低温材抽出時は必然的にビレット装入時の炉床
温度は低温となり、高温材加熱時はビレット装入時の炉
床温度は高温となる。さらに、ビレット抽出口から装入
口間は、バーナーがないため低温ゾーンであり、ビレッ
ト抽出停止中にその低温ゾーンに長時間位置した場合、
炉床は他の位置の炉床に比べかなり低温となる。その結
果加熱中のビレット温度分布は、ビレット装入時の炉床
温度に大きく影響されることになる。しかし、従来はビ
レット装入時の炉床温度は、一定もしくはビレット抽出
側の炉床温度とされており、特に非定常な操業を行って
いる場合は炉床温度の影響によって、時々刻々のビレッ
ト温度演算精度が低下し、抽出温度予測精度が低くなる
ため制御精度が悪化するという問題点があった。 【0004】そのための回転炉床式加熱炉抽出時のビレ
ット温度制御方法としては、加熱炉から抽出される丸ビ
レットの横断面温度分布を予測演算し、その演算結果か
ら求めた最大温度偏差が、丸ビレットの温度偏差−偏肉
率相関関係に基づき予め求めた偏肉発生警戒基準以上と
なった場合には加熱条件を変更し、また、前記基準値よ
りも大きい偏肉不良発生基準値以上となった場合には加
熱炉からの丸ビレットの抽出または穿孔を中断する方法
(特公昭60−12129号公報)が提案されている。 【0005】 【発明が解決しようとする課題】上記特公昭60−12
129号公報に開示の方法は、炉内各ゾーンの炉温とビ
レットの鋼種、直径、炉内ビレット間隔から時々刻々の
炉床とビレットの温度を演算し、抽出時のビレット最大
温度偏差を予測演算するもので、前記ビレット装入時の
炉床温度に起因するビレット温度演算精度の低下を解消
するまでには至っていない。 【0006】この発明の目的は、前記回転炉床式加熱炉
におけるビレット装入時の炉床温度に起因するビレット
温度演算精度の低下を防止し、加熱制御精度を向上させ
て穿孔圧延時の周方向偏肉を低減できる回転炉床式加熱
炉の抽出ビレット温度制御方法を提供することにある。 【0007】 【課題を解決するための手段】本発明者らは、上記問題
を解決すべく種々試験研究を行った。その結果、炉床を
周方向および厚み方向および/または半径方向の複数点
に分割し、各々の点の炉床温度を連続的に演算し、その
結果に基づいてビレット装入時には、最も近い位置の炉
床温度をビレット装入時の炉床温度としてビレット温度
を演算し、その結果に基づいて各ゾーンの設定炉温を演
算することによって、ビレット装入時の炉床温度に起因
するビレット温度演算精度の低下を大幅に抑制できるこ
とを究明し、この発明に到達した。 【0008】すなわちこの発明は、回転する炉床と、バ
ーナーと熱電対とを有する複数のゾーンに区画された回
転炉床式加熱炉の各ゾーンの温度を制御することによ
り、ビレット温度を制御する回転炉床式加熱炉の抽出ビ
レット温度制御方法において、加熱炉各ゾーンの実績炉
温および炉床の炉内位置情報に基づいて前記各ゾーンに
おける炉床温度を連続的に演算してビレットの加熱炉装
入位置の炉床温度および装入されたビレット温度を決定
し、該決定した加熱炉装入位置の炉床温度およびビレッ
ト温度に基いて、回転炉床式加熱炉各ゾーンの設定炉温
を演算制御することを特徴とする回転炉床式加熱炉の抽
出ビレット温度制御方法である。 【0009】 【作用】この発明においては、加熱炉各ゾーンの実績炉
温および炉床の炉内位置情報に基づいて前記各ゾーンに
おける炉床温度を連続的に演算してビレットの加熱炉装
入位置の炉床温度および装入されたビレット温度を決定
し、該決定した加熱炉装入位置の炉床温度およびビレッ
ト温度に基いて、回転炉床式加熱炉各ゾーンの設定炉温
を演算制御する。具体的には、回転炉床式加熱炉の炉床
を加熱炉の周方向、厚み方向および/もしくは半径方向
の複数点に分割し、各々の点の炉床温度を操業開始から
回転炉床式加熱炉各ゾーンの実績炉温および炉床の各点
の炉内位置情報に基づき連続的に演算する。その結果に
基づいてビレット装入時には最も近い位置の炉床の温度
をビレット装入時の炉床温度としてビレット温度計算を
行い、その結果より、回転炉床式加熱炉各ゾーンの設定
炉温を演算して制御するから、ビレット装入時の炉床温
度に起因するビレット温度演算精度の低下を解消するこ
とができる。 【0010】 【実施例】以下にこの発明の詳細を実施の一例を示す図
1ないし図4に基づいて説明する。図1はこの発明方法
の実施状態を示す模式図、図2はピアサーでの穿孔圧延
状況の説明図、図3はビレットの周方向偏熱とピアサー
後の偏肉率の相関を表す相関図、図4はビレット装入時
の炉床温度が通常よりかなり低い場合に本発明法を用い
た場合とビレット装入時の炉床温度を一定とした従来法
の場合の加熱制御の違いを示すもので、(A)図は加熱
炉各ゾーンと炉温との関係を示すグラフ、(B)図は加
熱炉各ゾーンとビレット周方向偏熱との関係を示すグラ
フである。図1に示すとおり、装入機1により回転炉床
式加熱炉2中の炉床3上にビレット4が装入される。回
転炉床式加熱炉2中には、通常炉床3上に複数本のビレ
ット4が同時に加熱されており、炉床3の回転にともな
い加熱炉中を進行する間に加熱される。加熱炉にて所定
温度に加熱されたビレット4は、抽出機5にて1本毎に
加熱炉から抽出される。その後ビレット4は、図2に示
すとおり、ピアサーにてロール6とプラグ7および図示
していないガイドシューにて穿孔圧延され、中空素管8
となる。加熱炉2には、各ゾーンに図示していない熱電
対が取り付けられている。また、加熱炉2には、炉床お
よび炉内ビレット位置をトラッキングするための図示し
ていないパルスジェネレータも取り付けられている。 【0011】演算制御装置9は、上記各ゾーンの熱電対
から回転炉床式加熱炉2の各ゾーンの実績温度およびパ
ルスジェネレータからの炉床3及びビレット4のトラッ
キング情報が時々刻々に入力されると共に、図示しない
上位演算装置からビレット毎の鋼種、寸法、炉内ビレッ
ト間隔等温度計算に必要な情報が入力されている。演算
制御装置9は、回転炉床式加熱炉2の炉床3を加熱炉の
周方向及び厚み方向及び/もしくは半径方向にメッシュ
分割を行う。炉床3初期温度は、操業開始前は室温であ
ると仮定して決定する。その後、演算制御装置9は、各
々のメッシュの炉床温度を操業開始から各ゾーンの熱電
対から入力される実績炉温およびパルスジェネレータか
ら入力される炉床3の各点の位置情報に基づき、連続的
に演算する。演算制御装置9による炉床温度の演算は、
例えば進行方向と厚さ方向の2次元の場合は、以下の
(1)〜(3)式に解く事により求める。 【0012】 【数1】 【0013】但し C:炉床の比熱 ρ:炉床の密度 T:炉床の温度 t:時間 X,Y:炉床の座標軸(進行方向、厚さ方向) λ:炉床の熱伝導率 Fc:炉床上面の炉壁に対する形態係数 Fb:炉床上面のビレットに対する形態係数 Φc:炉床上面と炉壁間の総括熱吸収率 Φb:炉床上面とビレット間の総括熱吸収率 Φa:炉床下面と大気間の総括熱吸収率 Tb:ビレット表面温度 Tc:ビレット存在ゾーンの炉壁実績温度 Ta:大気温度 Tu:炉床上表面温度 Tl:炉床下表面温度 n:炉床表面の法線方向 【0014】ただし、炉床温度演算時においては、炉床
の各点に熱電対を埋めこんでおき、その実測値に基づき
炉床各点の計算温度を補正するようにすればさらによい
演算精度が得られる。その結果に基づいてビレット装入
時には最も近い位置の炉床の温度を装入時の炉床温度と
してビレット温度計算を行う。演算制御部9は、ビレッ
ト温度計算結果を用いて、回転炉床式加熱炉各ゾーンの
設定炉温を以下のように計算する。設定炉温の計算方法
は、従来種々の方法が提案されており、例えば以下の方
法により求められる。すなわち、設定炉温の演算は、目
標抽出温度条件((4)式)および目標抽出周方向温度
偏差の条件((5)式)を満たし、炉尻温度を下げ、排
ガスによる熱損失を減らすための評価関数((6)式)
を最小にする設定炉温を線形計画法により求めるのであ
る。ビレットの目標抽出周方向温度偏差は、以下のよう
な物理的な意味を持っている。すなわち、図3は横軸に
ビレットの周方向偏熱を、縦軸にピアサー圧延後の偏肉
率をとって表した両者の相関を示す図である。図3から
ピアサー後の偏肉をある目標範囲内にするには、ビレッ
トの周方向の偏熱をある目標内にすることが必要である
ことが分かる。 【0015】 【数2】 【0016】但し Tmm:現状炉温時の予測抽出ビレ
ット平均温度 Tsm:現状炉温時の予測抽出ビレット周方向偏熱 Tmo:目標抽出ビレット平均温度 Tso:目標抽出ビレット周方向偏熱 Ti:iゾーンの現状炉温 Xi:iゾーンの設定炉温 αi:iゾーン炉温変化の抽出時ビレット平均温度に対
する影響係数 βi:iゾーン炉温変化の抽出時ビレット周方向偏熱に
対する影響係数 Wi:ゾーン毎の重み係数 【0017】図4は、4つのゾーンから構成されている
回転炉床式加熱炉において、ビレット装入時の炉床温度
が通常よりかなり低い場合において、本発明方法による
温度制御を行った場合と、従来方法(ビレット装入時の
炉床温度を一定)で温度制御を行った場合のビレット温
度制御結果を比較したものである。図4(A)図および
(B)図に示すとおり、破線で示す従来法の場合は、ビ
レット温度が大きく変動している場合には、ビレット温
度計算誤差が発生し制御精度が悪化するが、実線で示す
本発明法の場合は、ビレット装入時の炉床温度変動時に
おいても精度のよい制御ができている。 【0018】 【発明の効果】以上述べたとおり、この発明方法によれ
ば、回転炉床式加熱炉において、炉床温度を連続的に計
算することにより、加熱中のビレット温度計算精度が向
上し、その結果加熱制御精度を向上でき製管時の周方向
偏肉を低減することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the temperature of an extracted billet in a rotary hearth heating furnace of a seamless steel pipe production line. 2. Description of the Related Art In the production of a seamless steel pipe by an inclined rolling method, generally, first, a billet is charged into a heating furnace, heated to a temperature at which the pipe can be produced, and then piercer, which is an inclined roll punch, is used. After manufacturing the hollow shell, elongation rolling in the elongation mill,
Finally, the diameter is reduced to the product size by a constant diameter rolling mill. In a billet heating process of a seamless steel pipe production line, a rotary hearth heating furnace is generally widely used. In the process of manufacturing the seamless steel pipe, if the billet has a heat bias in the circumferential direction at the time of piercing and rolling by a piercer, a difference in deformation resistance due to a temperature difference in the circumferential direction causes a difference in deformation resistance between the high temperature part and the low temperature part, resulting in a circumferential deviation. Meat is generated, and the wall thickness of the hollow shell after perforation becomes uneven and remains as uneven thickness of the final product.
Since the billet circumferential heat deflection during piercing and rolling by the piercer is determined at the time of heating furnace extraction, in order to keep the circumferential wall thickness unevenness within the target range, the billet circumferential heat deflection at the time of heating furnace extraction is suppressed within the target range. It is necessary to. [0003] In a rotary hearth heating furnace, the hearth from which the billet has been extracted in the final extraction zone rotates to the charging inlet, and the billet is charged and mounted on the hearth. However, the hearth temperature at the time of charging the billet varies greatly depending on the operating conditions. That is, the hearth temperature at the time of billet charging is inevitably low when extracting low-temperature materials, and the hearth temperature at the time of billet charging is high when heating high-temperature materials. Furthermore, between the billet extraction port and the charging port is a low temperature zone because there is no burner, and if the billet extraction is stopped for a long time in the low temperature zone,
The hearth is considerably lower in temperature than the hearth in other locations. As a result, the billet temperature distribution during heating is greatly affected by the hearth temperature at the time of billet charging. However, in the past, the hearth temperature at the time of charging the billet was constant or the hearth temperature on the billet extraction side, and in particular, when operating irregularly, the billet was constantly changed due to the influence of the hearth temperature. There has been a problem in that the accuracy of temperature calculation is reduced, and the accuracy of extraction temperature prediction is reduced, resulting in deterioration of control accuracy. As a method of controlling the billet temperature at the time of extraction of the rotary hearth heating furnace for this purpose, a cross section temperature distribution of a round billet extracted from the heating furnace is predicted and calculated, and the maximum temperature deviation obtained from the calculation result is Temperature deviation of round billet-If the thickness deviation occurrence warning standard or more obtained in advance based on the thickness deviation rate correlation, change the heating condition, and, with the deviation deviation occurrence reference value larger than the reference value or more In such a case, a method has been proposed in which extraction or perforation of round billets from a heating furnace is interrupted (Japanese Patent Publication No. 60-12129). [0005] The above-mentioned Japanese Patent Publication No. Sho 60-12
The method disclosed in Japanese Patent No. 129 calculates the hearth and billet temperatures every moment from the furnace temperature of each zone in the furnace, the steel type and diameter of the billet, and the billet interval in the furnace, and predicts the maximum billet temperature deviation at the time of extraction. It does not solve the problem of the decrease in billet temperature calculation accuracy due to the hearth temperature at the time of charging the billet. SUMMARY OF THE INVENTION It is an object of the present invention to prevent a decrease in billet temperature calculation accuracy due to a hearth temperature at the time of billet loading in the rotary hearth heating furnace, improve the heating control accuracy, and improve the peripheral temperature during piercing and rolling. It is an object of the present invention to provide a method for controlling the temperature of an extracted billet of a rotary hearth heating furnace capable of reducing wall thickness deviation in the direction. [0007] The present inventors have conducted various tests and studies to solve the above problems. As a result, the hearth is divided into a plurality of points in the circumferential direction, the thickness direction and / or the radial direction, and the hearth temperature at each point is continuously calculated. The billet temperature is calculated as the hearth temperature at the time of charging the billet, and the set furnace temperature of each zone is calculated based on the result, whereby the billet temperature due to the hearth temperature at the time of billet charging is calculated. The inventors of the present invention have found that a decrease in the calculation accuracy can be significantly suppressed, and have reached the present invention. That is, the present invention provides a rotating hearth,
Circuit divided into a plurality of zones having a heater and a thermocouple.
By controlling the temperature of each zone of the BOF
Ri, in the extraction billet temperature control method of a rotary hearth type heating furnace to control the billet temperature, the heating furnace results furnace in each zone
Based on the temperature and the furnace hearth position information
The hearth temperature in the billet heating furnace charging position and the charged billet temperature are determined by continuously calculating the hearth temperature in the billet , and the determined hearth temperature and billet temperature in the heating furnace charging position are determined.
A method of controlling the temperature of an extracted billet of a rotary hearth heating furnace, wherein a set furnace temperature of each zone of the rotary hearth heating furnace is arithmetically controlled based on the temperature of the furnace. [0009] [act] In this invention, the actual furnace of the pressurized hot furnace zones
Based on the temperature and the furnace hearth position information
The hearth temperature in the billet heating furnace charging position and the charged billet temperature are determined by continuously calculating the hearth temperature in the billet , and the determined hearth temperature and billet temperature in the heating furnace charging position are determined.
Based on the temperature, the set furnace temperature of each zone of the rotary hearth heating furnace is arithmetically controlled. Specifically, the hearth of the rotary hearth heating furnace is divided into a plurality of points in the circumferential direction, thickness direction and / or radial direction of the heating furnace, and the hearth temperature at each point is changed from the start of the operation to the rotary hearth type heating furnace. The calculation is continuously performed based on the actual furnace temperature of each zone of the heating furnace and the in-furnace position information of each point of the hearth. Based on the result, the billet temperature was calculated as the hearth temperature at the nearest position when charging the billet as the hearth temperature at the time of charging the billet.From the result, the furnace temperature set for each zone of the rotary hearth heating furnace was calculated. Since calculation and control are performed, it is possible to eliminate a decrease in billet temperature calculation accuracy due to the hearth temperature at the time of billet charging. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic diagram showing an embodiment of the method of the present invention, FIG. 2 is an explanatory diagram of a piercing and rolling state in a piercer, FIG. 3 is a correlation diagram showing a correlation between circumferential heat deviation of a billet and a wall thickness deviation after a piercer, FIG. 4 shows the difference in heating control between the case where the method of the present invention is used when the hearth temperature at the time of billet charging is considerably lower than usual and the case of the conventional method where the hearth temperature at the time of billet charging is constant. (A) is a graph showing a relationship between each zone of the heating furnace and the furnace temperature, and (B) is a graph showing a relationship between each zone of the heating furnace and the heat deflection in the billet circumferential direction. As shown in FIG. 1, a billet 4 is charged onto a hearth 3 in a rotary hearth heating furnace 2 by a charging machine 1. In the rotary hearth heating furnace 2, a plurality of billets 4 are usually heated simultaneously on the hearth 3, and are heated while moving through the heating furnace as the hearth 3 rotates. The billets 4 heated to a predetermined temperature in the heating furnace are extracted one by one from the heating furnace by the extractor 5. Thereafter, as shown in FIG. 2, the billet 4 is pierced and rolled by a piercer using a roll 6 and a plug 7 and a guide shoe (not shown).
It becomes. The heating furnace 2 has a thermocouple (not shown) attached to each zone. The heating furnace 2 is also provided with a pulse generator (not shown) for tracking the positions of the hearth and the billet in the furnace. The arithmetic and control unit 9 inputs the actual temperature of each zone of the rotary hearth heating furnace 2 from the thermocouples of each zone and the tracking information of the hearth 3 and billet 4 from the pulse generator every moment. At the same time, information necessary for temperature calculation such as steel type, dimensions, furnace billet interval, etc. for each billet is input from a host computer (not shown). The arithmetic and control unit 9 divides the hearth 3 of the rotary hearth heating furnace 2 into meshes in the circumferential direction, the thickness direction, and / or the radial direction of the heating furnace. The hearth 3 initial temperature is determined on the assumption that it is room temperature before the start of operation. Thereafter, the arithmetic and control unit 9 calculates the hearth temperature of each mesh based on the actual furnace temperature input from the thermocouple of each zone from the start of operation and the position information of each point of the hearth 3 input from the pulse generator, Operate continuously. The calculation of the hearth temperature by the arithmetic and control unit 9 is as follows.
For example, in the case of a two-dimensional case in the traveling direction and the thickness direction, it is obtained by solving the following equations (1) to (3). ## EQU1 ## Where C: specific heat of the hearth ρ: density of the hearth T: temperature of the hearth t: time X, Y: coordinate axes of the hearth (progression direction, thickness direction) λ: thermal conductivity Fc of the hearth : View factor Fb for the upper wall of the hearth with respect to the furnace wall Fb: View factor Φc for the billet on the upper surface of the hearth Φc: Overall heat absorption rate between the upper surface of the hearth and the furnace wall φb: Overall heat absorption rate between the upper surface of the hearth and the billet Φa: Furnace Overall heat absorption rate between the lower floor and the atmosphere Tb: Billet surface temperature Tc: Actual furnace wall temperature in the billet existing zone Ta: Atmospheric temperature Tu: Upper hearth surface temperature Tl: Lower hearth surface temperature n: Normal direction of the hearth surface However, when calculating the hearth temperature, a thermocouple may be embedded at each point of the hearth, and the calculated temperature at each point of the hearth may be corrected based on the actually measured value. Is obtained. Based on the result, billet temperature calculation is performed using the temperature of the nearest hearth at the time of charging the billet as the hearth temperature at the time of charging. The arithmetic and control unit 9 calculates the set furnace temperature of each zone of the rotary hearth heating furnace using the billet temperature calculation result as follows. Various methods have conventionally been proposed for calculating the set furnace temperature. For example, the method can be obtained by the following method. That is, the calculation of the set furnace temperature satisfies the target extraction temperature condition (Equation (4)) and the target extraction circumferential temperature deviation condition (Equation (5)) to lower the furnace butt temperature and reduce heat loss due to exhaust gas. Evaluation function (expression (6))
Is determined by a linear programming method. The billet target extraction temperature deviation in the circumferential direction has the following physical meaning. In other words, FIG. 3 is a diagram showing the correlation between the billet in the circumferential direction and the vertical axis representing the wall thickness deviation after piercer rolling on the horizontal axis. From FIG. 3, it can be seen that in order to keep the thickness deviation after the piercing within a certain target range, it is necessary to make the circumferential heat deviation of the billet within a certain target. ## EQU2 ## Tmm: Predicted extracted billet average temperature at current furnace temperature Tsm: Predicted extracted billet circumferentially deviated heat at current furnace temperature Tmo: Target extracted billet average temperature Tso: Target extracted billet circumferential deflected Ti: i zone Current furnace temperature Xi: i-zone setting furnace temperature αi: influence coefficient on billet average temperature at the time of extraction of i-zone furnace temperature change βi: influence coefficient on billet circumferential heat deflection at the time of extraction of i-zone furnace temperature change Wi: per zone FIG. 4 shows that in a rotary hearth heating furnace composed of four zones, the temperature control by the method of the present invention is performed when the hearth temperature at the time of billet charging is considerably lower than usual. This is a comparison of the billet temperature control results obtained when the temperature control is performed by the conventional method (when the hearth temperature at the time of charging the billet is constant). As shown in FIGS. 4A and 4B, in the case of the conventional method indicated by the broken line, when the billet temperature fluctuates greatly, a billet temperature calculation error occurs and the control accuracy deteriorates. In the case of the method of the present invention shown by the solid line, accurate control can be performed even when the hearth temperature fluctuates when charging the billet. As described above, according to the method of the present invention, in the rotary hearth heating furnace, the billet temperature calculation accuracy during heating is improved by continuously calculating the hearth temperature. As a result, the accuracy of heating control can be improved, and uneven wall thickness in the circumferential direction during pipe production can be reduced.

【図面の簡単な説明】 【図1】この発明方法の実施状態を示す模式図である。 【図2】ピアサーでの穿孔圧延状況の説明図である。 【図3】ビレットの周方向偏熱とピアサー後の偏肉率の
相関を表す相関図である。 【図4】炉床温度が通常よりかなり低い場合に本発明法
を用いた場合とビレット装入時の炉床温度を一定とした
従来法の場合の加熱制御の違いを示すもので、(A)図
は加熱炉各ゾーンと炉温との関係を示すグラフ、(B)
図は加熱炉各ゾーンとビレット周方向偏熱との関係を示
すグラフである。 【符号の説明】 1 ビレット装入機 2 回転炉床式加熱炉 3 炉床 4 ビレット 5 ビレット抽出機 6 圧延ロール 7 プラグ 8 中空素管 9 演算制御装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing an embodiment of the method of the present invention. FIG. 2 is an explanatory view of a piercing and rolling state in a piercer. FIG. 3 is a correlation diagram showing a correlation between circumferential heat deviation of a billet and a wall thickness deviation after piercing. FIG. 4 shows the difference in heating control between the case where the method of the present invention is used when the hearth temperature is considerably lower than usual and the case of the conventional method where the hearth temperature at the time of billet charging is constant. ) Is a graph showing the relationship between heating furnace zones and furnace temperature, (B)
The figure is a graph showing the relationship between each zone of the heating furnace and the heat deflection in the billet circumferential direction. [Description of Signs] 1 Billet loading machine 2 Rotary hearth heating furnace 3 Hearth 4 Billet 5 Billet extractor 6 Rolling roll 7 Plug 8 Hollow shell 9 Computing controller

Claims (1)

(57)【特許請求の範囲】 【請求項1】 回転する炉床と、バーナーと熱電対とを
有する複数のゾーンに区画された回転炉床式加熱炉の各
ゾーンの温度を制御することにより、ビレット温度を制
御する回転炉床式加熱炉の抽出ビレット温度制御方法に
おいて、加熱炉各ゾーンの実績炉温および炉床の炉内位
置情報に基づいて、前記各ゾーンにおける炉床温度を
続的に演算してビレットの加熱炉装入位置の炉床温度
よび装入されたビレット温度を決定し、該決定した加熱
炉装入位置の炉床温度およびビレット温度に基いて、
転炉床式加熱炉各ゾーンの設定炉温を演算制御すること
を特徴とする回転炉床式加熱炉の抽出ビレット温度制御
方法。
(57) [Claims 1] A rotating hearth, a burner and a thermocouple
Each of the rotary hearth heating furnaces divided into multiple zones having
Control billet temperature by controlling zone temperature
In the method of controlling the temperature of the extracted billet of the rotary hearth heating furnace to be controlled, the actual furnace temperature and furnace hearth
Based on the placement information, the hearth temperature in each of the zones is continuously calculated to calculate the hearth temperature at the billet heating furnace charging position .
And determining the charged billet temperature , and based on the determined hearth temperature and billet temperature of the heating furnace charging position, arithmetically controls the set furnace temperature of each zone of the rotary hearth heating furnace. Method for controlling the temperature of the extracted billet of a rotating hearth heating furnace.
JP06291593A 1993-02-26 1993-02-26 Extraction billet temperature control method for rotary hearth heating furnace Expired - Fee Related JP3369241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06291593A JP3369241B2 (en) 1993-02-26 1993-02-26 Extraction billet temperature control method for rotary hearth heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06291593A JP3369241B2 (en) 1993-02-26 1993-02-26 Extraction billet temperature control method for rotary hearth heating furnace

Publications (2)

Publication Number Publication Date
JPH06248360A JPH06248360A (en) 1994-09-06
JP3369241B2 true JP3369241B2 (en) 2003-01-20

Family

ID=13214033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06291593A Expired - Fee Related JP3369241B2 (en) 1993-02-26 1993-02-26 Extraction billet temperature control method for rotary hearth heating furnace

Country Status (1)

Country Link
JP (1) JP3369241B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5768685B2 (en) * 2011-11-30 2015-08-26 新日鐵住金株式会社 Method for controlling rotary hearth furnace and method for producing seamless pipe using the method

Also Published As

Publication number Publication date
JPH06248360A (en) 1994-09-06

Similar Documents

Publication Publication Date Title
CN104060080B (en) Heater for rolling steel heating of plate blank control method and system
JPS6111289B2 (en)
US4357135A (en) Method and system for controlling multi-zone reheating furnaces
JP3369241B2 (en) Extraction billet temperature control method for rotary hearth heating furnace
JP3178370B2 (en) Temperature control method in hot continuous rolling of steel pipe.
JPH0663039B2 (en) Temperature control device for heating furnace
JP2669279B2 (en) Blast furnace operation method
JP3982042B2 (en) Combustion control method for continuous heating furnace
JPS6411691B2 (en)
Andreev et al. Obtaining reliable information on energy-saving regimes for the heating of continuous-cast semifinished products prior to rolling
JP4815837B2 (en) Combustion control method for continuous heating furnace
JPH06306453A (en) Method for eliminating skid mark in continuous heating furnace
JPH01246322A (en) Apparatus for setting furnace temperature in continuous heating furnace
CN114317937A (en) Time control method for sectionally heating hot-rolled plate blank in heating furnace
JPS63307217A (en) Method for controlling temperature of stepped shaft in heating furnace
JPS58218317A (en) Method for dimension control in hot state in blooming
JPH0377849B2 (en)
JPH0133244B2 (en)
JPS6012129B2 (en) How to prevent uneven thickness of Holo-Shell
JPH06287632A (en) Idling device in walking beam type furnace
JPS5916526B2 (en) Outer diameter correction method and device for diameter-sizing machine for seamless steel pipe production
JPH0361726B2 (en)
JPH075980B2 (en) Heating furnace temperature control method
JPH0135895B2 (en)
JPH0684867B2 (en) Furnace temperature setting device for continuous heating furnace

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees