JPS6411693B2 - - Google Patents

Info

Publication number
JPS6411693B2
JPS6411693B2 JP15640781A JP15640781A JPS6411693B2 JP S6411693 B2 JPS6411693 B2 JP S6411693B2 JP 15640781 A JP15640781 A JP 15640781A JP 15640781 A JP15640781 A JP 15640781A JP S6411693 B2 JPS6411693 B2 JP S6411693B2
Authority
JP
Japan
Prior art keywords
heating
temperature
furnace
extraction temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15640781A
Other languages
Japanese (ja)
Other versions
JPS5858229A (en
Inventor
Motoi Honjo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15640781A priority Critical patent/JPS5858229A/en
Publication of JPS5858229A publication Critical patent/JPS5858229A/en
Publication of JPS6411693B2 publication Critical patent/JPS6411693B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、複数の連続する加熱帯を有する連続
加熱炉において、目標抽出温度がそれぞれ異なる
鋼片に対して過加熱を最少に抑えながら加熱する
加熱方法およびその装置に関する。 一般に、連続加熱炉の温度制御ないし加熱は、
鋼塊や鋼片(以下鋼片という)を圧延に適する温
度に均一に加熱を行なわなければならず、しかも
圧延機側が要求する圧延ピツチで抽出できるよう
行わなければならない。このために、従来、自動
燃焼装置により炉内雰囲気を制御する方法が採用
されているが、頻繁に変化する鋼片の寸法、品種
の変化、あるいは目標抽出温度の変化に対応して
制御することはきわめて難かしく、現状ではこれ
らの変化を無視した画一的な制御が行なわれてい
るのが一般的である。その結果、大寸法の鋼片で
は抽出口に到達してもなお所定の抽出温度になら
ず、所定の抽出温度になるまで圧延のピツチダウ
ンを行い、極端な場合は、圧延の中断を行なわな
ければならないこともある。逆に小寸法鋼片で
は、加熱炉の炉温設定が大寸法鋼片に合せた加熱
温度であると、過加熱または過均熱となり、燃料
原単位が低下し、スケールの発生も多くなる不具
合もある。 さらに付言すると、従来技術において、加熱設
備の温度制御最小領域は炉長方向に連続して存在
する各加熱帯であることから、加熱帯の炉温設定
は、その帯に存在する複数の鋼片のうち必要投入
熱量が最大の鋼片について、目標抽出温度が確保
できるよう決定するのが通常である。そして、隣
接する鋼片の目標抽出温度が、必要投入熱量の鋼
片の抽出温度より低く、それらの差が各加熱帯で
の鋼片温度制御範囲外であれば過加熱を行つてい
ることになる。この過加熱は本来不必要なもの
で、これがために加熱燃料のロスを招いている。
なお、この点については、第3図をもつて、本発
明法実施結果との比較の項で詳述する。 本発明は前記問題点を解決することを目的とし
たもので、単に加熱帯の炉温制御では限界がある
ことに着目し、鋼片に対するスポツト加熱も併用
することにより、確実に鋼片ごとの温度制御を達
成でき、過加熱量の総和を最少限に抑え、燃料使
用量を低減可能な加熱方法およびその装置を提供
するものである。 すなわち、第一発明は、複数の連続する予熱
帯、加熱帯、均熱帯を有する連続加熱炉において
該加熱炉内の各鋼片目標抽出温度と加熱特性から
各鋼片の過加熱抽出温度を予測し、該過加熱抽出
温度を前記目標抽出温度に近づけるように制御目
標抽出温度を求め該制御目標抽出温度により各加
熱帯の炉温を設定し、かつ前記制御目標抽出温度
が前記目標抽出温度を下まわる鋼片については、
スポツト加熱装置にて加熱して炉温を設定するこ
とを特徴とするものである。 また第二発明は、複数の連続する加熱帯を有す
る連続加熱炉において、各加熱帯に対する炉温設
定用加熱装置の他に、加熱帯のノーズ部に一以上
のスポツト加熱装置を設け、このスポツト加熱装
置により、到達した加熱不足鋼片に対してスポツ
ト加熱するようにしたことを特徴とするものであ
る。 次に本発明を第1図および第2図を参照して詳
述する。第1図は本発明法を実施するための加熱
および制御装置の概要図で、第2図は本発明法の
フローチヤートを示す。第1図符号1は、予熱
帯、加熱帯および均熱帯の複数の加熱帯を有する
連続加熱炉で、たとえばウオーキングビームに乗
つて移送される鋼片2に対して、各加熱帯におい
て炉巾方向に取付けられた複数のバーナー3群か
らなる炉温設定用加熱装置により加熱するように
なつている。また各加熱帯には炉温検出器4A,
4B,4Cが配されている。本発明では、これら
従来の加熱装置のほか、加熱帯のノーズ部にバー
ナー等からなるスポツト加熱装置5が、移送鋼片
2に近接してその上部から火炎が当るよう設けら
れている。スポツト加熱装置5には、燃料Fおよ
び空気Aが、それぞれ流量検出器6,7および流
量調節弁8,9により所定の空燃比をもつて供給
される。10はスポツト加熱量を決定するため、
スポツト加熱装置5の前段近傍に配された鋼片温
度検出器である。11は演算制御装置で、炉温検
出器4A,4B,4Cからの炉温および鋼片温度
検出器10からの鋼片温度、流量検出器6,7か
らの燃料Fおよび空気A流量、あるいは他の情報
12、たとえば各鋼片のサイズ、品種、移送速度
または抽出ピツチ等が取込まれ、各加熱帯の加熱
バーナーへならびにスポツト加熱装置5の流量調
節弁8,9へ加熱量制御信号を出力する。 加熱に際しては、第2図に示すように、各鋼片
2,2……について、その鋼片が存在した加熱帯
の温度および通過速度から伝熱計算し、鋼片の温
度を算出する。次に、対象鋼片より抽出側に存在
する鋼片の抽出ピツチから鋼片の移動予測を行
う。これらに基いて炉内各鋼片の抽出温度を算出
した後、必要投入熱量が最大の鋼片についてその
目標抽出温度が確保できる加熱帯温度を仮定し、
必要により各加熱帯温度を修正する。次に隣接す
る鋼片の過加熱温度を算出する。過加熱温度は炉
の加熱特性を考慮して鋼片の目標抽出温度にする
ための最小限以上の鋼片温度のことで、これを求
めるために制約条件を定めこの条件以上の温度を
過加熱温度とするものである。次いで、必要投入
熱量最大の鋼片について温度制御量を決定し、み
かけの目標抽出温度を決定し、その後においてス
ポツト加熱装置により補償するからその能力分だ
け温度を下げるよう、各加熱帯の仮定温度修正を
行い、炉内各鋼片の制御目標抽出温度を算出す
る。その後制御目標温度により、各加熱帯の炉温
を設定し、鋼片毎の温度制御が必要な鋼片につい
て温度設定を行う。 かくして、各加熱帯に対しては、前記制御目標
抽出温度に基いてバーナー3による加熱量制御を
行い、鋼片毎の温度制御が必要な鋼片について
は、その鋼片がスポツト加熱装置5に到達した時
点で、当該スポツト加熱装置5によりスポツト加
熱を行い、熱量不足分を補償してやる。 このような方法によれば、加熱帯では可能な限
り低温での加熱を行うことができ、加熱不足分を
スポツト加熱装置により加熱するものの、全体と
してみれば燃料使用量が著しく低減する。 次に従来方式と本発明方式との比較を示すと、
第3図は、4帯式連続加熱炉に対して、スポツト
加熱装置を設けることなく単にバーナーにより加
熱し、必要投入熱量が最大の鋼片について目標抽
出温度が確保できるよう各加熱帯の炉温設定を行
う従来例において、鋼片の目標抽出温度T0およ
び実績抽出温度T1を時系列的に示したものであ
る。なお、同図に付したNo.は、スラブ(鋼片)No.
である。ここで実績抽出温度は前述の算出の抽出
温度とほぼ一致していることを確認済である。そ
こで過加熱の条件として、隣接鋼片の温度制御範
囲を最大10℃とする。そして鋼片の目標抽出温度
が上下に変化する場合で、階段状に増加する場
合、4本間での温度勾配をみて、つまり40℃以内
であれば鋼片温度を上げなくとも4本間の最大値
温度に到達するとして過加熱温度域とする。また
抽出目標温度が減少する場合はもちろん過加熱温
度域とする。その結果第3図のハツチングで囲ま
れた領域Z1が過加熱領域となる。 これに対して、上述の本発明法は、第4図に示
すように、目標抽出温度T0より一部低い温度の
帯加熱温度T2を設定するが、散点領域の加熱不
足分Z3を0〜10℃の範囲で鋼片毎の加熱を行うス
ポツト加熱装置5に補償して目標抽出温度T0
得ている。したがつて、一部は過加熱領域Z2が存
在するものの、全体的にみると、鋼片毎スポツト
加熱する場合に比較して加熱帯内の炉温を上げる
場合の使用燃料ははるかに多く必要とすることに
鑑みれば、きわめて経済的となる。 さらに具体的に比較した結果は次表に示す通り
である。
The present invention relates to a heating method and apparatus for heating steel slabs having different target extraction temperatures while minimizing overheating in a continuous heating furnace having a plurality of continuous heating zones. In general, temperature control or heating in a continuous heating furnace is
Steel ingots and billets (hereinafter referred to as billets) must be uniformly heated to a temperature suitable for rolling, and must be heated in a manner that allows extraction at the rolling pitch required by the rolling mill. For this purpose, a method has conventionally been adopted in which the atmosphere inside the furnace is controlled using an automatic combustion device. This is extremely difficult, and at present, uniform control is generally performed that ignores these changes. As a result, even when a large-sized steel billet reaches the extraction port, it still does not reach the specified extraction temperature, and rolling must be pitched down until the specified extraction temperature is reached, and in extreme cases, rolling must be interrupted. Sometimes it doesn't. On the other hand, for small-sized steel billets, if the furnace temperature setting of the heating furnace is set to match the heating temperature for large-sized steel billets, overheating or overheating will occur, resulting in lower fuel consumption and increased scale generation. There is also. Furthermore, in the conventional technology, the minimum temperature control area of the heating equipment is each heating zone that exists continuously in the furnace length direction, so the furnace temperature setting of the heating zone is Of these, the steel billet requiring the largest amount of input heat is usually determined so as to ensure the target extraction temperature. Then, if the target extraction temperature of adjacent steel slabs is lower than the extraction temperature of the steel slab with the required heat input, and the difference between them is outside the temperature control range of the steel slab in each heating zone, overheating is occurring. Become. This overheating is essentially unnecessary and results in a loss of heating fuel.
This point will be explained in detail in the section of comparison with the results of the method of the present invention using FIG. The present invention aims to solve the above-mentioned problems, and focuses on the fact that there is a limit to simply controlling the furnace temperature of the heating zone.By also using spot heating on the steel billets, it is possible to ensure that each steel billet is properly heated. The present invention provides a heating method and device that can achieve temperature control, minimize the total amount of overheating, and reduce the amount of fuel used. That is, the first invention predicts the overheating extraction temperature of each steel billet from the target extraction temperature and heating characteristics of each billet in the heating furnace in a continuous heating furnace having a plurality of consecutive preheating zones, heating zones, and soaking zones. Then, a control target extraction temperature is determined so as to bring the superheated extraction temperature closer to the target extraction temperature, and the furnace temperature of each heating zone is set according to the control target extraction temperature, and the control target extraction temperature is closer to the target extraction temperature. Regarding the lower piece of steel,
The furnace temperature is set by heating with a spot heating device. Further, the second invention provides a continuous heating furnace having a plurality of continuous heating zones, in addition to a heating device for setting the furnace temperature for each heating zone, one or more spot heating devices are provided at the nose of the heating zone. The heating device is characterized in that the underheated steel slab that has arrived is spot heated. Next, the present invention will be explained in detail with reference to FIGS. 1 and 2. FIG. 1 is a schematic diagram of a heating and control device for carrying out the method of the invention, and FIG. 2 shows a flowchart of the method of the invention. Reference numeral 1 in FIG. 1 denotes a continuous heating furnace having a plurality of heating zones including a pre-heating zone, a heating zone, and a soaking zone. Heating is performed by a furnace temperature setting heating device consisting of three groups of multiple burners attached to the furnace. In addition, each heating zone has a furnace temperature detector 4A,
4B and 4C are arranged. In the present invention, in addition to these conventional heating devices, a spot heating device 5 consisting of a burner or the like is provided at the nose of the heating zone so as to be close to the transferred steel billet 2 so that the flame hits it from above. Fuel F and air A are supplied to the spot heating device 5 at predetermined air-fuel ratios by flow rate detectors 6, 7 and flow rate control valves 8, 9, respectively. 10 determines the spot heating amount,
This is a billet temperature detector placed near the front stage of the spot heating device 5. Reference numeral 11 denotes an arithmetic and control unit that measures the furnace temperature from the furnace temperature detectors 4A, 4B, and 4C, the billet temperature from the billet temperature detector 10, the fuel F and air A flow rates from the flow rate detectors 6 and 7, or other information. Information 12, such as the size, type, transfer speed, or extraction pitch of each steel billet, is taken in, and a heating amount control signal is output to the heating burner of each heating zone and to the flow rate control valves 8 and 9 of the spot heating device 5. do. During heating, as shown in FIG. 2, heat transfer is calculated for each steel slab 2, 2... from the temperature and passage speed of the heating zone in which the steel slab existed, and the temperature of the steel slab is calculated. Next, movement of the steel billet is predicted from the extraction pitch of the steel billet located on the extraction side from the target steel billet. After calculating the extraction temperature of each steel billet in the furnace based on these, assume a heating zone temperature that can secure the target extraction temperature for the steel billet with the maximum required heat input,
Correct each heating zone temperature if necessary. Next, calculate the overheating temperature of the adjacent steel pieces. Superheating temperature is the minimum temperature of a steel billet to achieve the target extraction temperature of the steel billet, taking into consideration the heating characteristics of the furnace.To obtain this, constraint conditions are set and the temperature above this condition is overheated. temperature. Next, determine the temperature control amount for the steel slab with the maximum required heat input, determine the apparent target extraction temperature, and then set the assumed temperature of each heating zone so that the temperature will be lowered by the capacity of the spot heating device. Make corrections and calculate the control target extraction temperature for each piece of steel in the furnace. Thereafter, the furnace temperature of each heating zone is set according to the control target temperature, and the temperature is set for the steel billets that require temperature control for each billet. Thus, for each heating zone, the amount of heating is controlled by the burner 3 based on the control target extraction temperature, and for steel billets that require temperature control for each billet, the billet is placed in the spot heating device 5. When the temperature reaches the point, the spot heating device 5 performs spot heating to compensate for the lack of heat amount. According to such a method, heating can be performed at the lowest possible temperature in the heating zone, and although the insufficient heating is heated by the spot heating device, the amount of fuel used as a whole is significantly reduced. Next, a comparison between the conventional method and the present invention method is shown.
Figure 3 shows a four-zone continuous heating furnace that is heated simply by a burner without installing a spot heating device, and the furnace temperature of each heating zone is adjusted to ensure the target extraction temperature for the steel billet with the maximum required heat input. In the conventional example of setting, the target extraction temperature T 0 and the actual extraction temperature T 1 of the steel billet are shown in chronological order. In addition, the number attached to the same figure is the slab (steel billet) number.
It is. Here, it has been confirmed that the actual extraction temperature almost matches the extraction temperature calculated above. Therefore, as a condition for overheating, the temperature control range of adjacent steel slabs is set to a maximum of 10°C. If the target extraction temperature of the steel billet changes up and down and increases in a stepwise manner, look at the temperature gradient between the four bars, that is, if it is within 40℃, the maximum temperature among the four bars can be reached without raising the billet temperature. The temperature reached is considered to be the overheating temperature range. Moreover, when the extraction target temperature decreases, it is of course assumed to be in the overheating temperature range. As a result, the region Z1 surrounded by hatching in FIG. 3 becomes an overheated region. On the other hand, in the method of the present invention described above, as shown in FIG. 4, the band heating temperature T 2 is set to be partially lower than the target extraction temperature T 0 , but the underheating in the scattered region Z 3 The target extraction temperature T 0 is obtained by compensating the spot heating device 5 which heats each piece of steel in the range of 0 to 10°C. Therefore, although there is some overheating zone Z 2 , on the whole, much more fuel is used when raising the furnace temperature in the heating zone than when heating each slab individually. Considering what is needed, it is extremely economical. More specific comparison results are shown in the table below.

【表】 上表からも、本発明は、過加熱を極力最小限に
抑えるきわめて経済的なものであることが判明す
る。 ところで、上記スポツト加熱装置は、鋼材を極
力至近距離で加熱するため各加熱帯のノーズ部に
設けるのが好ましく、かつ炉巾方向に複数本バー
ナーを配設してもよい。また加熱微調整できるよ
うに、好ましくは抽出側の加熱帯と均熱帯との間
に配設するのが好適である。他方、スポツト加熱
用のバーナーの能力が大きければ、帯加熱温度
T2を最低の目標抽出温度T0に合せて、過加熱を
一切無くすことも考えられるが、そうすると短時
間で昇温させねばならないこと等から、そのバー
ナーの使用燃料量が嵩み、綜合的には得策でない
ため、一般にはある程度の過加熱を許容する帯加
熱温度とするのが得策である。 以上の通り、本発明は、炉温設定に加えてスポ
ツト加熱を行うものであるから、過加熱を最少と
することができ、燃料使用量の低減に著しい効果
がある。
[Table] From the above table, it is clear that the present invention is extremely economical as it minimizes overheating as much as possible. Incidentally, the spot heating device described above is preferably provided at the nose of each heating zone in order to heat the steel material as close as possible, and a plurality of burners may be provided in the width direction of the furnace. Further, in order to be able to finely adjust the heating, it is preferable to dispose it between the heating zone on the extraction side and the soaking zone. On the other hand, if the capacity of the burner for spot heating is large, the zone heating temperature will be
It is possible to eliminate overheating by adjusting T 2 to the lowest target extraction temperature T 0 , but in this case, the temperature must be raised in a short period of time, which would increase the amount of fuel used by the burner, making it difficult to Generally, it is a good idea to set the band heating temperature to a temperature that allows some degree of overheating. As described above, since the present invention performs spot heating in addition to setting the furnace temperature, overheating can be minimized, and this has a significant effect on reducing the amount of fuel used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る加熱およびその制御装置
の概要図、第2図は本発明法の加熱演算用フロー
チヤート、第3図は従来例の時系列相関図、第4
図は本発明例の時系列相関図である。 1……連続加熱炉、2……鋼片、3……バーナ
ー、5……スポツト加熱装置、10……鋼片温度
検出器。
Fig. 1 is a schematic diagram of the heating and its control device according to the present invention, Fig. 2 is a flow chart for heating calculation of the method of the present invention, Fig. 3 is a time series correlation diagram of the conventional example, and Fig. 4
The figure is a time series correlation diagram of an example of the present invention. 1... continuous heating furnace, 2... steel billet, 3... burner, 5... spot heating device, 10... steel billet temperature detector.

Claims (1)

【特許請求の範囲】 1 複数の連続する予熱帯、加熱帯、均熱帯を有
する連続加熱炉において、該加熱炉内の各鋼片目
標抽出温度と加熱特性から、各鋼片の過加熱抽出
温度を予測し、該過加熱抽出温度を前記目標抽出
温度に近づけるように制御目標抽出温度を求め、
該制御目標抽出温度より各加熱帯の炉温を設定
し、かつ前記制御目標温度が前記目標抽出温度を
下まわる鋼片については、スポツト加熱装置にて
加熱して炉温を設定することを特徴とする連続加
熱炉の加熱方法。 2 複数の連続する予熱帯、加熱帯、均熱帯を有
する連続加熱炉において、各加熱帯に対する炉温
設定用加熱装置の他に、加熱帯のノーズ部に一以
上のスポツト加熱装置を設け、このスポツト加熱
装置により、到達した加熱不足鋼片に対してスポ
ツト加熱するようにしたことを特徴とする連続加
熱炉の加熱装置。
[Claims] 1. In a continuous heating furnace having a plurality of consecutive preheating zones, heating zones, and soaking zones, the superheating extraction temperature of each steel billet can be determined from the target extraction temperature and heating characteristics of each steel billet in the heating furnace. predict, and determine a control target extraction temperature so as to bring the superheated extraction temperature closer to the target extraction temperature,
The furnace temperature of each heating zone is set based on the control target extraction temperature, and steel slabs whose control target temperature is lower than the target extraction temperature are heated by a spot heating device to set the furnace temperature. A heating method for a continuous heating furnace. 2. In a continuous heating furnace having a plurality of consecutive pre-heating zones, heating zones, and soaking zones, in addition to the heating device for setting the furnace temperature for each heating zone, one or more spot heating devices are installed at the nose of the heating zone, and this 1. A heating device for a continuous heating furnace, characterized in that a spot heating device performs spot heating on an underheated steel slab that has arrived.
JP15640781A 1981-10-01 1981-10-01 Method and device for heating with continuous heating furnace Granted JPS5858229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15640781A JPS5858229A (en) 1981-10-01 1981-10-01 Method and device for heating with continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15640781A JPS5858229A (en) 1981-10-01 1981-10-01 Method and device for heating with continuous heating furnace

Publications (2)

Publication Number Publication Date
JPS5858229A JPS5858229A (en) 1983-04-06
JPS6411693B2 true JPS6411693B2 (en) 1989-02-27

Family

ID=15627064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15640781A Granted JPS5858229A (en) 1981-10-01 1981-10-01 Method and device for heating with continuous heating furnace

Country Status (1)

Country Link
JP (1) JPS5858229A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359208B1 (en) * 2011-12-08 2014-02-06 주식회사 포스코 Apparatus and method of controlling furnace temperature
KR101997710B1 (en) * 2017-05-15 2019-07-09 한국에너지기술연구원 Intelligent temperature control system and method for Heat treatment Furnace

Also Published As

Publication number Publication date
JPS5858229A (en) 1983-04-06

Similar Documents

Publication Publication Date Title
US4606529A (en) Furnace controls
CA1175649A (en) Method and system for controlling multi-zone reheating furnaces
JPS6411693B2 (en)
JPS6254024A (en) Method for controlling automatic combustion in heating furnace
JPS5812325B2 (en) Control method for continuous heating furnace
JPH08246058A (en) Automatic combustion control method in continuous type heating furnace
JP3982042B2 (en) Combustion control method for continuous heating furnace
JPH076001B2 (en) Furnace temperature setting device for continuous heating furnace
JPH0331765B2 (en)
JPS6345454B2 (en)
JPH06248330A (en) Method for controlling combustion in heating furnace
JPS6133884B2 (en)
JPS609087B2 (en) Heating control method for continuous heating furnace
JPS61199019A (en) Method for controlling continuous heating furnace
JPS63307217A (en) Method for controlling temperature of stepped shaft in heating furnace
JPH0684867B2 (en) Furnace temperature setting device for continuous heating furnace
JPS591639A (en) Controlling method of plate temperature
SU1470793A1 (en) Method of controlling the heating duty of multiple-zone once-through furnace with chamber-heating mode
JPS61199020A (en) Method for controlling continuous heating furnace
JPS62124225A (en) Continuous heating method for hot rolling slab
JPS6013026A (en) Method for controlling combustion of continuous heating furnace
JPS6034608B2 (en) Heating control device for continuous heating furnace
JPH0532450B2 (en)
JPH0332606B2 (en)
JPS61199013A (en) Method for controlling continuous heating furnace