JPS61124527A - Manufacture of nonoriented electrical steel sheet - Google Patents

Manufacture of nonoriented electrical steel sheet

Info

Publication number
JPS61124527A
JPS61124527A JP24564784A JP24564784A JPS61124527A JP S61124527 A JPS61124527 A JP S61124527A JP 24564784 A JP24564784 A JP 24564784A JP 24564784 A JP24564784 A JP 24564784A JP S61124527 A JPS61124527 A JP S61124527A
Authority
JP
Japan
Prior art keywords
soaking zone
temperature
zone
steel strip
rapid heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24564784A
Other languages
Japanese (ja)
Inventor
Shinichiro Katsu
勝 信一郎
Seiichi Sugisawa
杉沢 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24564784A priority Critical patent/JPS61124527A/en
Publication of JPS61124527A publication Critical patent/JPS61124527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To improve the magnetic characteristics of a rolled steel strip contg. prescribed percentages of C, Si, Mn, sol. Al and P by forming a rapid heating and rapid cooling region in a soaking zone so as to facilitate the growth of crystal nuclei when the steel strip is continuously annealed. CONSTITUTION:A steel strip contg. <=0.02% C, 0.1-1% Si, 0.1-0.3% Mn, <=0.001% sol. Al and <=0.2% P is hot rolled and cold rolled to obtain a steel strip. When the steel strip is continuously annealed, in a rapid heating and rapid cooling region formed in a soaking zone, the steel strip is rapidly heated from the furnace temp. of the soaking zone and then it is rapidly cooled to the furnace temp. of the soaking zone.

Description

【発明の詳細な説明】 11上Ω月j差! 本発明は無方向性電磁鋼板の製造方法に関する。[Detailed description of the invention] 11 Ω month j difference! The present invention relates to a method for manufacturing a non-oriented electrical steel sheet.

より詳細には、本発明は電磁鋼板用の冷延鋼板の連続焼
鈍方法の改善に係わり、優れた磁気特性を有すると同時
に酸化物等のハースロールへのビルドアップによる押し
込みやヒートバックルのない無方向性電磁鋼板の製造方
法に関する。
More specifically, the present invention relates to the improvement of a continuous annealing method for cold-rolled steel sheets for electrical steel sheets, which has excellent magnetic properties and is free from indentation and heat buckling caused by build-up of oxides and the like on hearth rolls. The present invention relates to a method for manufacturing grain-oriented electrical steel sheets.

従来の技術 無方向性電磁鋼板は、通常連続焼鈍炉によって最終焼鈍
が施され、コーティング等の処理を行って製品となる。
BACKGROUND ART Non-oriented electrical steel sheets are usually subjected to final annealing in a continuous annealing furnace, and subjected to treatments such as coating to become products.

その場合、−品の磁気特性は材料の結晶粒が大きいほど
有利となる。そのため、最終焼鈍温度、すなわち、連続
焼鈍炉の均熱帯の炉温度がAr=点以下の範囲でできる
だけ高いほど大きな結晶粒が得られ、従って優れた磁気
特性が得られる。
In that case, the larger the crystal grains of the material, the more advantageous the magnetic properties of the negative product become. Therefore, the higher the final annealing temperature, ie, the furnace temperature in the soaking zone of the continuous annealing furnace, is as high as possible in the range below the Ar= point, the larger the crystal grains can be obtained, and therefore the better the magnetic properties can be obtained.

しかしながら、縦型連続焼鈍炉の場合に、均熱帯の炉温
度を高くするとハースロールへの酸化物等のビルドアッ
プによる押し込みやヒートバックル等による品質不良が
生じるという問題がある。
However, in the case of a vertical continuous annealing furnace, if the furnace temperature in the soaking zone is raised, there is a problem that quality defects may occur due to intrusion due to build-up of oxides etc. on the hearth roll, heat buckling, etc.

ビルドアップとは一般に鋼表面の酸化物等がハースロー
ルと接触することによりロール上に転写され、成長する
ハースロール上の異物であり、これが鋼表面のいわゆる
“押し込み”欠陥の原因となる。従って、均熱帯が高温
度となるほど発生しやすく、一方、ハースロール上にビ
ルドアップがあってもハースロールに接触するときの鋼
板の温度が低ければビルドアップによる押し込みキズ等
も発生し難い。
Build-up is generally a foreign matter on the hearth roll that grows when oxides on the steel surface come into contact with the hearth roll and are transferred onto the roll, which causes so-called "push-in" defects on the steel surface. Therefore, the higher the temperature of the soaking zone, the more likely they are to occur.On the other hand, even if there is build-up on the hearth roll, if the temperature of the steel plate is low when it comes into contact with the hearth roll, push-in scratches due to build-up are less likely to occur.

他方、ヒートバックルとはハースロールとの接触による
鋼板の“たわみ”欠陥である。これは、ハースロールに
クラウンがついているため鋼板がハースロールと接触す
る際、鋼板の強度が低く、高温度のとき、鋼板が塑性変
形するためと考えられる。従って、ヒートバックルは高
温度であり、板厚が薄く、機械的強度が低い材料はど発
生し易い。
On the other hand, a heat buckle is a "deflection" defect in a steel sheet due to contact with a hearth roll. This is thought to be because the hearth roll has a crown, so when the steel plate comes into contact with the hearth roll, the strength of the steel plate is low, and the steel plate undergoes plastic deformation when the temperature is high. Therefore, the temperature of the heat buckle is high, and if the plate thickness is thin and the material has low mechanical strength, cracks are likely to occur.

一方、電磁鋼板の磁気特性は歪に極めて敏感で、わずか
な歪でも磁気特性が劣化するため、最終焼鈍中にビルド
アップによる押し込みやヒートバックルが生じた場合、
これらを修正するためにテンパーミルなどによって軽圧
下を加えることはできない。
On the other hand, the magnetic properties of electrical steel sheets are extremely sensitive to strain, and even the slightest strain deteriorates the magnetic properties, so if push-in or heat buckling occurs due to build-up during final annealing,
To correct these, it is not possible to apply light reduction using a temper mill or the like.

以上の如き理由で、縦型連続焼鈍炉では従来技術に於い
ては磁気特性の向上のために800℃以上の均熱温度で
最終焼鈍をしたいところを、押し込みやヒートバックル
など歪の発生を極力回避するために700℃程度の均熱
温度で焼鈍処理を行わざるを得ない場合があり、磁気特
性の優れた高品質の無方向性電磁鋼板の連続焼鈍による
製造は極めて困難なものであった。
For the above reasons, in the conventional vertical continuous annealing furnace, in order to improve the magnetic properties, final annealing is performed at a soaking temperature of 800°C or higher, and distortions such as indentation and heat buckling are avoided as much as possible. To avoid this, it is sometimes necessary to perform annealing at a soaking temperature of about 700°C, making it extremely difficult to manufacture high-quality non-oriented electrical steel sheets with excellent magnetic properties by continuous annealing. .

発Hの解決すべき問題点 本発明の目的は、上記した従来技術の欠点を解決するこ
とにあり、更に詳細には、無方向性電磁鋼板の連続焼鈍
炉による焼鈍処理に於いて、ハースロールへの酸化物等
のビルドアップによる押し込みおよびハースロールとの
接触による鋼板のヒートバックルを生起させず、高温で
の連続焼鈍処理と同等の磁気特性を付与できる無方向性
電磁鋼板の製造方法を提供することにある。
Problems to be solved regarding H generation The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art.More specifically, in annealing non-oriented electrical steel sheets in a continuous annealing furnace, Provided is a method for manufacturing a non-oriented electrical steel sheet that can impart magnetic properties equivalent to continuous annealing at high temperatures without causing heat buckling of the steel sheet due to indentation due to build-up of oxides, etc. and contact with hearth rolls. It's about doing.

本発明の更に別の目的は、優れた磁気特性を有すると同
時に表面が美麗且つ歪のない無方向性電磁鋼板の簡単且
つ経済的な製造方法を提供することにある。
Still another object of the present invention is to provide a simple and economical method for manufacturing a non-oriented electrical steel sheet that has excellent magnetic properties, a beautiful surface and no distortion.

問題点を解決するための手段 上記した目的を達成するため、本発明に従うと、C:0
.02%以下、 Si:0.10〜1.00%、 Mn : 0.1〜0.3%、 Sol、Al : 0.0旧%以下、 P:0.2%以下、 を含有し、残部は鉄および不可避的不純物からなる鋼を
熱間圧延し、酸洗後冷間圧延し、得られた銅帯を連続焼
鈍炉によって連続焼鈍する際、均熱帯に急熱急冷区域を
設けて、鋼帯を均熱帯の炉温度より急速加熱し、次いで
均熱帯の炉温度まで急速冷却することによって、磁気特
性の良好な無方向性電磁鋼板を製造する方法が提供され
る。
Means for Solving the Problems In order to achieve the above object, according to the present invention, C:0
.. 02% or less, Si: 0.10-1.00%, Mn: 0.1-0.3%, Sol, Al: 0.0% or less, P: 0.2% or less, and the remainder When steel consisting of iron and unavoidable impurities is hot rolled, pickled and cold rolled, and the resulting copper strip is continuously annealed in a continuous annealing furnace, a rapid heating and cooling zone is provided in the soaking zone, and the steel is A method is provided for producing a non-oriented electrical steel sheet with good magnetic properties by rapidly heating a strip above the furnace temperature in a soaking zone and then rapidly cooling it to the furnace temperature in a soaking zone.

均熱帯に於ける急熱急冷区域の最高温度を、均熱帯の他
の部分の炉温度より100℃〜300℃高くすることが
望ましい。
It is desirable that the maximum temperature in the rapid heating and cooling zone in the soaking zone be 100 to 300 degrees Celsius higher than the furnace temperature in other parts of the soaking zone.

急熱急冷区域の加熱方法としては誘導加熱法或いは抵抗
加熱法が採用できる。しかしながら、銅帯をロール通電
により抵抗加熱する方法に於いては、通電ロールが高温
度となるので、通電ロール上の酸化物等のビルドアップ
やヒートバックルを回避するよう注意しなければならな
いので誘導加熱が好ましい。
An induction heating method or a resistance heating method can be adopted as a heating method for the rapid heating and cooling zone. However, in the method of resistively heating a copper strip by rolling current, the current-carrying roll reaches a high temperature, so care must be taken to avoid build-up of oxides on the current-carrying roll and heat buckling. Heating is preferred.

更に本発明の態様に従うと、均熱帯の他の部分の炉温度
を銅帯の再結晶温度と等しくすることによって、これら
の部分におけるビルドアップやヒートバックルの発生を
最小とすることが好ましい。
Further in accordance with an aspect of the invention, it is preferred that the furnace temperature in other portions of the soaking zone be equal to the recrystallization temperature of the copper strip to minimize build-up and heat buckling in these portions.

遺」 上記した本発明に従う無方向性電磁鋼板の製造方法の条
件限定理由について説明する。
The reason for limiting the conditions of the method for manufacturing a non-oriented electrical steel sheet according to the present invention described above will be explained.

■ 成分範囲限定理由 C: Cは焼鈍により炭化物として析出し、磁気特性を劣化す
るものである。C含有量が0.02%を超えると所望の
磁気特性が得られないので、0.02%以下の範囲で可
能な限り低くして良好な磁気特性を与えることとした。
■Reason for limiting the range of components C: C precipitates as a carbide during annealing and deteriorates the magnetic properties. If the C content exceeds 0.02%, desired magnetic properties cannot be obtained, so it was decided to reduce the C content as low as possible within the range of 0.02% or less to provide good magnetic properties.

Sl: Slは鉄損を低減するのに有効な元素であり、電磁鋼板
に必要な元素である。Si含有量が0.10%未満では
上記の鉄損低減効果が不十分となる。一方、Si含有量
が1.00%を超えると連続ラインでの溶接性や脱スケ
ール性が著しく劣化する。無方向性電磁鋼板に要求され
る゛磁気特性を保持するとともに、溶接性等を考慮して
、Si含有量を0.10〜1.00%の範囲とした。
Sl: Sl is an element effective in reducing iron loss and is a necessary element for electrical steel sheets. If the Si content is less than 0.10%, the above-mentioned iron loss reduction effect will be insufficient. On the other hand, if the Si content exceeds 1.00%, weldability and descaling properties in a continuous line will be significantly deteriorated. In order to maintain the magnetic properties required for a non-oriented electrical steel sheet and to take into consideration weldability, the Si content was set in the range of 0.10 to 1.00%.

Mn: Mnは強度を付与するのに有効な元素であり、0.1%
未満のMn含有量では打抜き加工に耐える所定の強度を
付与するのが困難である。一方、MnはMnSとして結
晶粒の成長を阻害して磁気特性を劣化させる元素である
ので、その含有量の上限を0.3%とした。
Mn: Mn is an effective element for imparting strength, and 0.1%
If the Mn content is less than that, it is difficult to provide a predetermined strength that can withstand punching. On the other hand, since Mn, as MnS, is an element that inhibits the growth of crystal grains and deteriorates magnetic properties, the upper limit of its content was set to 0.3%.

Sol、Al : AIは鋼中のNと結合してAINを形成し、焼鈍中の結
晶粒の成長を阻害する元素である。従って、Sol、A
I含有量は少ない方が磁気特性向上の点から望ましい。
Sol, Al: AI is an element that combines with N in steel to form AIN and inhibits the growth of crystal grains during annealing. Therefore, Sol,A
A lower I content is desirable from the viewpoint of improving magnetic properties.

しかしながら、製鋼段階の脱酸処理や、連続鋳造の際の
鋳込み温度の確保を経済的に実施するためにA1の添加
は必要である。従って、Sol、AIの含有量を0.0
01%以下とした。
However, the addition of A1 is necessary in order to economically carry out deoxidation treatment in the steel manufacturing stage and to secure the casting temperature during continuous casting. Therefore, the content of Sol and AI is 0.0
01% or less.

P : Pは強度を付与して打抜き性を向上させるのに有効な元
素であるが、多量に含有するとスラブ割れや圧延性低下
の問題が生ずるので製造工程上の理由によりP含有量を
0.2%以下とした。
P: P is an effective element for imparting strength and improving punching properties, but if it is contained in a large amount, problems such as cracking of the slab and reduction in rollability will occur, so for manufacturing process reasons, the P content is reduced to 0. It was set to 2% or less.

■ 均熱帯での急熱急冷について、 本発明の方法に従うと、無方向性電磁鋼板の連続焼鈍炉
の均熱帯に急熱急冷区域を設けて、結晶粒の成長を促進
する。
(2) Regarding rapid heating and cooling in the soaking zone: According to the method of the present invention, a rapid heating and cooling zone is provided in the soaking zone of a continuous annealing furnace for non-oriented electrical steel sheets to promote the growth of crystal grains.

添付の第1図を参照して本発明の詳細な説明する。The present invention will now be described in detail with reference to the accompanying FIG.

第1図は本発明の方法を実施するのに用いる縦型連続焼
鈍炉の概略図である。図示の如く、縦型連続焼鈍炉は加
熱帯Z1、均熱帯Z2および冷却帯Z、から構成される
。鋼帯SはハースロールR1、R2・・・・R3を介し
て加熱帯Z1、均熱帯Z2、冷却帯Z3を矢印方向に順
次走行する。
FIG. 1 is a schematic diagram of a vertical continuous annealing furnace used to carry out the method of the present invention. As shown in the figure, the vertical continuous annealing furnace is composed of a heating zone Z1, a soaking zone Z2, and a cooling zone Z. The steel strip S sequentially travels in the direction of the arrow through a heating zone Z1, a soaking zone Z2, and a cooling zone Z3 via hearth rolls R1, R2, . . . R3.

本発明に従い、図示の例では均熱帯Z2のハースロール
R7とR,との間の部分に急熱急冷区域Pが設けられる
According to the present invention, in the illustrated example, a rapid heating and cooling zone P is provided between the hearth rolls R7 and R in the soaking zone Z2.

第2図は急熱急冷区域の拡大図である。図示の如く、本
発明の方法を実施するための急熱急冷区域Pは、2つの
ハースロールRiとRl+1の間を走行する鋼帯Cの走
行部分に設けられる。この急熱急冷区域Pは誘導コイル
■と、鋼帯Sの表面に冷却ガスを噴射するガスノズル群
Nとから構成される。冷却ガスとしては、N、、Ar等
の不活性ガスが好適に用いられる。
Figure 2 is an enlarged view of the rapid heating and cooling area. As shown in the figure, the rapid heating and cooling zone P for carrying out the method of the present invention is provided in the running portion of the steel strip C running between the two hearth rolls Ri and Rl+1. This rapid heating and cooling zone P is composed of an induction coil (2) and a group of gas nozzles N that inject cooling gas onto the surface of the steel strip S. As the cooling gas, inert gas such as N, Ar, etc. is preferably used.

第2図に示す例では、鋼帯Sは誘導コイルに囲まれた部
分のみが急速加熱され、且つ直ちに冷却ガスの噴射で均
熱帯の炉温度まで冷却されるので、ハースロールR1の
温度上昇を起こすことがない。
In the example shown in Fig. 2, only the portion of the steel strip S surrounded by the induction coil is rapidly heated, and the cooling gas is immediately cooled down to the furnace temperature in the soaking zone, so that the temperature rise of the hearth roll R1 is suppressed. It never happens.

すなわち、銅帯Sの結晶粒の成長は誘導加熱による急速
加熱により著しく助長され、このため均熱帯の他の部分
の炉温度を通常の場合よりも可成り低く設定できるので
、ハースロールへの酸化物等のビルドアップ、ヒートバ
ックル等を効果的に防止することができる。
In other words, the growth of crystal grains in the copper strip S is significantly promoted by the rapid heating by induction heating, and as a result, the furnace temperature in other parts of the soaking zone can be set much lower than in normal cases, which reduces the oxidation of the hearth roll. Build-up of objects, heat buckling, etc. can be effectively prevented.

このような本発明の方法に於ける急熱急冷処理は、磁気
特性に影響を及ぼす結晶粒の成長が均熱時間よりもむし
ろ加熱温度に支配されていることを長年の実験により本
発明者等が知見したことに基づく。従って、本発明の方
法で採用する急熱急冷区域の長さ、すなわち急速加熱後
の高温度保持時間はそれほど重要でなく、約10秒程度
でよく、本発明の方法を実施するための設備上の負担も
小さい。
Through many years of experiments, the present inventors have found that the growth of crystal grains, which affects magnetic properties, is controlled by the heating temperature rather than the soaking time. Based on the findings. Therefore, the length of the rapid heating and quenching zone employed in the method of the present invention, that is, the time for holding the high temperature after rapid heating, is not so important, and may be about 10 seconds, and the length of the rapid heating and quenching zone employed in the method of the present invention is not so important. The burden is also small.

急熱温度は処理すべき鋼の^r1点以下の範囲で高温で
あるほど結晶粒成長効果は大きくなる。他方、均熱帯の
炉温度は従来要望されていた800℃より100℃程度
低くしても、急熱急冷処理により従来とほぼ同程度の磁
気特性が得られる。従って、本発明の好ましい態様では
、均熱帯の炉温度を約700℃とし、急熱温度を800
〜900℃とする。
The rapid heating temperature is within the range of ^r1 point of the steel to be treated, and the higher the temperature, the greater the grain growth effect. On the other hand, even if the furnace temperature in the soaking zone is about 100° C. lower than the conventionally required 800° C., magnetic properties almost the same as those of the conventional method can be obtained by the rapid heating and cooling process. Therefore, in a preferred embodiment of the present invention, the furnace temperature in the soaking zone is approximately 700°C, and the rapid heating temperature is approximately 800°C.
〜900℃.

上記した本発明の方法を実施するための急熱急冷区域は
第1図に示す如く均熱帯の出側部分に限らず、どの部分
に設けてもよい。
The rapid heating and cooling zone for implementing the method of the present invention described above is not limited to the exit side of the soaking zone as shown in FIG. 1, but may be provided at any location.

第3図は、急熱急冷区域を均熱帯の入側に設けた場合(
I)、中央部に設けた場合(II)、出側に設けた場合
(III)のヒートパターンを示している。各々の急熱
急冷処理は約10秒で終了し、ハースロールを加熱する
ことな〈実施できる。また、いずれのヒートパターンの
処理でも磁気特性改善結果はほぼ同等である。
Figure 3 shows the case where the rapid heating and cooling area is provided at the entrance of the soaking area (
The heat patterns are shown for I), when it is provided in the center (II), and when it is provided on the exit side (III). Each rapid heating and cooling process is completed in about 10 seconds and can be carried out without heating the hearth roll. In addition, the results of improving the magnetic properties are almost the same regardless of the heat pattern treatment.

以下、本発明を実施例により説明するが、これらの実施
例は本発明の単なる例示であり、本発明の技術的範囲を
何等制限するものではない。
Hereinafter, the present invention will be explained with reference to Examples, but these Examples are merely illustrative of the present invention and do not limit the technical scope of the present invention in any way.

実施例 転炉精錬した溶鋼をRH法により真空脱ガス、脱炭処理
を行ない、処理後の溶鋼に^lを添加して溶鋼温度を上
昇せしめて、溶鋼温度を調整し、連続鋳造した。得られ
たスラブを1250℃以上の温度に加熱し、仕上げ温度
790℃、巻取り温度630℃で熱間圧延して、2.3
mm厚の銅帯とし、酸洗処理後、0.5mm厚まで冷間
圧延した。
Example Molten steel refined in a converter was vacuum degassed and decarburized by the RH method, ^l was added to the treated molten steel to raise the molten steel temperature, the molten steel temperature was adjusted, and continuous casting was performed. The obtained slab was heated to a temperature of 1250°C or higher, and hot rolled at a finishing temperature of 790°C and a winding temperature of 630°C to obtain 2.3
A copper strip having a thickness of mm was prepared, and after pickling treatment, it was cold rolled to a thickness of 0.5 mm.

このようにして得られた冷延鋼帯はそれぞれ第1表に示
す化学組成を有し、これらを本発明の方法、従来技術の
方法に従って第1表に示す条件で連続焼鈍に付した。表
中、ヒートパターンとは第3図に示すヒートパターンの
いずれかを示す。
The cold rolled steel strips thus obtained each had a chemical composition shown in Table 1, and were subjected to continuous annealing under the conditions shown in Table 1 according to the method of the present invention and the method of the prior art. In the table, the heat pattern refers to any of the heat patterns shown in FIG.

連続焼鈍後の鋼帯の磁気特性をJIS C2550によ
るエプスタイン法により測定し、それらの結果を第1表
に示す。更に結晶粒度を測定し、併せて第1表に示す。
The magnetic properties of the steel strip after continuous annealing were measured by the Epstein method according to JIS C2550, and the results are shown in Table 1. Furthermore, the crystal grain size was measured and is also shown in Table 1.

第1表に示す結果から理解できるように、本発明の方法
では均熱帯の炉温を700℃と低くしてノ\−スロール
へのビルドアップやヒートバックルの生じない温度とし
ても、従来法に於ける800℃および900℃の炉温で
の均熱処理とほぼ同等の磁気特性が得られる。更に、連
続焼鈍後の銅帯は、本発明方法によるものは外観が美麗
で、形状も一定であり、従来技術の場合に見られたヒー
トバックルも観察されなかった。
As can be understood from the results shown in Table 1, in the method of the present invention, the furnace temperature in the soaking zone is as low as 700°C, which is a temperature that does not cause build-up to the nozzle roll or heat buckling, compared to the conventional method. Almost the same magnetic properties as those obtained by soaking at furnace temperatures of 800°C and 900°C can be obtained. Furthermore, the copper strips after continuous annealing produced by the method of the present invention had a beautiful appearance and a constant shape, and no heat buckling was observed, which was observed in the case of the prior art.

名19負】 以上説明の如く、本発明の方法に於いては、連続焼鈍炉
の均熱帯に急熱急冷区域を設けて、該区域で銅帯を高温
度に加熱することによって結晶粒成長を促進せしめ、同
時に均熱帯全体の炉温を低く設定することによって、従
来技術で問題となっていたハースロールへのビルドアッ
プやヒートバックルの問題を解決することに成功したも
のである。従って、本発明の方法によって磁気特性が優
れ、歪のない無方向性電磁鋼板の経済的な生産が可能と
なった。
As explained above, in the method of the present invention, a rapid heating and cooling zone is provided in the soaking zone of the continuous annealing furnace, and grain growth is promoted by heating the copper strip to a high temperature in the zone. At the same time, by setting the furnace temperature in the entire soaking zone to a low level, this technology succeeded in solving the problems of build-up on hearth rolls and heat buckling, which were problems with conventional technology. Therefore, the method of the present invention has made it possible to economically produce non-oriented electrical steel sheets with excellent magnetic properties and no distortion.

更に、本発明の方法を実施するには、連続焼鈍炉の均熱
帯の任意の部分に加熱手段と冷却手段を設ければ足り、
設備上の負担も小さいものである。
Furthermore, in order to carry out the method of the present invention, it is sufficient to provide a heating means and a cooling means in any part of the soaking zone of the continuous annealing furnace.
The burden on equipment is also small.

更に、本発明の方法は、焼鈍後に絶縁コ、−ティングを
施して打抜き後、製品となるフルプロセス成品だけでな
く、打抜き後に歪取り焼鈍を行なうセミプロセス成品の
製造にも適用できる。また、高温焼鈍が要求される深絞
り用冷延鋼板の製造にも、連続焼鈍炉の均熱帯の炉温を
上昇することなく適用可能である。
Furthermore, the method of the present invention can be applied not only to full-processed products that are manufactured by applying insulation coating and -ting after annealing and punching, but also to manufacturing semi-processed products in which strain relief annealing is performed after punching. Furthermore, it can be applied to the production of cold-rolled steel sheets for deep drawing which require high-temperature annealing without increasing the furnace temperature in the soaking zone of a continuous annealing furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するのに使用する縦型連続
焼鈍炉の概略図であり、 第2図は均熱帯に設けられた急熱急冷区域の概略図であ
り、 第3図は本発明の方法に於ける連続焼鈍での均熱帯の各
種ヒートパターンを示すグラフである。 (主な参照符号) S ・・・調帯、 Zl  ・・・連続焼鈍炉の加熱帯、 Z2 ・・・連続焼鈍炉の均熱帯、 Z3 ・・・連続焼鈍炉の一次冷却帯、R1・・・・・
・・・R9、Ri 、Rial  ・・・ハースロール
、 P・・・急熱急冷区域、 N・・・冷却ノズル、 ■・・・誘導コイル
FIG. 1 is a schematic diagram of a vertical continuous annealing furnace used to carry out the method of the present invention, FIG. 2 is a schematic diagram of a rapid heating and cooling zone provided in a soaking zone, and FIG. It is a graph which shows various heat patterns of the soaking zone in continuous annealing in the method of this invention. (Main reference symbols) S: Adjustment zone, Zl: Heating zone of continuous annealing furnace, Z2: Soaking zone of continuous annealing furnace, Z3: Primary cooling zone of continuous annealing furnace, R1... ...
...R9, Ri, Rial ... Hearth roll, P ... Rapid heating and rapid cooling area, N ... Cooling nozzle, ■ ... Induction coil

Claims (3)

【特許請求の範囲】[Claims] (1)C:0.02%以下、 Si:0.10〜1.00%、 Mn:0.1〜0.3%、 Sol.Al:0.001%以下、 P:0.2%以下、 を含有し、残部は鉄および不可避的不純物からなる鋼を
熱間圧延し、酸洗後冷間圧延し、得られた鋼帯を連続焼
鈍炉によって連続焼鈍する際、均熱帯に急熱急冷区域を
設けて、鋼帯を均熱帯の炉温度より急速加熱し、次いで
均熱帯の炉温度まで急速冷却することによって、磁気特
性の良好な無方向性電磁鋼板を製造する方法。
(1) C: 0.02% or less, Si: 0.10-1.00%, Mn: 0.1-0.3%, Sol. A steel containing Al: 0.001% or less, P: 0.2% or less, with the remainder consisting of iron and unavoidable impurities is hot rolled, pickled and cold rolled, and the obtained steel strip is When continuously annealing in a continuous annealing furnace, a rapid heating and cooling zone is provided in the soaking zone, and the steel strip is rapidly heated above the furnace temperature in the soaking zone, and then rapidly cooled to the furnace temperature in the soaking zone, resulting in good magnetic properties. A method of manufacturing non-oriented electrical steel sheets.
(2)上記の急熱急冷区域に於けるコイルの最高温度を
均熱帯の炉温度より100℃〜300℃高くすることを
特徴とする特許請求の範囲第1項に記載の方法。
(2) The method according to claim 1, characterized in that the maximum temperature of the coil in the rapid heating and cooling zone is 100 to 300 degrees Celsius higher than the furnace temperature in the soaking zone.
(3)上記均熱帯の最低温度をコイルの再結晶温度とす
ることを特徴とする特許請求の範囲第1項または第2項
のいずれかに記載の方法。
(3) The method according to claim 1 or 2, characterized in that the lowest temperature in the soaking zone is the recrystallization temperature of the coil.
JP24564784A 1984-11-20 1984-11-20 Manufacture of nonoriented electrical steel sheet Pending JPS61124527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24564784A JPS61124527A (en) 1984-11-20 1984-11-20 Manufacture of nonoriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24564784A JPS61124527A (en) 1984-11-20 1984-11-20 Manufacture of nonoriented electrical steel sheet

Publications (1)

Publication Number Publication Date
JPS61124527A true JPS61124527A (en) 1986-06-12

Family

ID=17136752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24564784A Pending JPS61124527A (en) 1984-11-20 1984-11-20 Manufacture of nonoriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JPS61124527A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211728A (en) * 1988-03-25 1990-01-16 Armco Advanced Materials Corp Ultrahigh speed annealing of unoriented electric iron plate
WO2011155183A1 (en) * 2010-06-09 2011-12-15 Jfeスチール株式会社 Process for production of non-oriented electromagnetic steel sheet, and continuous annealing facility
JP2015145528A (en) * 2014-02-04 2015-08-13 Jfeスチール株式会社 Vertical nitriding processing equipment and nitriding processing method for grain oriented silicon steel plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855210A (en) * 1981-09-28 1983-04-01 Nitto Electric Ind Co Ltd Kneading method of resin powder material and kneader used thereof
JPS591639A (en) * 1982-06-25 1984-01-07 Sumitomo Metal Ind Ltd Controlling method of plate temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855210A (en) * 1981-09-28 1983-04-01 Nitto Electric Ind Co Ltd Kneading method of resin powder material and kneader used thereof
JPS591639A (en) * 1982-06-25 1984-01-07 Sumitomo Metal Ind Ltd Controlling method of plate temperature

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211728A (en) * 1988-03-25 1990-01-16 Armco Advanced Materials Corp Ultrahigh speed annealing of unoriented electric iron plate
WO2011155183A1 (en) * 2010-06-09 2011-12-15 Jfeスチール株式会社 Process for production of non-oriented electromagnetic steel sheet, and continuous annealing facility
JP2011256437A (en) * 2010-06-09 2011-12-22 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
JP2015145528A (en) * 2014-02-04 2015-08-13 Jfeスチール株式会社 Vertical nitriding processing equipment and nitriding processing method for grain oriented silicon steel plate

Similar Documents

Publication Publication Date Title
KR950013287B1 (en) Method of making non-viented magnetic steel strip
EP0606884A1 (en) Grain-oriented electrical steel sheet with very low core loss and method of producing the same
JP4207231B2 (en) Method for producing non-oriented electrical steel sheet
US4116729A (en) Method for treating continuously cast steel slabs
EP4353848A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
KR100831756B1 (en) Process for the control of inhibitors distribution in the production of grain oriented electrical steel strips
JPS61124527A (en) Manufacture of nonoriented electrical steel sheet
JPH062907B2 (en) Non-oriented electrical steel sheet manufacturing method
JPS585969B2 (en) Manufacturing method of low core loss unidirectional silicon steel sheet
JP2514447B2 (en) Manufacturing method of non-oriented electrical steel sheet having excellent magnetic properties and surface properties
GB2060697A (en) Grain-oriented silicon steel production
JP2983129B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2001049351A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPS5974222A (en) Production of non-directional electrical steel sheet having excellent electromagnetic characteristic
JPH04341518A (en) Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPH01162725A (en) Production of silicon steel sheet having good magnetic characteristic
JPH0331421A (en) Method for heating grain oriented silicon steel slab
JP3392695B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics
JPS593528B2 (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JPS5831366B2 (en) Manufacturing method of non-oriented silicon steel sheet
JPH0152452B2 (en)
JP2703468B2 (en) Stable manufacturing method of high magnetic flux density unidirectional electrical steel sheet
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
JPS6354048B2 (en)