JPS591639A - Controlling method of plate temperature - Google Patents

Controlling method of plate temperature

Info

Publication number
JPS591639A
JPS591639A JP11034982A JP11034982A JPS591639A JP S591639 A JPS591639 A JP S591639A JP 11034982 A JP11034982 A JP 11034982A JP 11034982 A JP11034982 A JP 11034982A JP S591639 A JPS591639 A JP S591639A
Authority
JP
Japan
Prior art keywords
furnace
heating
plate
heat
plate temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11034982A
Other languages
Japanese (ja)
Other versions
JPS6254365B2 (en
Inventor
Tadashi Makino
義 牧野
Masahisa Ono
小野 正久
Yoshio Yamamoto
山本 宣雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11034982A priority Critical patent/JPS591639A/en
Publication of JPS591639A publication Critical patent/JPS591639A/en
Publication of JPS6254365B2 publication Critical patent/JPS6254365B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To enable good following-up ability to a change in the temp. or thickness of a plate in a non-steady state and heating to about 900-950 deg.C in a method for heat treating continuously the plate material in a continuous furnace, by disposing the 2nd furnace wherein the response speed of heat is high on the outlet side of the 1st furnace. CONSTITUTION:An indirect heating furnace 1 heats a plate material S to about 850-900 deg.C, and a furnace 2 for IR heating or the like can heat the material to the higher temp. The target heating temps. Ta', Ta on the outlet sides of the furnaces 1, 2 in a steady state are determined with a control device 5 for plate temp. in accordance with the equation (tp: the rate of heating of the plate S (ton/hr), h: the thickness of the plate (mm.), f(tp. h): the max. heating rate in the furnace 2( deg.C). The temp. of the furnace 1 and the quantity of heat input of the furnace 2 are respectively controlled in such a way that the actually measuerd values of thermometers 41, 42 coincide with said targets. The coefft. in the 2nd term on the right side of the equation is 1/2, that is, the heating in the furnace 2 is 50% of the max. heating capacity and has an allowance in capacity; therefore, the furnace has a good following up ability. The information on the plate S in the furnace is obtd. from a process controlling computer in the non-steady time, the quantity of the heat to be inputted to the furnace 2 is determined by the equation and the temp. of the plate at the outlet of each furnace is so controlled that the heating in the furnace 2 resumes the mode in the steady state.

Description

【発明の詳細な説明】 本発明は、連続焼鈍炉等の連続炉へ板材を連続送給して
焼鈍等の熱処理を行うに際し、特に目標板温を変更する
場合又は処理板材の厚さを変更する場合等の非定常時に
おいて、追従性がよい板温制御を行う方法を提供するも
のである。
Detailed Description of the Invention The present invention is particularly useful when changing the target plate temperature or changing the thickness of the treated plate when continuously feeding the plate to a continuous furnace such as a continuous annealing furnace to perform heat treatment such as annealing. The present invention provides a method for controlling plate temperature with good followability during unsteady conditions such as when

冷間圧延鋼板を製造する場合、ストリップを適当な圧延
率にて冷間圧延するが、この圧延されたストリップは加
工硬化し、加工性が極めて悪化する。従ってこれを後工
程の成形工程に供するためには、再結晶後、結晶粒を適
度の大きさに成長させるが、この目的のために行われる
のが軟質化焼鈍である。この軟質化焼鈍はバッチ方式に
ても処理されるが、その高能率化を図る場合には、連続
焼鈍炉にて連続的に処理されている。
When manufacturing a cold rolled steel plate, a strip is cold rolled at an appropriate rolling rate, but the rolled strip is work hardened and has extremely poor workability. Therefore, in order to use this material for the subsequent forming step, the crystal grains are grown to an appropriate size after recrystallization, and softening annealing is performed for this purpose. This softening annealing can be carried out in a batch manner, but in order to improve its efficiency, it is carried out continuously in a continuous annealing furnace.

この連続焼鈍炉における板温制御法として種々の方法が
提案されているが、これは、連続焼鈍炉における加熱が
還元雰囲気加熱を必要とするために加熱装置としてラジ
アントチューブによる間接加熱炉が採用されて詔り、斯
かる間接加熱炉は炉の熱応答速度が遅いので、目標板温
を変更する場合又は処理板材の厚さを変更する場合等の
非定常時に詔ける最適の板温制御方法が未だ確立されて
いないことに起因している。
Various methods have been proposed to control the plate temperature in this continuous annealing furnace, but since heating in a continuous annealing furnace requires heating in a reducing atmosphere, an indirect heating furnace using a radiant tube is used as the heating device. However, since the thermal response speed of such indirect heating furnaces is slow, the optimum plate temperature control method that can be used in unsteady situations such as when changing the target plate temperature or changing the thickness of the processed plate is difficult. This is due to the fact that it has not yet been established.

このような熱応答速度が遅い炉においては、板温変更時
又は板厚変更時等の非定常時に、その変支点前後にて加
熱温度はずれが生じて板材の品質低下という問題を招来
し、また極端な場合に不良品が発生して歩留り低下とい
う問題をも招来しやすい。
In such a furnace with a slow thermal response speed, during unsteady situations such as changing the plate temperature or plate thickness, the heating temperature will deviate before and after the fulcrum point, causing problems such as deterioration of the quality of the plate. In extreme cases, defective products are likely to occur, resulting in a decrease in yield.

また通常のラジアントチューブによる加熱では、850
〜900℃までの加熱しか行うことができず、それ以上
の温度に加熱することを可能とする間接加熱炉は、設備
費の点かな現実性がない。従って熱処理仕様の上から9
00〜950℃程度の加熱を必要とする場合には、特殊
なバッチ炉による処理力ζ一般に行われているが、その
ための焼鈍費用は極めて高価につくという問題がある。
In addition, when heating with a normal radiant tube, 850
It is only possible to heat up to ~900°C, and indirect heating furnaces that can heat to temperatures higher than that are not practical due to equipment costs. Therefore, 9 from the top of the heat treatment specifications
When heating at about 00 to 950° C. is required, processing power ζ is generally carried out using a special batch furnace, but there is a problem in that the annealing cost for this is extremely high.

本発明は上述したような問題を解決するためになされた
ものであり、連続炉にて板材を連続的に熱処理する方法
において、第−炉の出側に熱応答速度が速い第二炉を配
した連続炉を用いることにより、板温変更時又は板厚変
更時等の非定常時にも追従性がよい板温制御を可能とす
ると共に900〜950℃程度の加熱も可能とする方法
を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and is a method for continuously heat-treating plate materials in a continuous furnace. To provide a method that enables sheet temperature control with good followability even in unsteady situations such as when changing sheet temperature or sheet thickness, by using a continuous furnace, and also enables heating to about 900 to 950°C. The purpose is to

本発明番こ係る板温制御方法は、連続炉へ板材を連続送
給して加熱する方法において、前記連続炉として、熱応
答速度が遅い第−炉蓮い第二炉 からなる炉を用い、定
常時には第二炉魯こよる加熱がその最大加熱容量以下で
行われるように第−炉及び第二炉の出口板温制御を行い
、非定常時には所要の加熱量変更を第二炉にて実施した
後、第二炉による加熱が定常時の態様に戻るように第−
炉及び第二炉の出口板温制御を行うことを特徴とする。
The plate temperature control method according to the present invention is a method of continuously feeding and heating plate materials to a continuous furnace, in which a furnace consisting of a second furnace with a slow thermal response speed is used as the continuous furnace, During normal conditions, the outlet plate temperature of the second furnace and second furnace is controlled so that the heating by the second furnace is less than its maximum heating capacity, and during unsteady conditions, the required heating amount is changed in the second furnace. After that, the second furnace is heated so that the heating by the second furnace returns to the steady state.
It is characterized by controlling outlet plate temperature of the furnace and the second furnace.

以下本発明を図面に基づいて詳述する。第1図は本発明
方法の実施状態を示す模式的側面図であり、1はラジア
ントチューブを内蔵する第−炉であり、2は赤外線ヒー
タ又は誘導加熱装置を内蔵する第二炉である。第−炉1
は、前工程(図示せず)から炉内へ送給されてきたスト
リップSを、炉内の適宜位置に配されている複数のハー
スロール3により迂回させつつ案内し、ラジアントチュ
ーブによる間接加熱により850〜900 ’C程度ま
での温度に還元雰囲気加熱する。第二炉2は、前記第−
炉lの加熱温度の最大値以上の温度までストリップSを
加熱することができる炉であり、第−炉1の後段に連設
されて、その第−炉1と共に連続焼鈍炉を構成している
The present invention will be explained in detail below based on the drawings. FIG. 1 is a schematic side view showing the implementation state of the method of the present invention, in which 1 is a first furnace containing a radiant tube, and 2 is a second furnace containing an infrared heater or an induction heating device. Furnace 1
In this process, the strip S fed into the furnace from a previous process (not shown) is detoured and guided by a plurality of hearth rolls 3 placed at appropriate positions in the furnace, and is heated indirectly by a radiant tube. The reducing atmosphere is heated to a temperature of about 850-900'C. The second furnace 2 is
This furnace is capable of heating the strip S to a temperature higher than the maximum heating temperature of the furnace 1, and is connected to the rear stage of the first furnace 1, and together with the first furnace 1 constitutes a continuous annealing furnace. .

第−炉lの出側、即ち第二炉2の入側の適宜位置には、
ストリップSの表面温度を計測する温度計41が、また
第二炉2の出側の適宜位置には、同様の温度計42が夫
々取り付けられて詣り、これらにより得られるストリッ
プSの表面温度に関するデータは、板温制御装置5へ入
力される。
At an appropriate position on the exit side of the first furnace 1, that is, on the entrance side of the second furnace 2,
A thermometer 41 is installed to measure the surface temperature of the strip S, and a similar thermometer 42 is installed at an appropriate position on the outlet side of the second furnace 2, and data regarding the surface temperature of the strip S obtained by these thermometers 42 are installed. is input to the plate temperature control device 5.

更に第二炉2の出側には、前記連続焼鈍炉内を走行する
ストリップSの走行速度を計測すべく、速度計6が取り
付けられており、該速度計6により得られるデータも前
記板温制御装置5へ入力される。
Furthermore, a speed meter 6 is attached to the outlet side of the second furnace 2 in order to measure the running speed of the strip S running in the continuous annealing furnace, and the data obtained by the speed meter 6 also corresponds to the sheet temperature. It is input to the control device 5.

その板温制御装置5へは、上述したデータ以外にも炉内
のストリップSをトラッキングするプロセス制御コンピ
ュータ7からもデータが入力される。その具体的なデー
タとしては、炉内各位置におけるストリップSの幅、厚
さ、材質等の材料仕様及びそのストリップSに対して与
えられている送給速度、加熱温度等の加熱仕様があげら
れる。
In addition to the data described above, data is also input to the plate temperature control device 5 from a process control computer 7 that tracks the strip S in the furnace. The specific data includes the material specifications such as the width, thickness, and material of the strip S at each position in the furnace, and the heating specifications such as the feeding speed and heating temperature given to the strip S. .

なおこれらのデータは、定常時において一定であるが、
板温変更時又は板厚変更時等の非定常時にaいて変化す
るのはいうまでもない。
Note that these data are constant during steady state, but
Needless to say, it changes at unsteady times such as when changing the plate temperature or plate thickness.

斯くして諸データが入力された板温制御装置i5は、そ
の諸データに基づいて第−炉1及び第二炉2の各出側ス
トリップ温度設定値を決定し、第−炉1の炉温制御装置
8及び第二炉2の炉温制御装置9に対して前記設定値を
夫々出力する。そして炉温制御装置8は与えられた設定
値を維持すべく第−炉1の燃焼制御を行い、また炉温制
御装@9は与えられた設定値を維持すべく第二炉2の投
入熱量制御を行う。
The plate temperature control device i5 into which the various data have been inputted in this way determines the outlet side strip temperature setting values of the first furnace 1 and the second furnace 2 based on the various data, and adjusts the furnace temperature of the second furnace 1. The set values are output to the control device 8 and the furnace temperature control device 9 of the second furnace 2, respectively. The furnace temperature control device 8 controls the combustion of the first furnace 1 to maintain the given set value, and the furnace temperature control device @9 controls the amount of heat input to the second furnace 2 to maintain the given set value. Take control.

上述した板温制御装置5に基づく制御動作について更に
詳しく説明する。先ず、定常時における制御動作につい
て述べる。この場合、第二炉2の出側の目標加熱温度を
Taとすると、板温制御装置5において、第−炉1の出
側の目標加熱温度Ta’を下記(1)式のように決定す
る。
The control operation based on the above-mentioned plate temperature control device 5 will be explained in more detail. First, the control operation during steady state will be described. In this case, assuming that the target heating temperature on the outlet side of the second furnace 2 is Ta, the plate temperature control device 5 determines the target heating temperature Ta' on the outlet side of the second furnace 1 as shown in equation (1) below. .

Ta  = Ta −7f (tp、 h) ・” ・
” (1)但し、t、ニストリップ加熱量(トン/時)
h ニストリップ厚さく朋) f(t、、h) :第二炉2における最大昇温量(’C
)そして炉温制御装[8は、温度計41にて計測する第
−炉1の出側の板温実測値が(1)式にて決定するTa
’と一致するように第−炉1の炉温を制御する。
Ta = Ta −7f (tp, h) ・” ・
” (1) However, t, Nistrip heating amount (tons/hour)
f(t,,h): Maximum temperature increase in the second furnace 2 ('C
) and the furnace temperature control system [8 is the temperature control device 8, which is a temperature control device (Ta) whose actual plate temperature on the outlet side of the first furnace 1 measured by the thermometer 41 is determined by equation (1).
The furnace temperature of the first furnace 1 is controlled so as to coincide with '.

この制御は周知のP、 1. D、制御を用いたフィー
ドバック制御によればよい。また炉温制御装置9は、温
度計42にて計測する第二炉2の出側の板温実測値が前
記目標加熱温度Taに一致するように第二炉2への入熱
量を制御する。この制御も周知のP、I、D。
This control is performed using the well-known P.1. D. Feedback control using control may be used. Further, the furnace temperature control device 9 controls the amount of heat input to the second furnace 2 so that the actual plate temperature value on the outlet side of the second furnace 2 measured by the thermometer 42 matches the target heating temperature Ta. This control is also performed using the well-known P, I, and D controls.

制御を用いたフィードバック制御によればよい。Feedback control using control may be used.

なおこの制御に替えて、温度計41にて計測する第−炉
1の出側の板温実測値に基づくフィードフォワード制御
を行ってもよいが、第二炉2内におけるストリップ長は
約5 m (在炉時間は1〜4秒)程度であるので、例
えば第二炉2に用いる赤外線ヒータによる昇温量とスト
リップ加熱量との関係を示す第2図によっても明らかな
如く、第二炉2の熱応答速度が速いことを考慮すれば、
フィードフォワード制御を行う必要は必ずしもないこと
が分かる。
Note that instead of this control, feedforward control may be performed based on the actual plate temperature value on the outlet side of the second furnace 1 measured by the thermometer 41, but the strip length in the second furnace 2 is approximately 5 m. (The furnace time is about 1 to 4 seconds), so as is clear from FIG. Considering that the thermal response speed of
It can be seen that it is not necessarily necessary to perform feedforward control.

上述した如き制御を行う場合は、前記(1)式右辺の第
2項の係数を172としていることから、定常時N4お
ける第二炉2による加熱はその最大加熱容量以下で、具
体的には最大加熱容量の5啼で行われるようになる。従
って板温変更時又は板厚変更時等の非定常時においても
、第二炉2の加熱能力に余裕があるために追従性がよい
板温制御が可能となる。なお定常時における第二炉2に
よる加熱量をその最大加熱容量の5弼としたのは、次に
送給される板材の熱処理のために加熱量を増加させる必
要がある場合においても、またそれを減少させる必要が
ある場合においても同等に対応できるような状態を保っ
ておくために選定したものである。
When controlling as described above, since the coefficient of the second term on the right side of equation (1) is set to 172, the heating by the second furnace 2 at steady state N4 is less than its maximum heating capacity, and specifically, This will be done at the maximum heating capacity of 5 liters. Therefore, even in unsteady situations such as when changing the plate temperature or plate thickness, the second furnace 2 has sufficient heating capacity to enable plate temperature control with good followability. The reason why the amount of heating by the second furnace 2 during steady state is set at 50% of its maximum heating capacity is that it is possible to This selection was made in order to maintain the same level of support even in cases where it is necessary to reduce the

次に非定常時における制御動作について述べる。Next, we will discuss control operations during unsteady conditions.

板温制御装置5において、一定時間Δを毎にプロセス制
御コンピュータ7より炉内ストリップ情報を得、その情
報の中の第−炉1と第二炉2との接続部におけるストリ
ップ仕様を基にし、前記(1)式を用いて第−炉1の出
側の目標加熱温度Ta を決定する。そして炉温制御装
[8は、上述のようにして決定されるTa’を用いて定
常時と同様、第−炉lの炉温のフィードバック制御を行
う。また板温制御装置5において、第−炉1の出側の板
温目標値Ta’、第−炉1の出側の板温実測値Ts’、
第二炉2の出側の板温目標値Ta及び第二炉2の出側の
板温実測値T8を用いて第二炉2への投入熱量Q(kc
a//R)を下肥(2)式のように決定する。
In the plate temperature control device 5, in-furnace strip information is obtained from the process control computer 7 at fixed time intervals Δ, and based on the strip specifications at the connection between the first furnace 1 and the second furnace 2 in the information, The target heating temperature Ta on the exit side of the first furnace 1 is determined using the above equation (1). Then, the furnace temperature control device [8 performs feedback control of the furnace temperature of the first furnace I, using Ta' determined as described above, as in the steady state. In addition, in the plate temperature control device 5, a plate temperature target value Ta′ on the outlet side of the first furnace 1, an actual plate temperature value Ts′ on the outlet side of the second furnace 1,
The amount of heat input to the second furnace 2 is Q (kc
a//R) is determined as shown in equation (2).

Q = y(Ta ’−Ts ’* Ta、 tp、 
h )+g(Ta −Ts、 tp、 h)・・・・・
・(2) 但し、y=第二炉2ヘフイードフォワードすべき必要投
入熱量(kca1層) ε:第二炉2ヘフィードバックすべき補正熱量(kca
/層) そして炉温制御装置9は、上述のように決定される投入
熱ff1Qを用いて第二炉2の加熱制御を行う。
Q = y(Ta'-Ts'* Ta, tp,
h)+g(Ta-Ts, tp, h)...
・(2) However, y = required input heat amount to be fed forward to the second furnace 2 (kca 1 layer) ε: corrected amount of heat to be fed back to the second furnace 2 (kca
/ layer) Then, the furnace temperature control device 9 performs heating control of the second furnace 2 using the input heat ff1Q determined as described above.

斯くして非定常時、例えば第二炉2の出側の板温目標値
Taを段階状に変更させる場合には、第−炉1の出側の
板温目標値Ta’も(1)式に従って変更されることと
なるが、前述したように第−炉1の熱応答速度が遅いた
めに、第−炉lの出側の板温実測値Ts’がその目標値
Ta’に一致するまでには長時間を要する。そこで(2
)式右辺第1項に示すようにTs’とTa’との偏差に
応じてフィードフォワード的に第二炉2の加熱量を制御
してやることにより第二炉2の出側の板温をその目標値
Taに一致させるのである。そして第二炉2ヘフイード
フォワードすべき必要投入熱量2の誤差は、(2)式右
辺第2項に示すように第二炉2の出側の板温目標値Ta
と実測値Tsとの偏差となってあられれるので、補正熱
量を用いてフィードバック的に修正している。
In this way, in an unsteady state, for example, when changing the plate temperature target value Ta on the outlet side of the second furnace 2 in a stepwise manner, the plate temperature target value Ta' on the outlet side of the second furnace 1 is also changed according to equation (1). However, as mentioned above, since the thermal response speed of the first furnace 1 is slow, the plate temperature at the exit side of the first furnace 1 will be changed until the actual measured value Ts' matches the target value Ta'. It takes a long time. So (2
) As shown in the first term on the right side of the equation, by controlling the heating amount of the second furnace 2 in a feedforward manner according to the deviation between Ts' and Ta', the plate temperature at the exit side of the second furnace 2 can be adjusted to the target value. It is made to match the value Ta. The error in the required input heat amount 2 to be fed forward to the second furnace 2 is calculated by the plate temperature target value Ta on the outlet side of the second furnace 2, as shown in the second term on the right side of equation (2).
Since this occurs as a deviation between the measured value Ts and the actual measurement value Ts, correction is made in a feedback manner using the corrected amount of heat.

そしてその後の制御は、第二炉2による加熱が定常時の
態様、即ちその最大加熱容量以下の状wA(例えば最大
加熱容量の5篩の状態)に戻るように行われる。
The subsequent control is performed so that the heating by the second furnace 2 returns to the steady state, that is, the state wA below its maximum heating capacity (for example, the state of 5 sieves with the maximum heating capacity).

斯かる制御は具体的には例えば次のように行われる。即
ち、ス) IJツブSの板厚変更点が第−炉lを出たタ
イミングで前記(2)式による制御を開始する。そして
例えば後続のストリップSの板厚が厚く、また第二値2
の出側の板温目標値Taの変更を要しない場合は、Ta
2とTs’との差が大となっていき、これを第二値2に
て補正すべく y(Ta’イ8′。
Specifically, such control is performed as follows, for example. That is, (i) control based on the above equation (2) is started at the timing when the plate thickness change point of the IJ tube S leaves the first furnace l. For example, if the thickness of the subsequent strip S is thick, and the second value is 2
If it is not necessary to change the plate temperature target value Ta on the outlet side, Ta
The difference between 2 and Ts' becomes larger, and in order to correct this using the second value 2, y(Ta'i8') is used.

Ta、 tp、 h)によるフィードフォワード制御に
て第二値2の投入熱量の増加が行われ、また第二値2の
応答遅れ分はε(Ta −Ts、 tp、 h)による
フィードバック制御にて補完されることになる。
The input heat amount is increased by the second value 2 using feedforward control using Ta, tp, h), and the response delay of the second value 2 is increased using feedback control using ε(Ta - Ts, tp, h). It will be supplemented.

一方、第−炉1においてはtp変更に伴ってTa’が変
更され、当初はTs’はこれに追随し得ない力(やがて
Ts’はTa’になり、この状態になると第二値2の投
入熱量はその最大加熱容量の50%となる。
On the other hand, in Furnace 1, Ta' is changed as tp is changed, and initially Ts' is a force that cannot follow this (Ts' eventually becomes Ta', and in this state, the second value 2 becomes The amount of heat input is 50% of its maximum heating capacity.

なお先行するストリップSの尾端と後行するストリップ
Sの先端の一部が仕様はずれになることがあるが、その
長さは10m以下であり、従前のものが60〜70m 
にも及ぶのに比して十分短がい。
Note that the tail end of the leading strip S and part of the tip of the trailing strip S may be out of specification, but the length is 10 m or less, and the previous one is 60 to 70 m.
It's quite short compared to the length of time.

なお、定常時の態様に戻す制御の目標は上述の説明では
最大加熱容量の5噛としたが、次に送給されるストリッ
プSの仕様に応じて設定すればよい。例えば次に送給さ
れるストリップSの厚さがそれまでのストリップSの厚
さより厚い場合には、そのストリップSの板厚の変更点
が第−炉lの出側を通過すると第−炉1の出側の板温実
測値Ts’が低下する傾向となるので、これをその目標
温度Ta  に一致させるには、第二値2による加熱量
を急増させる必要がある。従って第二値2による定常時
における加熱を、例えば予めその最大加熱容量の4篩の
状態として招く場合は、第二値2についてみると投入熱
量増加分の余裕が、最大加熱容量の5噛にしておいた場
合に比して大きく、オーバーシュート気味の制御を行う
ことができて第二値2の追従性をより高め得る。
In addition, although the target of the control to return to the normal mode was set to 5 bites, which is the maximum heating capacity, in the above explanation, it may be set according to the specifications of the strip S to be fed next. For example, if the thickness of the next strip S to be fed is thicker than the thickness of the previous strip S, when the change point in the thickness of the strip S passes the outlet side of the first furnace 1, Since the measured value Ts' of the plate temperature on the outlet side tends to decrease, in order to make it match the target temperature Ta, it is necessary to rapidly increase the amount of heating based on the second value 2. Therefore, if heating in a steady state according to the second value 2 is performed in advance, for example, in a state of 4 sieves with the maximum heating capacity, when looking at the second value 2, the margin for the increase in the amount of input heat will increase to 5 sieves of the maximum heating capacity. It is possible to perform control with a slight overshoot, and to further improve the followability of the second value 2.

なお上述の説明においては、板温制御装置5にて第二値
2への投入熱量Q (kca//ll)を前記(2)式
に基づいて決定したが、下記(3)式に基づいて決定し
てもよい。
In the above explanation, the amount of heat Q (kca//ll) input to the second value 2 in the plate temperature control device 5 is determined based on the above equation (2), but it is determined based on the following equation (3). You may decide.

Q = y(Ta −Ts ’、 tp、 h)+g(
Ta −Ts、 tp、 h)・・・・・−(a)これ
はTaとTa’との関係が前記(1)式によって規定さ
れるので、フィードフォワード分のTa’トTs’との
差に係る部分をTaとTs’との差によって代替させで
も実質的には変わらないからである。
Q = y(Ta - Ts', tp, h) + g(
Ta - Ts, tp, h)... - (a) This is because the relationship between Ta and Ta' is defined by equation (1) above, so the feedforward difference between Ta' and Ts' is This is because there is no substantial difference even if the portion related to is replaced by the difference between Ta and Ts'.

上述の如き板温制御を行いつつストリップSを加熱する
場合には、処理すべきストリップSの目標加熱温度を急
激に変更させる必要がある場合、送給されるストリップ
Sの板厚が変更される場合等の非定常時においても、極
めて追従性がよい加熱制御が可能となる。
When heating the strip S while controlling the plate temperature as described above, if it is necessary to suddenly change the target heating temperature of the strip S to be processed, the thickness of the fed strip S is changed. Heating control with extremely good followability is possible even in unsteady situations such as when

なあ、定常時における第二値2の制御を前記(2)式で
示す結果を用いて行うこととしてもよく、また非定常時
における第二値2の制御を単なるフィードバック制御に
て行う、ことも可能である。
Incidentally, the control of the second value 2 in a steady state may be performed using the result shown by the above equation (2), and the control of the second value 2 in an unsteady state may be performed by simple feedback control. It is possible.

次に本発明方法をその効果の一例を示す図面に基づいて
説明する。第3図において(4)は従来法により板温制
御を行った場合(ラジアントチューブによる間接加熱炉
を用いてフィードバック型の制御を行った場合)を示し
、またの)は本発明方法により板温制御を行った場合を
示す。(A)e)いずれも、横軸に時間をとり、縦軸に
温度をとって、第二値2の出側における板温目標値(実
線)及び板温実測値(破線)の経時的変化を示したもの
である。
Next, the method of the present invention will be explained based on drawings showing an example of its effects. In Fig. 3, (4) shows the case where the plate temperature is controlled by the conventional method (feedback type control using an indirect heating furnace with radiant tubes), and (4) shows the case where the plate temperature is controlled by the method of the present invention. Indicates when control is performed. (A) e) In both cases, time is plotted on the horizontal axis and temperature is plotted on the vertical axis, and changes over time in the target plate temperature value (solid line) and the measured plate temperature value (dashed line) on the output side of the second value 2. This is what is shown.

図より、本発明方法による場合は、従来法による場合に
比して極めて追従性がよい加熱制御が可能であることが
分かり、本発明方法°の優れた効果を確認することがで
きた。
From the figure, it can be seen that the method of the present invention enables heating control with extremely good followability compared to the conventional method, confirming the excellent effects of the method of the present invention.

以上詳述した如く、本発明にあっては、連続炉へ板材を
連続送給して加熱する方法において、熱応答速度が遅い
第−炉の出側に熱応答速度が速い第二値を配した連続炉
を用い、定常時には第−炉の加熱がその最大加熱容量以
下で行われるようIζまた非定常時には所要の加熱量変
更を第二値にて実施した後、第二値による加熱が定常時
の態様に戻るように、第−炉及び第二値の出口板温制御
を行うので、極めて追従性がよい板温加熱制御が可能に
なる。また本発明によれば900℃以上に加熱し得る連
続炉も容易に実現可能であるので、従来、バッチ炉によ
る処理が行われている鋼板の熱処理に対しても連続炉に
よる処理が可能となる等、本発明の便益性は極めて高い
As detailed above, in the present invention, in the method of continuously feeding and heating plate materials to a continuous furnace, a second value having a fast thermal response rate is arranged on the outlet side of the first furnace having a slow thermal response rate. Using a continuous furnace with Since the outlet plate temperature of the first furnace and the second value is controlled so as to return to the normal mode, plate temperature heating control with extremely good followability is possible. Furthermore, according to the present invention, a continuous furnace capable of heating to 900°C or higher can be easily realized, so that it becomes possible to heat treat steel plates, which have conventionally been treated using a batch furnace, using a continuous furnace. etc., the benefits of the present invention are extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施状態を示す模式的側面図、第
2図は昇温量とストリップ加熱量との関係を示すグラフ
、第3図囚ノ)は本発明方法の効果を示すグラフである
。 1・・・第−炉、2・・・第二炉、41.42・・・温
度計、5・・・板温制御装置、6・・・速度針、7・・
・プロセス制御コンピュータ、S・・・ストリップ。 特許出願人 住友金属工業株式会社 代理人弁理士河野登夫 佑1図 30    40    50    60加鼻〜量 
 (トン/時) 第 2 図
Fig. 1 is a schematic side view showing the implementation state of the method of the present invention, Fig. 2 is a graph showing the relationship between the amount of temperature increase and the amount of heating of the strip, and Fig. 3 is a graph showing the effect of the method of the present invention. It is. DESCRIPTION OF SYMBOLS 1... First furnace, 2... Second furnace, 41.42... Thermometer, 5... Plate temperature control device, 6... Speed needle, 7...
- Process control computer, S... strip. Patent Applicant Sumitomo Metal Industries Co., Ltd. Patent Attorney Tosuke Kono
(tons/hour) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、連続炉へ板材を連続送給して加熱する方法において
、前記連続炉として、熱応答速度が遅い第−炉と、該第
−炉の出側に配された熱応答速度が速い第二炉とからな
る炉を用い、定常時には第二炉による加熱がその最大加
熱容量以下で行われるように第−炉及び第二炉の出口板
温制御を行い、非定常時には所要の加熱量変更を第二炉
にて実施した後、第二炉による加熱が定常時の態様に戻
るように第−炉及び第二炉の出口板温制御を行うことを
特徴とする板温制御方法。
1. In a method of continuously feeding and heating plate materials to a continuous furnace, the continuous furnace includes a first furnace with a slow thermal response speed and a second furnace with a fast thermal response speed arranged on the outlet side of the first furnace. The outlet plate temperature of the first furnace and the second furnace is controlled so that the heating by the second furnace is less than its maximum heating capacity during steady state, and the required heating amount is changed during unsteady state. 1. A plate temperature control method comprising controlling outlet plate temperatures of the first furnace and the second furnace so that the heating by the second furnace returns to a steady state after being carried out in the second furnace.
JP11034982A 1982-06-25 1982-06-25 Controlling method of plate temperature Granted JPS591639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11034982A JPS591639A (en) 1982-06-25 1982-06-25 Controlling method of plate temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11034982A JPS591639A (en) 1982-06-25 1982-06-25 Controlling method of plate temperature

Publications (2)

Publication Number Publication Date
JPS591639A true JPS591639A (en) 1984-01-07
JPS6254365B2 JPS6254365B2 (en) 1987-11-14

Family

ID=14533503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11034982A Granted JPS591639A (en) 1982-06-25 1982-06-25 Controlling method of plate temperature

Country Status (1)

Country Link
JP (1) JPS591639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124527A (en) * 1984-11-20 1986-06-12 Sumitomo Metal Ind Ltd Manufacture of nonoriented electrical steel sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458608A (en) * 1977-10-20 1979-05-11 Nippon Steel Corp Controlling method for sheet temperature in continuous heating of strip

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458608A (en) * 1977-10-20 1979-05-11 Nippon Steel Corp Controlling method for sheet temperature in continuous heating of strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124527A (en) * 1984-11-20 1986-06-12 Sumitomo Metal Ind Ltd Manufacture of nonoriented electrical steel sheet

Also Published As

Publication number Publication date
JPS6254365B2 (en) 1987-11-14

Similar Documents

Publication Publication Date Title
JPH02166235A (en) Method for controlling sheet temperature in metallic sheet heating furnace
JPS591639A (en) Controlling method of plate temperature
JP2809925B2 (en) Sheet temperature control method for continuous annealing furnace
JP6631824B1 (en) Heating method of steel sheet and continuous annealing equipment in continuous annealing
JP2004197144A (en) Method for controlling temperature of continuous normalized sheet
JPH01184233A (en) Sheet temperature control method for continuously annealing furnace
JPH052728B2 (en)
JPH0799311B2 (en) Heating furnace temperature control method
JPH0791590B2 (en) Velocity changing method in plate temperature control of continuous annealing furnace
JPS6411693B2 (en)
JPS5812325B2 (en) Control method for continuous heating furnace
JPS6345454B2 (en)
JPS6070127A (en) Method for controlling temperature of strip with continuous annealing furnace
JPH0759722B2 (en) Induction heating control method during subsequent induction heating of a slab previously gas-heated
JPH0813042A (en) Method for controlling strip temperature in continuous annealing furnace
JPH02205634A (en) Method for controlling temperature of continuous annealing furnace
JPS634608B2 (en)
JPS63307217A (en) Method for controlling temperature of stepped shaft in heating furnace
JP2004027256A (en) Method for controlling sheet temperature in heating zone and soaking zone in continuous annealing furnace for steel sheet
JPH04323324A (en) Method for controlling temperature of steel sheet in continuous heating furnace
JPH02225626A (en) Method for controlling transfer speed of continuous annealing furnace
JPS62164830A (en) Temperature controlling method for steel strip in continuous annealing line
JPS59185731A (en) Operating method of production line for pc steel bar
JPH09143575A (en) Continuous annealing method for stainless steel strip
JPH059590A (en) Strip temperature control method for continuous heat annealing furnace