JPS6133884B2 - - Google Patents

Info

Publication number
JPS6133884B2
JPS6133884B2 JP921080A JP921080A JPS6133884B2 JP S6133884 B2 JPS6133884 B2 JP S6133884B2 JP 921080 A JP921080 A JP 921080A JP 921080 A JP921080 A JP 921080A JP S6133884 B2 JPS6133884 B2 JP S6133884B2
Authority
JP
Japan
Prior art keywords
zone
temperature
furnace
billet
furnace temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP921080A
Other languages
Japanese (ja)
Other versions
JPS56105429A (en
Inventor
Ichiro Kokubo
Juji Koyama
Yoji Kawatani
Ryuichi Ishida
Yoshikazu Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP921080A priority Critical patent/JPS56105429A/en
Publication of JPS56105429A publication Critical patent/JPS56105429A/en
Publication of JPS6133884B2 publication Critical patent/JPS6133884B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、多帯式連続加熱炉において一定の炉
温修正を施しつつ温度制御を行なう方法に関す
る。 多帯式連続加熱炉は、通常、予熱帯、加熱帯お
よび均熱帯の各帯域から成り、該加熱炉の主目的
は、鋼塊、鋳片、スラブ等の被加熱物(以下、
「鋼片」という)を圧延に必要な所定温度まで加
熱することにある。それと同時に圧延能力を述分
に発揮させるためには、圧延ラインを停止させる
ことなく鋼片を圧延機に供給できるように操業す
ることが必要である。 ところが、実操業においては、加熱炉に装入さ
れる鋼片は、サイズや鋼種がまちまちであり、各
鋼片に対する所要の加熱温度も一様ではない。こ
のため、各鋼片に対する個別の温度管理が不可能
で、鋼片のサイズ等により加熱の過不足を避ける
ことは難しい。実際の炉温制御に当つては、装入
側帯(予熱帯)の炉温を低く、抽出側帯(均熱
帯)の炉温を高くするような炉温設定が採用され
るが、加熱不足防止のために、各帯において最も
加熱されにくい鋼片を基準とする炉温制御が行な
われるので、他の鋼片にとつては加熱過剰を伴な
うことになり、燃料原単位や鋼材品質の面で必ず
しも満足し得るものとは言えない。 かかる事情に対処するため、近年、連続加熱炉
の炉温制御に関する種々の提案がなされており、
例えば、炉内各鋼片について平均温度と目標温度
との偏差に、その炉内位置によつて異なる重み係
数を考慮し、これらを組合せて性能指数を求め、
該性能指数の大きさによつて加熱手段の出力を制
御する方法がある(特公昭49―29403号)。しか
し、このような炉内位置に応じて異なる重み係数
を加える手段を用いても、実際の鋼片温度の炉温
変化に対する応答は極めて緩慢であるために充分
な炉温制御を達成することはできない。また、別
法として、各帯内、各鋼片について必要炉内温度
を求め、該必要炉内温度群のなかから各帯ごとに
代表炉内温度を決定し、更に該必要炉内温度群が
鋼片品質その他の条件で定まる一定の制限温度以
下である場合には最も高い温度を代表温度に選定
して温度制御を行なう方法も知られている(特公
昭51―30526号)。しかしながら、同法もまた、最
も加熱され難い鋼片を対象として炉温制御を行な
うものであるため燃料原単位の改善を期待するこ
とはできず、また各帯の出口側に位置する鋼片は
その帯での滞留時間が短いため、炉内鋼片の寸
法・抽出温度等の変化が大きいときは炉温修正量
の変動が大きくなり(特に装入側の帯において顕
著となる)、実際の炉温制御が困難となるばかり
か、その精度も悪化するといく欠点がある。 本発明は、多帯式連続加熱炉の温度制御に関す
る上記問題点を解決するためになされたものであ
る。 すなわち、本発明は、多帯式連続加熱炉におけ
る各帯での炉温制御方法であつて、各帯内に位置
する各鋼片の温度を、その帯内の雰囲気温度と、
炉特性と、各鋼片の寸法、熱特性および熱履歴と
から求めるとともに、各鋼片が現在位置から一定
距離だけ移送されるに必要な時間を、その鋼片よ
り抽出側に位置するすべての鋼片の位置、寸法お
よび抽出ピツチから求め、各鋼片の現在位置から
一定距離だけ移送された位置における目標鋼片温
度と、その位置における予測鋼片温度と、前記移
送時間と、現在の帯およびその抽出側の帯の炉内
温度とから、各鋼片について各帯における炉温修
正量(ΔTli)を求め、該炉温修正量(ΔTli)に
対して重み係数(ωli)を定めて、各帯における
炉温修正量(ΔTl)を、下式 〔但し、nは第l帯における鋼片本数を表わ
す〕 にて決定し、あるいは各鋼片についての各帯炉
温修正量(ΔTli)に対する重み係数(ωli)の勾
配α(dωli/dΔTli)を、装入側の帯で小さ
く、抽出側の帯で大きくするか、または該ΔTli
の値によつて変化させるように定めて上記式から
炉温修正量(ΔTl)を決定することにより炉温
制御を行なうようにしたものであり、かかる手順
にて各帯における炉温を制御することにより、最
小の燃料原単位で、鋼片を圧延に最適の温度に加
熱し、併せて生産性および品質を安定させること
に成功した。 本発明に係る炉温制御法によれば、まず各帯内
における各鋼片の温度を求めるとともに、各鋼片
が今後一定距離だけ移送されるに必要な時間を求
め、該鋼片温度と移送所要時間とから、各鋼片が
一定距離移送された位置で所定温度になるには炉
温をどの程度修正すればよいかを算定し、該修正
量の大小により重みを加えて加重平均して得られ
る値、あるいは各帯によりもしくは該修正量の大
きさによつて異なる重みを加え加重平均して得ら
れる値が炉温修正量とされる。 以下に、まず各帯内における各鋼片温度の計算
例を説明する。 炉内各鋼片温度(θli)は一次元前進差分法に
よる数値解析によつて求めることができ、鋼片内
部では次式で表わされる。 θj+1 =Θ(θ k+1+θ k−1
−2θ )+θ …〔〕 上記式中、θ は鋼片内部位置kΔx(但し、
Δxは鋼片内部位置の微小区間)、時刻jΔt
(但し、Δtは時間の微小区間)における温度の
数値解であり、Θは、Θ=a・Δt/(Δx)
(但し、aは温度拡散率)である。 また、鋼片境界における熱流束をq(t)とす
れば、鋼片境界条件は下式で表わされる。 θj+1 =2・Θ・θ +(1−2Θ)θ
+2AΘq(t) ……〔〕 〔式中、A=Δx/λ、λは熱伝導率である〕 更に、総括熱吸収率をφCG、炉内雰囲気温度を
Tgとすれば、上記熱流束q(t)は下式〔〕
で表わされる。 q(t)=4.88φCG〔(Tg+273/100)− (θ〓+273/100)〕 ……〔〕 なお、上記総括熱吸収率(φCG)は加熱炉形状
や操業条件によつて変化する値であり、炉内雰囲
気温度Tgは熱電対等の温度検出器にて求められ
る。 上記〔〕〜〔〕式により、各帯内における
各鋼片についての平均温度θliが求められる。こ
の計算は、所定時間ごとに、あるいは鋼片が装入
されもしくは装入抽出されるごとに行なわれる。 次に、各鋼片が一定距離(d)だけ移動し位置
(Li)に到るに必要な時間(τ)を求める。炉内
鋼片の番号を抽出側から順に、1,2,…k…と
すると、移送所要時間(τ)は、次式にて計算す
ることができる。 上記式中、Kは鋼片番号、PKは鋼片抽出ピツ
チである。また、Mmaxは、鋼片幅をSBK、鋼片
間ギヤツプGKとすると、次式 が成立する鋼片本数Mの最大値である。Cは
Mmaxの鋼片の抽出以前における抽出休止予定時
間である。 しかして、もし前記位置(Li)が次の帯内に属
する場合には、移送所要時間(τ)を現在滞留し
ている帯における移送時間(τl)と次の帯での
移送時間(τl+1),(τl+2)…に分割して上記
〔〕式と同様に計算すればよい。 上記の計算にて求められた各鋼片温度(θli)、
各鋼片が距離(d)だけ移動して位置(Li)に到達す
るに要する時間(τ)〔τ=τl+τl+1+…〕等を
用いて、各鋼片が位置(Li)にて目標温度になる
ために必要な炉温修正量(ΔTli)を求める計算
手順について説明する。なお、説明を簡略化する
ために、距離(d)だけ離れた位置(Li)は現在の帯
に属するものとする。 まず、炉内鋼片について下記〔〕式にて、位
置(Li)における鋼片温度(θ li)を計算により
予測する。 θ li=f(Tl,Tl+1,τl,τl+1
θli) …〔〕 〔式中、Tliは第l帯の現在の炉温、τlは第l
帯の滞留時間、θliは現在の鋼片温度を表わす〕 次に、該鋼片の滞留帯(第l帯)の炉温のみを
微小量(ΔTP)だけ変化させたときの位置
(Li)における鋼片温度上昇量(Δθ li)を下記
〔〕式により求める。 Δθ li=f(Tl+ΔTP,Tl+1,τl, τl+1,θli)−f(Tl, Tl+1,τl,τl+1,θli) …〔〕 同様にして該帯の抽出側の帯(第l+1帯)の
炉温のみを微小量(ΔTP)だけ変化させたとき
の位置(Pi)における鋼片温度上昇量(Δθ
l+1,i)を下式〔〕にて求める。 Δθ l+1,i=f(Tl,Tl+1+ΔTP, τl,τl+1,θli)−f(Tl, Tl+1,τl,τl+1,θli) …〔〕 一方、該鋼片滞留帯の炉温設定にあたつては、
現在の第l帯およびその次の第l+1帯に滞留す
る鋼片の寸法、抽出温度条件、該両帯の現在のバ
ーナ負荷、および炉温等を考慮して該各帯の炉温
変更比率βl(=ΔTl+1/ΔTl)を決定する。 ついで各鋼片が位置(Li)において目標温度と
なるに必要な第l帯に施すべき炉温修正量(ΔT
li)を、上記変更比率を含む次式〔〕にて算出
する。 ΔTli=(θ li−θ li)ΔTP/(Δθ

+βlΔθ l+1,i) …〔〕 〔式中、θ liは位置(Li)における鋼片目標温
度を表わす〕 以上の計算手順により各帯内の全鋼片に対する
炉温修正量(ΔTli)を求めたのち、客帯の炉温
修正量(ΔTl)の計算を行なう。この場合、各
鋼片によつてその炉温修正量(ΔTli)が異なる
ので、その大きさに応じた重み係数(ωli)を与
える。第1図は、鋼片についての炉温修正量(Δ
li)と、これに対して与えられる重み係数(ωl
)の関係を模式的に示したグラフであり、該係
数(ωli)は各帯内におけるバーナ能力、炉内伝
熱特性、炉内鋼片構成、抽出ピツチ等を考慮し、
各鋼片についての炉温修正量(ΔTli)の大きさ
によつて決定される。このように重み係数を決定
し、次式のように加重平均を行なうことにより炉
温修正量(ΔTl)が求められる。 〔式中、nは第l帯における鋼片本数を表わ
す〕 次に、上記の〔〕式による炉温修正量(ΔT
l)の計算にあたり、重み係数(ωli)の勾配α
(dωli/dΔTli)を各帯で変化させて導入する
場合について説明する。第1表は、各帯の炉温を
変化させたときの鋼片抽出温度に及ぼす影響を示
す。なお、同表は、鋼片厚み160〜250mm、在炉時
間120〜270分の一般的な炉温設定条件において、
各帯での炉温変化が抽出温度に与える平均的な影
響度を示したものである。
The present invention relates to a method of controlling temperature while making constant furnace temperature correction in a multi-zone continuous heating furnace. A multi-zone continuous heating furnace usually consists of a pre-heating zone, a heating zone, and a soaking zone.
The purpose is to heat a steel billet (referred to as a "steel billet") to a predetermined temperature required for rolling. At the same time, in order to make full use of the rolling capacity, it is necessary to operate the rolling line in such a way that billets can be supplied to the rolling mill without stopping the rolling line. However, in actual operation, the steel billets charged into the heating furnace vary in size and steel type, and the required heating temperature for each steel billet is also not uniform. For this reason, it is impossible to individually control the temperature of each steel billet, and it is difficult to avoid overheating or underheating depending on the size of the steel billet. In actual furnace temperature control, the furnace temperature is set so that the furnace temperature in the charging side zone (preparation zone) is low and the furnace temperature in the extraction side zone (soaking zone) is high. Therefore, the furnace temperature is controlled based on the steel slab that is least likely to be heated in each zone, which results in overheating of other steel slabs, which reduces fuel consumption and steel quality. It cannot be said that this is necessarily satisfactory. In order to deal with this situation, various proposals regarding furnace temperature control of continuous heating furnaces have been made in recent years.
For example, a weighting coefficient that differs depending on the position in the furnace is considered for the deviation between the average temperature and the target temperature for each piece of steel in the furnace, and these are combined to determine the performance index.
There is a method of controlling the output of the heating means depending on the magnitude of the figure of merit (Japanese Patent Publication No. 29403/1983). However, even if such a method of adding different weighting coefficients depending on the position in the furnace is used, it is difficult to achieve sufficient furnace temperature control because the response of the actual billet temperature to changes in furnace temperature is extremely slow. Can not. Alternatively, the required furnace temperature is determined for each strip and each slab, and the representative furnace temperature is determined for each zone from the required furnace temperature group, and then the required furnace temperature group is determined. It is also known to control the temperature by selecting the highest temperature as the representative temperature when the temperature is below a certain limit determined by the quality of the billet and other conditions (Japanese Patent Publication No. 51-30526). However, this method also controls the furnace temperature by targeting the steel slabs that are the most difficult to heat, so improvements in fuel consumption cannot be expected, and the steel slabs located on the exit side of each zone Because the residence time in that zone is short, when there are large changes in the dimensions of the slab in the furnace, extraction temperature, etc., the amount of furnace temperature correction will increase (especially noticeable in the charging side zone), and the actual This method has the disadvantage that not only is it difficult to control the furnace temperature, but also its accuracy is deteriorated. The present invention has been made to solve the above-mentioned problems regarding temperature control of a multi-zone continuous heating furnace. That is, the present invention is a method for controlling the furnace temperature in each zone in a multi-zone continuous heating furnace, in which the temperature of each steel billet located in each zone is determined by the ambient temperature in that zone,
In addition to determining the furnace characteristics and the dimensions, thermal properties, and thermal history of each billet, the time required for each billet to be transferred a certain distance from its current position is determined by calculating the time required for each billet to be transferred a certain distance from its current location to all locations on the extraction side of the billet. The target billet temperature is obtained from the position, dimensions, and extraction pitch of the billet, and the target billet temperature is obtained at a position where each billet is moved a certain distance from its current position, the predicted billet temperature at that position, the transfer time, and the current belt temperature. The amount of furnace temperature correction (ΔT li ) in each zone for each slab is determined from the furnace temperature of the zone on the extraction side and the weighting coefficient (ω li ) is calculated for the amount of furnace temperature correction (ΔT li ). Then, the furnace temperature correction amount (ΔT l ) in each zone is calculated using the following formula. [However, n represents the number of steel slabs in the 1st zone] or the gradient α (dω li / dΔT li ) is made smaller in the charging side band and larger in the extraction side band, or the ΔT li
The furnace temperature is controlled by determining the furnace temperature correction amount (ΔT l ) from the above formula, and the furnace temperature in each zone is controlled by this procedure. By doing so, we were able to heat the billet to the optimum temperature for rolling with the minimum fuel consumption, and also succeeded in stabilizing productivity and quality. According to the furnace temperature control method according to the present invention, first, the temperature of each billet in each zone is determined, and the time required for each billet to be transferred a certain distance in the future is determined, and the temperature and transfer of the billet are determined. Based on the required time, calculate how much the furnace temperature needs to be corrected in order for each billet to reach the specified temperature at the position where it has been transferred a certain distance, and calculate the weighted average by adding weight depending on the amount of correction. The furnace temperature correction amount is a value obtained by adding different weights depending on each band or the size of the correction amount and taking a weighted average. Below, an example of calculation of each billet temperature in each band will be explained first. The temperature of each billet in the furnace (θ li ) can be determined by numerical analysis using the one-dimensional forward difference method, and inside the billet is expressed by the following equation. θ j+1 k = Θ(θ j k+1j k−1
−2θ j k )+θ j k … [] In the above formula, θ j k is the internal position kΔx of the steel piece (however,
Δx is a minute section of the internal position of the steel billet), time jΔt
(However, Δt is a numerical solution of temperature in a minute interval of time), and Θ is Θ=a・Δt/(Δx) 2
(However, a is the temperature diffusivity). Furthermore, if the heat flux at the slab boundary is q(t), the slab boundary condition is expressed by the following equation. θ j + 1 p = 2・Θ・θ j 1 + (1−2Θ) θ j p
+2AΘq(t) ...[] [In the formula, A = Δx/λ, λ is the thermal conductivity] Furthermore, the overall heat absorption rate is φ CG and the furnace atmosphere temperature is
If Tg, the above heat flux q(t) is calculated by the following formula []
It is expressed as q(t)=4.88φ CG [(Tg+273/100) 4 − (θ〓+273/100) 4 ] ...[] The above overall heat absorption rate (φ CG ) depends on the heating furnace shape and operating conditions. It is a value that changes, and the furnace atmosphere temperature Tg is determined using a temperature detector such as a thermocouple. The average temperature θ li for each steel piece in each band is determined by the above formulas [] to []. This calculation is performed at predetermined time intervals or each time a billet is charged or extracted. Next, find the time (τ) required for each piece of steel to move a certain distance (d) and reach the position (Li). Assuming that the steel pieces in the furnace are numbered 1, 2, ...k, in order from the extraction side, the required time for transfer (τ) can be calculated using the following formula. In the above formula, K is the billet number and P K is the billet extraction pitch. In addition, Mmax is calculated by the following formula, where SB K is the width of the steel billet and G K is the gap between the billets. is the maximum value of the number M of steel slabs that holds true. C is
This is the scheduled extraction stop time before extraction of the Mmax steel billet. Therefore, if the position (Li) belongs to the next band, the transfer time (τ) is divided into the transfer time (τ l ) in the current band and the transfer time (τ l+1 ), (τ l+2 )... and calculate in the same way as the above formula [ ]. Each billet temperature (θ li ) determined by the above calculation,
Using the time (τ) [τ = τ l + τ l+1 +...] required for each piece of steel to move by distance (d) and reach position (Li), each piece of steel moves by distance (d) and reaches position (Li). The calculation procedure for determining the furnace temperature correction amount (ΔT li ) required to reach the target temperature will be explained. Note that to simplify the explanation, it is assumed that a position (Li) that is separated by a distance (d) belongs to the current band. First, the temperature (θ p li ) of the steel billet at the position (Li) is calculated and predicted using the following formula for the steel billet in the furnace. θ P li =f(T l , T l+1 , τ l , τ l+1 ,
θ li ) … [] [In the formula, T li is the current furnace temperature of the l-th zone, and τ l is the current furnace temperature of the l-th zone.
The residence time of the strip, θ li represents the current billet temperature] Next, the position (Li ) is determined by the following formula [ ] . Δθ P li = f(T l +ΔT P , T l+1 , τ l , τ l+1 , θ li )−f(T l , T l+1 , τ l , τ l+1 , θ li )... [] Similarly, when only the furnace temperature of the zone on the extraction side (zone 1+1) of the zone is changed by a minute amount (ΔT P ), the amount of rise in temperature of the steel billet at the position (Pi) (Δθ
P l+1,i ) is calculated using the following formula []. Δθ P l+1,i = f(T l , T l+1 +ΔT P , τ l , τ l+1 , θ li ) − f(T l , T l+1 , τ l , τ l+1 , θ li ) ...[] On the other hand, when setting the furnace temperature of the billet retention zone,
The furnace temperature change ratio β of each zone takes into consideration the dimensions of the steel billet remaining in the current 1st zone and the next 1+1th zone, the extraction temperature conditions, the current burner load of both zones, the furnace temperature, etc. Determine l (=ΔT l+1 /ΔT l ). Next, the amount of furnace temperature correction (ΔT
li ) is calculated using the following formula [] including the above change ratio. ΔT li =(θ m li −θ P li )ΔT P /(Δθ P l
i

l Δθ P l+1,i ) …[] [In the formula, θ m li represents the target temperature of the steel slab at the position (Li)] Through the above calculation procedure, the amount of furnace temperature correction (ΔT li ), then calculate the furnace temperature correction amount (ΔT l ) in the customer area. In this case, since the furnace temperature correction amount (ΔT li ) differs depending on each steel slab, a weighting coefficient (ω li ) is given depending on the magnitude. Figure 1 shows the amount of furnace temperature correction (Δ
T li ) and the weighting coefficient (ω l
This is a graph schematically showing the relationship of i ), and the coefficient (ω li ) is determined by taking into account the burner capacity in each zone, the heat transfer characteristics in the furnace, the structure of the steel slab in the furnace, the extraction pitch, etc.
It is determined by the magnitude of the furnace temperature correction amount (ΔT li ) for each slab. By determining the weighting coefficients in this way and performing weighted averaging as shown in the following equation, the furnace temperature correction amount (ΔT l ) is obtained. [In the formula, n represents the number of steel slabs in the 1st zone] Next, the furnace temperature correction amount (ΔT
l ), the gradient α of the weighting coefficient (ω li ) is
A case where (dω li /dΔT li ) is changed and introduced in each band will be explained. Table 1 shows the effect on the billet extraction temperature when the furnace temperature of each zone is changed. In addition, the same table shows that under the general furnace temperature setting conditions where the thickness of the steel slab is 160 to 250 mm and the furnace time is 120 to 270 minutes.
This figure shows the average degree of influence that changes in furnace temperature in each zone have on extraction temperature.

【表】 上記表から明らかなように、装入側帯炉温の変
化が鋼片抽出温度に及ぼす影響度は小さい。これ
は、炉温変化による鋼片温度の変化が、鋼片の抽
出側への移行過程で緩和されるからである。一
方、抽出側帯の炉温変化の影響度は大きく、鋼片
抽出温度に大きな影響を与えることが判る。 このことから、抽出側に近い帯ほど、その帯に
おける加熱されにくい鋼片により大きな重みを与
えることにより、加熱状態が平均から大きく外れ
た鋼片をより大きく炉温設定値に反映させるべき
であり、一方装入側に近い帯ではその必要はそれ
ほどなく、より平均的な炉温設定を採用すればよ
いことになる。但し、この場合、各鋼片の抽出温
度が各々圧延可能な許容範囲内におさまるように
一定の制限をもうけるべきことは言うまでもな
い。第2図は、前記第1表に記載の抽出温度に対
する影響度の大きさに応じた重み係数(ωli)と
炉温修正量(ΔTli)の関係を模式的に示すグラ
フであり、(i)は第1加熱帯、(ii)は第2加熱帯、(iii)
は第3加熱帯、(iv)は均熱帯のそれぞれに対する重
み係数を示す。すなわち、各鋼片に対する炉温修
正量(ΔTli)が求められた時点で、同図に示さ
れるように、装入側帯では、ΔTliに大きな差が
あつても重み係数(ωli)にあまり差をつけず、
重み勾配α(dωli/dΔTli)を小さくして、上
記〔〕式にてより平均的にその帯の炉温修正量
(ΔTl)を決め、一方抽出側の帯では比較的大き
な重み勾配を用いてその帯の炉温修正量(ΔT
l)を決定する。 なお、従来にも燃料原単位低減を目的とする加
熱炉操業で、装入側帯炉温を低くし、抽出側帯炉
温を高くするような炉温設定が行なわれている
が、本発明による上記炉温制御では、各帯内の各
鋼片温度の目標値からの偏差をほゞ平均的に炉温
制御に反映させるようにしているので、燃料原単
位の面からより一そう合理的な加熱操業が可能で
ある。 ところで、上述の炉温制御法を用いる場合、炉
内の鋼片構成に著しい変動があるようなときには
加熱温度がその目標値から大きくずれることがあ
る。このような場合には、上記重み勾配(α)
を、各鋼片に対する炉温修正量(ΔTli)の大き
さによつて変化させる方法を用いることができ
る。この方法は、温度管理の厳しい鋼片の装入等
の炉内鋼片の諸条件に対して、例えば第3図に示
すように、炉温修正量(ΔTli)が正の場合には
重み勾配(α)を大きくし、負の場合には小さく
して適宜の勾配を用いることにより、目標以上に
加熱されない鋼片温度と目標以上に加熱される鋼
片温度の炉温修正への影響を調節するものであ
る。このように操作すれば、厚い鋼片あるいは高
温抽出鋼片などのように目標どうりに焼上げるの
が困難な鋼片のみを対象とした炉温制御、あるい
は全ての鋼片を均等に炉温制御にとり入れた制御
など種々の制御を、重み勾配の選択により任意か
つ容易に実施することができる。 第4図〔〕および〔〕は、上記炉温制御の
例として、重み勾配(α)を、上記〔〕式に示
すように3水準に設定し炉の制御を行なつた結果
を示すグラフである。 α=−D (ΔTli≧0のとき)〓 〔X〕 α=−1/D (ΔTli<0のとき) 〔但し、Dは、0.1,0.5および1.0である〕 各図中、曲線イは鋼片抽出温度保証制御(D=
0.1)、ロは中間値制御(D=0.5)、ハは平均値制
御(D=1.0)の各値を示す。領域(a)は鋼片厚さ
180mm、(b)は同200mmおよび(c)は同180mmの各鋼片
が装入されている。 図に示されるように、重み勾配(α)を変える
ことによつて、全鋼片の抽出温度を保証する制
御、帯内全鋼片の温度を平均的に目標温度に一致
させる制御、あるいはその中間的な制御等、所望
に応じた任意に炉温制御を実施できることが判
る。なお、各炉温制御の具体的操作は、各帯につ
いて決定された炉温修正量(ΔTl)にもとづい
て通常の加熱手段を調節操作することにより行な
えばよい。 以上のように、本発明によれば、各帯の各鋼片
について一定の距離離れた前方の位置に到つたと
きの鋼片温度を予測するとともに、その値が目標
温度と一致するように各鋼片ごとに炉温修正量
(ΔTli)を求め、種々の重み係数を考慮に入れて
それらを加重平均することにより炉温修正量(Δ
l)が決定されるので、その時々の炉内の鋼片
状況に応じて重み係数を変えることにより従来の
炉温制御法に比し、燃料原単位の大幅な低減が可
能となり、かつ抽出目標温度を保証することがで
きる。このような適確な炉温制御により、圧延工
程の生産性の向上、スキツドマーク等の防止によ
る製品々質の改善等の効果も得られる。
[Table] As is clear from the table above, changes in the charging side zone furnace temperature have little effect on the billet extraction temperature. This is because changes in the temperature of the steel billet due to changes in the furnace temperature are alleviated during the transition process of the billet to the extraction side. On the other hand, it can be seen that the degree of influence of the furnace temperature change in the extraction side zone is large, and it has a large effect on the steel billet extraction temperature. From this, the closer the zone is to the extraction side, the more weight should be given to the steel pieces that are less likely to be heated in that zone, so that the steel pieces whose heating state deviates significantly from the average should be reflected more greatly in the furnace temperature setting. On the other hand, in the zone near the charging side, this is not so necessary, and it is sufficient to adopt a more average furnace temperature setting. However, in this case, it goes without saying that a certain limit should be placed so that the extraction temperature of each steel billet falls within an allowable rolling range. FIG. 2 is a graph schematically showing the relationship between the weighting coefficient (ω li ) according to the degree of influence on the extraction temperature described in Table 1 and the furnace temperature correction amount (ΔT li ), and ( i) is the first heating zone, (ii) is the second heating zone, (iii)
indicates the weighting coefficient for the third heating zone, and (iv) indicates the weighting coefficient for the soaking zone. In other words, at the time when the furnace temperature correction amount (ΔT li ) for each slab is determined, as shown in the figure, even if there is a large difference in ΔT li in the charging side zone, the weighting coefficient (ω li ) is Not much difference,
By reducing the weight gradient α (dω li /dΔT li ), the amount of furnace temperature correction (ΔT l ) for that zone is determined on average using the above [formula]; on the other hand, a relatively large weight gradient is set for the zone on the extraction side. is used to calculate the amount of furnace temperature correction (ΔT
l ) to determine. In the past, in heating furnace operations aimed at reducing fuel consumption, furnace temperatures have been set to lower the charging side furnace temperature and increase the extraction side furnace temperature; In furnace temperature control, the deviation of each billet temperature from the target value in each zone is reflected in the furnace temperature control on an average basis, so heating is more rational from the standpoint of fuel consumption. Operation is possible. By the way, when using the above-mentioned furnace temperature control method, the heating temperature may deviate significantly from its target value if there is a significant change in the composition of the steel slabs in the furnace. In such a case, the above weight gradient (α)
It is possible to use a method in which ΔT li is varied by the magnitude of the furnace temperature correction amount (ΔT li ) for each piece of steel. In this method, when the furnace temperature correction amount (ΔT li ) is positive, the weight is By increasing the slope (α) and decreasing it when it is negative, using an appropriate slope will reduce the influence of the billet temperature that does not heat above the target and the billet temperature that heats above the target on the furnace temperature correction. It is something to be adjusted. By operating in this way, you can control the furnace temperature only for slabs that are difficult to bake to the target, such as thick slabs or high-temperature extraction slabs, or evenly control the furnace temperature for all slabs. Various controls such as those incorporated into the control can be arbitrarily and easily implemented by selecting the weight gradient. Figures 4 [] and [] are graphs showing the results of controlling the furnace by setting the weight gradient (α) at three levels as shown in the above formula [] as an example of the above-mentioned furnace temperature control. be. α=-D (When ΔT li ≧0)〓 [X] α=-1/D (When ΔT li <0) [However, D is 0.1, 0.5, and 1.0] In each figure, the curve is billet extraction temperature guarantee control (D=
0.1), B indicates the intermediate value control (D=0.5), and C indicates the average value control (D=1.0). Area (a) is the slab thickness
Steel billets of 180mm in diameter, 200mm in (b), and 180mm in (c) are charged. As shown in the figure, by changing the weight gradient (α), it is possible to perform control that guarantees the extraction temperature of all billets, control that makes the temperature of all billets in the band match the target temperature on average, or It can be seen that the furnace temperature control can be carried out as desired, such as intermediate control. The concrete operation of each furnace temperature control may be performed by adjusting the ordinary heating means based on the furnace temperature correction amount (ΔT l ) determined for each zone. As described above, according to the present invention, the temperature of each steel billet in each band when it reaches a position in front a certain distance away is predicted, and the temperature of each billet is predicted so that the value matches the target temperature. The amount of furnace temperature correction (ΔT li ) is calculated for each slab, and the amount of furnace temperature correction (ΔT
T l ) is determined, so by changing the weighting coefficient according to the situation of the steel pieces in the furnace at the time, it is possible to significantly reduce the fuel consumption rate compared to the conventional furnace temperature control method, and it is possible to reduce the extraction Target temperature can be guaranteed. Such accurate furnace temperature control also provides effects such as improving the productivity of the rolling process and improving product quality by preventing skid marks and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炉温修正量(ΔTli)と重み係数(ωl
)の関係を示すグラフ、第2図は各帯ごとの炉
温修正量(ΔTli)と重み係数(ωli)の関係を示
すグラフ、第3図は炉温修正量(ΔTli)の値に
応じて重み係数(ωli)を変える場合の両者の関
係を示す説明図、第4図〔〕および〔〕は本
発明による炉温制御の具体例を示すグラフであ
る。
Figure 1 shows the furnace temperature correction amount (ΔT li ) and the weighting coefficient (ω l
Figure 2 is a graph showing the relationship between the furnace temperature correction amount (ΔT li ) and weighting coefficient (ω li ) for each zone, and Figure 3 is a graph showing the relationship between the furnace temperature correction amount (ΔT li ) for each zone. An explanatory diagram showing the relationship between the weighting coefficient (ω li ) when the weighting coefficient (ω li ) is changed according to the value, and FIGS. 4 [ ] and [ ] are graphs showing a specific example of furnace temperature control according to the present invention.

Claims (1)

【特許請求の範囲】 1 多帯式連続加熱炉の各帯内に位置する各鋼片
の温度を、その帯内の雰囲気温度と、炉特性と、
各鋼片の寸法、熱特性および熱履歴とから求める
とともに、各鋼片が現在位置から一定距離だけ移
送されるに必要な時間を、その鋼片より抽出側に
位置するすべての鋼片の位置、寸法および抽出ピ
ツチから求め、各鋼片の現在位置から一定距離だ
け移送された位置における目標鋼片温度と、その
位置における予測鋼片温度と、前記移送時間と、
現在の帯およびその抽出側の帯の炉内温度とか
ら、各鋼片について各帯における炉温修正量(Δ
li)を求め、該炉温修正量(ΔTli)に対して重
み係数(ωli)を定めて、各帯における炉温修正
量(ΔTl)を、下式 〔式中、nは第l帯における鋼片本数を表わ
す〕 にて決定することを特徴とする多帯式連続加熱
炉の炉温制御方法。 2 多帯式連続加熱炉の各帯内に位置する各鋼片
の温度を、その帯内の雰囲気温度と、炉特性と、
各鋼片の寸法、熱特性および熱履歴とから求める
とともに、各鋼片が現在位置から一定距離だけ移
送されるに必要な時間を、その鋼片より抽出側に
位置するすべての鋼片の位置、寸法および抽出ピ
ツチから求め、各鋼片の現在位置から一定距離だ
け移送された位置における目標鋼片温度と、その
位置における予測鋼片温度と、前記移送時間と、
現在の帯およびその抽出側の帯の炉内温度とか
ら、各鋼片について各帯における炉温修正量(Δ
li)を求め、これに各鋼片ごとの重み係数(ωl
)を導入し、その重み勾配(α)〔α=dωli
dΔTli〕を、装入側の帯で小さく、抽出側の帯
で大きくするか、あるいは該修正量(ΔTli)に
応じて変化させるように定めて、各帯における炉
温修正量(ΔTl)を、下式 〔但し、式中、nは第l帯における鋼片本数を
表わす〕 にて決定することを特徴とする多帯式連続加熱
炉の炉温制御方法。
[Claims] 1. The temperature of each steel slab located in each zone of a multi-zone continuous heating furnace is determined based on the ambient temperature in that zone, the furnace characteristics,
In addition to determining the dimensions, thermal properties, and thermal history of each billet, the time required for each billet to be transferred a certain distance from its current position is determined from the positions of all billets located on the extraction side from that billet. , a target steel billet temperature at a position obtained from the dimensions and extraction pitch, and transferred by a certain distance from the current position of each steel billet, a predicted steel billet temperature at that position, and the transfer time;
Based on the furnace temperature of the current zone and its extraction side zone, the amount of furnace temperature correction (Δ
T li ) is determined, a weighting coefficient (ω li ) is determined for the furnace temperature correction amount (ΔT li ), and the furnace temperature correction amount (ΔT l ) in each zone is calculated using the following formula. [In the formula, n represents the number of steel slabs in the lth zone.] A furnace temperature control method for a multi-zone continuous heating furnace, characterized in that the temperature is determined by: 2. The temperature of each steel slab located in each zone of the multi-zone continuous heating furnace is calculated based on the ambient temperature within that zone, the furnace characteristics,
In addition to determining the dimensions, thermal properties, and thermal history of each billet, the time required for each billet to be transferred a certain distance from its current position is determined from the positions of all billets located on the extraction side from that billet. , a target steel billet temperature at a position obtained from the dimensions and extraction pitch, and transferred by a certain distance from the current position of each steel billet, a predicted steel billet temperature at that position, and the transfer time;
Based on the furnace temperature of the current zone and its extraction side zone, the amount of furnace temperature correction (Δ
T li ) is calculated, and then the weighting coefficient (ω l
i ) and its weight gradient (α) [α=dω li /
dΔT li ] is set to be small in the charging side zone and large in the extraction side zone, or to be changed according to the correction amount (ΔT li ), and the furnace temperature correction amount (ΔT l ), the following formula [However, in the formula, n represents the number of steel slabs in the lth zone.] A furnace temperature control method for a multi-zone continuous heating furnace, characterized in that the temperature is determined by:
JP921080A 1980-01-28 1980-01-28 Control of furnace temperature of multizone type continuous heating furnace Granted JPS56105429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP921080A JPS56105429A (en) 1980-01-28 1980-01-28 Control of furnace temperature of multizone type continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP921080A JPS56105429A (en) 1980-01-28 1980-01-28 Control of furnace temperature of multizone type continuous heating furnace

Publications (2)

Publication Number Publication Date
JPS56105429A JPS56105429A (en) 1981-08-21
JPS6133884B2 true JPS6133884B2 (en) 1986-08-05

Family

ID=11714096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP921080A Granted JPS56105429A (en) 1980-01-28 1980-01-28 Control of furnace temperature of multizone type continuous heating furnace

Country Status (1)

Country Link
JP (1) JPS56105429A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100363514C (en) * 2002-09-19 2008-01-23 鞍钢股份有限公司 Small cross steel tapping control method for continous steel billet neating furnace
CN101823079B (en) * 2010-04-22 2011-06-29 攀钢集团钢铁钒钛股份有限公司 Method for charging steel at furnace end of heating furnace

Also Published As

Publication number Publication date
JPS56105429A (en) 1981-08-21

Similar Documents

Publication Publication Date Title
US4257767A (en) Furnace temperature control
JPS6133884B2 (en)
JP4998655B2 (en) Combustion control method for continuous heating furnace
JP3710572B2 (en) Heating furnace control device
JP2809925B2 (en) Sheet temperature control method for continuous annealing furnace
JPH0160530B2 (en)
JPS5913575B2 (en) Control method for heating furnace for steel ingots
JPS5812325B2 (en) Control method for continuous heating furnace
KR101286558B1 (en) Method for Determining Set-point Temperature of Each Zone of Reheating Furnace
JPS6411686B2 (en)
JPS5941489B2 (en) How to set the furnace temperature correction amount for a multi-zone continuous heating furnace
JPS6254024A (en) Method for controlling automatic combustion in heating furnace
JPH076001B2 (en) Furnace temperature setting device for continuous heating furnace
JPH08246058A (en) Automatic combustion control method in continuous type heating furnace
JPS6013026A (en) Method for controlling combustion of continuous heating furnace
JP3007107B2 (en) Material heating curve determination method for heating furnace
JPS637843B2 (en)
JPH03140415A (en) Method for determining material heating-up curve in heating furnace
JPS5818401B2 (en) Continuous heating furnace control method
JPS6411693B2 (en)
JP2716551B2 (en) Heating furnace material heating curve determination method
JPS62124225A (en) Continuous heating method for hot rolling slab
JPH01177313A (en) Method for controlling continuous heating furnace
JPS61281820A (en) Method for controlling combustion of continuous heating furnace
JPS609087B2 (en) Heating control method for continuous heating furnace