JPH02166235A - Method for controlling sheet temperature in metallic sheet heating furnace - Google Patents

Method for controlling sheet temperature in metallic sheet heating furnace

Info

Publication number
JPH02166235A
JPH02166235A JP32003388A JP32003388A JPH02166235A JP H02166235 A JPH02166235 A JP H02166235A JP 32003388 A JP32003388 A JP 32003388A JP 32003388 A JP32003388 A JP 32003388A JP H02166235 A JPH02166235 A JP H02166235A
Authority
JP
Japan
Prior art keywords
heating furnace
sheet
temp
plate temperature
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32003388A
Other languages
Japanese (ja)
Inventor
Hiroyuki Serio
芹生 浩之
Katsuhiko Doi
土肥 克彦
Yasuhiko Masuno
増野 豈彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32003388A priority Critical patent/JPH02166235A/en
Publication of JPH02166235A publication Critical patent/JPH02166235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To precisely heat a metallic sheet in a heating furnace to a desired temp. by obtaining a sheet temp. predicted value to minimize the difference from a sheet temp. command from the time sequential data related to the metallic sheet to be annealed and the heat-transfer model in the heating furnace at the time of annealing a metallic sheet in the continuous annealing furnace. CONSTITUTION:When a long-sized metallic sheet is continuously annealed in the heating furnace 1 such as a continuous annealing furnace, a sheet temp. predicted value to minimize the difference from a sheet temp. command is obtained by a sheet temp. root computing element 5 based on the time sequential data 2 storing the size, specific heat, and sheet temp. command of a metallic sheet to be heated and the physical transfer model 3 expressing the relative heat-transfer shape among the radiant tube, hearth roll, steel sheet, etc., in the heating furnace 1. The temp. of the heating furnace 1 is appropriately controlled by an adaptive controller 10 with the sheet temp. command as the set value to control the heating (annealing) of the metallic sheet with high efficiency in the heating furnace 1, hence the generation of defective steel sheets is reduced, and the yield of the annealed steel sheets is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は、連続焼鈍炉等の金属板加熱炉におげろ板温
の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for controlling the temperature of a grating plate in a metal plate heating furnace such as a continuous annealing furnace.

〔従来の技術] 従来、連続焼鈍炉等の金属板の加熱炉における板温の制
御方法としては、板温の目標値と、実測値とに基づいた
フィードバック制御、即ぢ、板温の目標値SVと、加熱
炉での実測値PVとの偏差(sv−pv)の大きさ、積
分値及び微分値に基づいたPID制御を行・うのが−射
的な制御方法である。
[Prior Art] Conventionally, as a method of controlling the plate temperature in a metal plate heating furnace such as a continuous annealing furnace, feedback control based on a target value of the plate temperature and an actual value, i.e., a target value of the plate temperature. A strategic control method is to perform PID control based on the magnitude, integral value, and differential value of the deviation (sv-pv) between SV and the actual value PV in the heating furnace.

また、板温の目標値の変更時刻や変動量等の将来のデー
タが判っている場合には、加熱炉の遅い応答性を考慮し
て、上記フィードバック制御と共にフィードフォワード
制御も適用されている。
Further, when future data such as change time and variation amount of the target plate temperature value is known, feedforward control is also applied in addition to the feedback control described above, taking into account the slow response of the heating furnace.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来のフィードフォワード制御にあって
は、目標値又は制御出力(加熱炉に供給する燃料等)の
変更時刻及び変動量は、テーブルや数式を用いて表現す
るが、あらゆる操業状況に適したテーブルや数式を作成
するのは困難であるので、板温の目標値と実測値との差
を常に最小とすることが困難であった。
However, in conventional feedforward control, the change time and variation amount of the target value or control output (fuel supplied to the heating furnace, etc.) are expressed using tables or mathematical formulas, but they are Since it is difficult to create tables and formulas, it is difficult to always minimize the difference between the target value and the measured value of plate temperature.

また、板温の目標値と実測値との差を最小にできるよう
な板温の変更ルートを設定できた場合であっても、加熱
炉の時定数は大であるし、PID制御のパラメータチュ
ーニングは非常に困難であり、しかも、このパラメータ
チューニングは加熱炉の操業状況を監視しつつ人が行う
ため、あらゆる条件の下で最適な制御が行われることは
非常に希であった。
Furthermore, even if it is possible to set a plate temperature change route that minimizes the difference between the target value and the actual value of plate temperature, the time constant of the heating furnace is large, and parameter tuning of PID control is difficult. It is extremely difficult to perform parameter tuning, and since parameter tuning is performed by humans while monitoring the operating status of the heating furnace, it is extremely rare to achieve optimal control under all conditions.

このため、PID制御をフィードバンク制御に用いた場
合の制御精度の向上は、非常に困難であった。
For this reason, it has been extremely difficult to improve control accuracy when PID control is used for feedbank control.

この発明は、このような従来技術における技術的な課題
に着目してなされたものであり、加熱炉における板温制
御の精度が向上できる制御方法を提供することを目的と
している。
The present invention has been made in view of the technical problems in the prior art, and an object of the present invention is to provide a control method that can improve the accuracy of plate temperature control in a heating furnace.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、この発明は、加熱炉で加熱
される金属板の寸法や板温目標値等の時系列データと、
前記加熱炉の伝熱形態を表現した伝熱モデルとに基づい
て、前記板温目標値との差が最小となるような板温予測
値を予め求めておき、前記加熱炉の応答のみに注目した
数学モデルを有する適応制御系によって、前記加熱炉で
の板温か前記板温予測値に等しくなるように前記加熱炉
を制御するものである。
In order to achieve the above object, the present invention provides time-series data such as the dimensions of a metal plate heated in a heating furnace and target plate temperature values,
Based on a heat transfer model expressing the heat transfer form of the heating furnace, a predicted plate temperature value that minimizes the difference from the target plate temperature value is obtained in advance, and attention is paid only to the response of the heating furnace. The heating furnace is controlled by an adaptive control system having a mathematical model such that the plate temperature in the heating furnace becomes equal to the predicted plate temperature value.

〔作用〕[Effect]

加熱炉で加熱される金属板の条件(金属板の寸法、比熱
、板温目標値等)の時系列データと、加熱炉の伝熱形態
を表現した伝熱モデル(物理的なモデル)とに基づいて
、板温目標値との差が最小となるような板温予測値が求
められ、加熱炉における実際の板温か板温予測値に一致
するように、加熱炉の応答のみに注目した数学モデルを
有する適応制御系によって加熱炉への入力(供給燃料。
Time-series data on the conditions of the metal plate heated in the heating furnace (metal plate dimensions, specific heat, plate temperature target value, etc.) and a heat transfer model (physical model) that expresses the heat transfer form of the heating furnace. Based on this, a predicted plate temperature value that minimizes the difference from the target plate temperature value is calculated, and mathematics that focuses only on the response of the heating furnace is used to match the predicted plate temperature value to the actual plate temperature in the heating furnace. Input (supply fuel) to the furnace by an adaptive control system with a model.

金属板のライン速度等)が制御される。(line speed of metal plate, etc.) is controlled.

〔実施例〕〔Example〕

以下、この発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の一実施例の構成を示したブロック図で
ある。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

先ず、構成を説明すると、第1図において、連続焼鈍炉
等の加熱炉1において将来加熱される金属板の寸法、比
熱、板温目標値等が記憶されている時系列データ2と、
加熱炉1内における例えばラジアントチューブ、ハース
ロール、ストリップ等の相互の伝熱形態を表現した物理
的な伝熱モデル3とに基づいて、例えばSUMT法等の
数理計画法を用いて板温目標(11! T o sとの
差が最小となるような板温予測値(板温ルー))T’s
を求める板温ルート演算器5がある。
First, to explain the configuration, in FIG. 1, time series data 2 in which dimensions, specific heat, plate temperature target values, etc. of a metal plate to be heated in the future in a heating furnace 1 such as a continuous annealing furnace are stored;
A plate temperature target ( 11! Predicted plate temperature value (plate temperature Roux) that minimizes the difference from T's
There is a plate temperature route calculator 5 that calculates the temperature.

この実施例では、板温の目標値とルートとの差の大きさ
を示す評価関数として、下記の(1)式に示す関数Jを
用いた。但し、金属板の焼き不足を避けるために、To
s(t)≦Ti5(t)という制約条件を設けた。
In this example, a function J shown in equation (1) below was used as an evaluation function indicating the magnitude of the difference between the target value of plate temperature and the root. However, in order to avoid insufficient firing of the metal plate, To
A constraint condition of s(t)≦Ti5(t) was set.

J−=lXN(Tos(t)−T、1s(t))2at
   −・・・・(1)そして、二〇板温ルート演算器
5において求められた板温ルー)TR5を設定値として
、加熱炉1に対する制御を行う適応制御系としての適応
制御装置10がある。
J-=lXN(Tos(t)-T, 1s(t))2at
- (1) Then, there is an adaptive control device 10 as an adaptive control system that controls the heating furnace 1 using the plate temperature TR5 determined by the plate temperature route calculator 5 as a set value. .

この適応制御装置10は、加熱炉1への入力及び出力間
の応答のみに注目して、加熱炉1の動特性を表している
数学モデル11と、この数学モデル11を実際の人出力
を用いて常にチューニングする同定器12と、数学モデ
ル11で表された加熱炉1の内部状態を表す状態量(物
理的な意味を持たない)を、実際の入出力から推定する
状態推定器13と、上記状態量から加熱炉1の動特性を
考慮して、加熱炉1に供給する燃料流量を適切に制御す
る制御器14とを備えている。
This adaptive control device 10 focuses only on the response between the input and output to the heating furnace 1, and uses a mathematical model 11 representing the dynamic characteristics of the heating furnace 1, and this mathematical model 11 using actual human output. a state estimator 13 that estimates a state quantity (having no physical meaning) representing the internal state of the heating furnace 1 represented by the mathematical model 11 from the actual input/output; A controller 14 is provided to appropriately control the flow rate of fuel supplied to the heating furnace 1 in consideration of the dynamic characteristics of the heating furnace 1 based on the state quantity.

また、加熱炉1には、実際の金属板の寸法を測定する測
定器15と、実際の板温を計測する板温計16とが設け
られていて、これら測定器15及び板温計16の出力は
、同定器12.状態推定器13及び制御器14に供給さ
れる。
The heating furnace 1 is also provided with a measuring device 15 for measuring the dimensions of the actual metal plate and a plate thermometer 16 for measuring the actual plate temperature. The output is from the identifier 12. It is supplied to a state estimator 13 and a controller 14.

なお、本実施例では、上記数学モデル11として下記の
〔2)及び(3)六番こ示すモデルを用いた。
In this example, the following models [2] and (3) No. 6 were used as the mathematical model 11.

z(t+Δt)=A:z(t) +Bu(t)    
−−(2)y(t+Δt)=Cz(t+Δt)    
  ・・・・・・(3)但し、y(t)は加熱炉1の出
側の板温であり、である。 (なお、LSは金属板のラ
イン速度、Dは板厚、Wは板幅、■は燃料流量である。
z(t+Δt)=A:z(t)+Bu(t)
--(2) y(t+Δt)=Cz(t+Δt)
(3) However, y(t) is the plate temperature on the exit side of the heating furnace 1, and is. (LS is the line speed of the metal plate, D is the plate thickness, W is the plate width, and ■ is the fuel flow rate.

)また、本実施例では、同定器12に最小2乗法を、状
態推定器13としてカルマンフィルタを、制御器14に
は有限整定制御法をそれぞれ適用した。
) Furthermore, in this embodiment, the least squares method was applied to the identifier 12, the Kalman filter was applied to the state estimator 13, and the finite settling control method was applied to the controller 14.

次に、上記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

今、加熱炉1において、連続して3種類のコイルC,,
C2及びC3を加熱するものとし、これらコイルC+、
Cz及びC3のそれぞれの板温目標値を、T o 1+
 T O!及びT。3とする。
Now, in the heating furnace 1, three types of coils C,...
C2 and C3 are to be heated, and these coils C+,
The plate temperature target values for each of Cz and C3 are T o 1+
TO! and T. 3.

即ち、第2図に示すように、加熱炉1でコイルC1〜C
3を連続して加熱するものである。そこで、各コイルの
板温目標値T。l+ T(12及びT。、や各コイルの
寸法等の時系列データ2と、伝熱モデル3とに基づき、
板温ルート演算器5において一ヒ記(1)式の評価関数
Jを用いて、最適な板温ルートTR5(t)を求めると
、第2図実線で示すようになる。
That is, as shown in FIG. 2, in the heating furnace 1, the coils C1 to C
3 is heated continuously. Therefore, the plate temperature target value T for each coil. Based on time series data 2 such as l + T (12 and T., dimensions of each coil, etc.) and heat transfer model 3,
When the optimum plate temperature route TR5(t) is determined using the evaluation function J of formula (1) in the plate temperature route calculator 5, it becomes as shown by the solid line in FIG.

つまり、板温ルー)TRs(U を決定する際に上記板
温目標値の関係(T O2< T o + < T O
3)が考慮される(コイルC2を加熱する際に温度を下
げ過ぎると、コイルC3に移行した際に温度の上昇が間
に合わなくなる。)から、コイルC3を加熱する際の板
温ルートT□(1)がその目標値T。3を下回らないよ
うに設定される。
In other words, when determining the plate temperature (R)TRs(U), the relationship between the plate temperature target value (T O2 < T o + < T O
3) is taken into account (if the temperature is lowered too much when heating coil C2, the temperature will not rise in time when moving to coil C3), so the plate temperature route T □ ( 1) is the target value T. It is set so that it does not fall below 3.

そして、求められた板温ルートT*5(t)を設定値と
して、適応制御装置10が制御を行う。
Then, the adaptive control device 10 performs control using the obtained plate temperature route T*5(t) as a set value.

即ち、経過時間毎に板温ルー)Ta2(t)を制御器1
4に読み込む一方で、実際の金属板の寸法及び板温が測
定器15及び板温計16から、同定器12、状態推定器
13及び制御器14に供給される。同定器12は、供給
される実際の寸法及び板温に暴づいて数学モデル11の
チューニングを行い、数学モデル11は、状態推定器1
3及び制御器14にモデルパラメータを出力し、状態推
定器13は、数学モデル11で表された加熱炉1の内部
状態を表す状態量を、供給される実際の寸法及び板温か
ら推定して制御器14に供給する。
That is, the plate temperature (L)Ta2(t) is adjusted by the controller 1 at each elapsed time.
4, the actual dimensions and plate temperature of the metal plate are supplied from the measuring device 15 and the plate thermometer 16 to the identifier 12, the state estimator 13, and the controller 14. The identifier 12 tunes the mathematical model 11 by uncovering the supplied actual dimensions and plate temperatures, and the mathematical model 11 tunes the state estimator 1.
3 and the controller 14, and the state estimator 13 estimates the state quantity representing the internal state of the heating furnace 1 represented by the mathematical model 11 from the supplied actual dimensions and plate temperature. is supplied to the controller 14.

そして、制御器14は、供給される各値を適宜考慮して
、適切な燃料流量を決定し、加熱炉1を制御する。
Then, the controller 14 appropriately considers each supplied value, determines an appropriate fuel flow rate, and controls the heating furnace 1.

すると、金属板の実際の板温は、第2図鎖線で示すよう
に、略板温ルートTi5(t)に一致する。
Then, the actual plate temperature of the metal plate approximately corresponds to the plate temperature route Ti5(t), as shown by the chain line in FIG.

しかも、板温目標値が異なるコイルC1〜C1の何れに
おいても、実際の板温か板温目標値を下回ることがない
から、焼き不足は起きない。
Moreover, since the actual plate temperature does not fall below the actual plate temperature target value in any of the coils C1 to C1 having different plate temperature target values, undercooking does not occur.

このように、本発明を適用した上記実施例にあっては、
制御精度が向上し、焼き不足が発生する恐れがなくなっ
て不良品発生率を低減できる。
In this way, in the above embodiment to which the present invention is applied,
Control accuracy is improved, the risk of undercooking is eliminated, and the incidence of defective products can be reduced.

比較例として、第2図と同じコイルC,−C。As a comparative example, the same coils C and -C as in FIG. 2 are used.

に対して従来のフィードバック制御とフィードフォワー
ド制御とによる板温制御を行った場合の結果を第3図に
示す。
FIG. 3 shows the results of plate temperature control using conventional feedback control and feedforward control.

この従来の制御では、板温目標値(破線)と実際の板温
(鎖線)との偏差に基づいたフィードバック制御と、加
熱炉1の遅い応答性を補うために、コイルC2からコイ
ルC4に移行するよりも前に温度を上昇させるフィード
フォワード制御とが行われているが、コイルC2の工程
で温度が下がり過ぎているので、コイルC3に移行した
時に充分温度を上昇させることができず、このため、コ
イルC4が焼き不足となってしまう。
In this conventional control, in order to perform feedback control based on the deviation between the plate temperature target value (dashed line) and the actual plate temperature (dashed line), and to compensate for the slow response of the heating furnace 1, the coil C2 is switched to the coil C4. Feedforward control is performed to raise the temperature before coil C2, but since the temperature has dropped too much in the process of coil C2, it is not possible to raise the temperature sufficiently when moving to coil C3. As a result, the coil C4 becomes undercooked.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、加熱炉で加熱さ
れる金属板の寸法や板温目標値等の時系列データと、加
熱炉の伝熱形態を表現した伝熱モデルとに基づいて、板
温目標値との差が最小となるような板温予測値を予め求
めておき、加熱炉の応答のみに注目した数学モデルを有
する適応制御系によって、加熱炉での板温か板温予測値
に等しくなるように加熱炉を制御するようにしたため、
加熱炉に対する制御精度を向上することができ、その結
果、不良品発生率を低減できるという効果が得られる。
As explained above, according to the present invention, based on time-series data such as the dimensions of the metal plate heated in the heating furnace and the plate temperature target value, and a heat transfer model expressing the heat transfer form of the heating furnace, , the plate temperature prediction value that minimizes the difference from the plate temperature target value is determined in advance, and an adaptive control system with a mathematical model that focuses only on the response of the heating furnace is used to predict the plate temperature in the heating furnace. Since the heating furnace was controlled to be equal to the value,
The control accuracy for the heating furnace can be improved, and as a result, the effect of reducing the incidence of defective products can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示すブロック図、第
2図はこの実施例で3種のコイルを加熱した際の板温の
変化を示すグラフ、第3図は従来の制御方法で第2図と
同じ3種のコイルを加熱した際の板温の変化を示すグラ
フである。 ■・・・加熱炉、2・・・時系列データ、3・・・伝熱
モデル、5・・・板温ルート演算器、10・・・適応制
御装置(適応制御系)、11・・・数学モデル、12・
・・同定器、13・・・状態推定器、14・・・制御器
、15・・・寸法測定器、16・・・板温計。
Fig. 1 is a block diagram showing the configuration of an embodiment of the present invention, Fig. 2 is a graph showing changes in plate temperature when three types of coils are heated in this embodiment, and Fig. 3 is a conventional control method. 2 is a graph showing changes in plate temperature when the same three types of coils as in FIG. 2 are heated. ■...Heating furnace, 2...Time series data, 3...Heat transfer model, 5...Plate temperature route calculator, 10...Adaptive control device (adaptive control system), 11... Mathematical model, 12.
...Identifier, 13...State estimator, 14...Controller, 15...Dimension measuring device, 16...Plate thermometer.

Claims (1)

【特許請求の範囲】[Claims] (1)加熱炉で加熱される金属板の寸法や板温目標値等
の時系列データと、前記加熱炉の伝熱形態を表現した伝
熱モデルとに基づいて、前記板温目標値との差が最小と
なるような板温予測値を予め求めておき、前記加熱炉の
応答のみに注目した数学モデルを有する適応制御系によ
って、前記加熱炉での板温が前記板温予測値に等しくな
るように前記加熱炉を制御することを特徴とする金属板
加熱炉における板温制御方法。
(1) Based on time-series data such as the dimensions and plate temperature target value of the metal plate heated in the heating furnace, and a heat transfer model that expresses the heat transfer form of the heating furnace, the plate temperature target value is calculated. A predicted plate temperature value with which the difference is minimized is determined in advance, and an adaptive control system having a mathematical model that focuses only on the response of the heating furnace is used to make the plate temperature in the heating furnace equal to the predicted plate temperature value. 1. A method for controlling a plate temperature in a metal plate heating furnace, characterized in that the heating furnace is controlled so as to
JP32003388A 1988-12-19 1988-12-19 Method for controlling sheet temperature in metallic sheet heating furnace Pending JPH02166235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32003388A JPH02166235A (en) 1988-12-19 1988-12-19 Method for controlling sheet temperature in metallic sheet heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32003388A JPH02166235A (en) 1988-12-19 1988-12-19 Method for controlling sheet temperature in metallic sheet heating furnace

Publications (1)

Publication Number Publication Date
JPH02166235A true JPH02166235A (en) 1990-06-26

Family

ID=18116998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32003388A Pending JPH02166235A (en) 1988-12-19 1988-12-19 Method for controlling sheet temperature in metallic sheet heating furnace

Country Status (1)

Country Link
JP (1) JPH02166235A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088191A (en) * 2011-10-27 2013-05-08 宝钢工业炉工程技术有限公司 Warning method for vertical type continuous annealing furnace radiant tube burner and heat exchanger thereof
US8950929B2 (en) 2006-10-19 2015-02-10 DePuy Synthes Products, LLC Fluid delivery system
US8956368B2 (en) 2003-06-17 2015-02-17 DePuy Synthes Products, LLC Methods, materials and apparatus for treating bone and other tissue
US8992541B2 (en) 2003-03-14 2015-03-31 DePuy Synthes Products, LLC Hydraulic device for the injection of bone cement in percutaneous vertebroplasty
US9259696B2 (en) 2005-11-22 2016-02-16 DePuy Synthes Products, Inc. Mixing apparatus having central and planetary mixing elements
US9381024B2 (en) 2005-07-31 2016-07-05 DePuy Synthes Products, Inc. Marked tools
US9642932B2 (en) 2006-09-14 2017-05-09 DePuy Synthes Products, Inc. Bone cement and methods of use thereof
US9750840B2 (en) 2004-03-21 2017-09-05 DePuy Synthes Products, Inc. Methods, materials and apparatus for treating bone and other tissue
US9839460B2 (en) 2003-03-31 2017-12-12 DePuy Synthes Products, Inc. Remotely-activated vertebroplasty injection device
US9918767B2 (en) 2005-08-01 2018-03-20 DePuy Synthes Products, Inc. Temperature control system
US10111697B2 (en) 2003-09-26 2018-10-30 DePuy Synthes Products, Inc. Device for delivering viscous material
USRE47427E1 (en) 1999-01-27 2019-06-11 Medtronic Holding Company Sárl Expandable intervertebral spacer

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE47427E1 (en) 1999-01-27 2019-06-11 Medtronic Holding Company Sárl Expandable intervertebral spacer
US10799278B2 (en) 2003-03-14 2020-10-13 DePuy Synthes Products, Inc. Hydraulic device for the injection of bone cement in percutaneous vertebroplasty
US8992541B2 (en) 2003-03-14 2015-03-31 DePuy Synthes Products, LLC Hydraulic device for the injection of bone cement in percutaneous vertebroplasty
US9186194B2 (en) 2003-03-14 2015-11-17 DePuy Synthes Products, Inc. Hydraulic device for the injection of bone cement in percutaneous vertebroplasty
US9839460B2 (en) 2003-03-31 2017-12-12 DePuy Synthes Products, Inc. Remotely-activated vertebroplasty injection device
US10485597B2 (en) 2003-03-31 2019-11-26 DePuy Synthes Products, Inc. Remotely-activated vertebroplasty injection device
US8956368B2 (en) 2003-06-17 2015-02-17 DePuy Synthes Products, LLC Methods, materials and apparatus for treating bone and other tissue
US9504508B2 (en) 2003-06-17 2016-11-29 DePuy Synthes Products, Inc. Methods, materials and apparatus for treating bone and other tissue
US10039585B2 (en) 2003-06-17 2018-08-07 DePuy Synthes Products, Inc. Methods, materials and apparatus for treating bone and other tissue
US10111697B2 (en) 2003-09-26 2018-10-30 DePuy Synthes Products, Inc. Device for delivering viscous material
US9750840B2 (en) 2004-03-21 2017-09-05 DePuy Synthes Products, Inc. Methods, materials and apparatus for treating bone and other tissue
US9381024B2 (en) 2005-07-31 2016-07-05 DePuy Synthes Products, Inc. Marked tools
US9918767B2 (en) 2005-08-01 2018-03-20 DePuy Synthes Products, Inc. Temperature control system
US9259696B2 (en) 2005-11-22 2016-02-16 DePuy Synthes Products, Inc. Mixing apparatus having central and planetary mixing elements
US10631906B2 (en) 2005-11-22 2020-04-28 DePuy Synthes Products, Inc. Apparatus for transferring a viscous material
US9642932B2 (en) 2006-09-14 2017-05-09 DePuy Synthes Products, Inc. Bone cement and methods of use thereof
US10272174B2 (en) 2006-09-14 2019-04-30 DePuy Synthes Products, Inc. Bone cement and methods of use thereof
US10494158B2 (en) 2006-10-19 2019-12-03 DePuy Synthes Products, Inc. Fluid delivery system
US8950929B2 (en) 2006-10-19 2015-02-10 DePuy Synthes Products, LLC Fluid delivery system
CN103088191A (en) * 2011-10-27 2013-05-08 宝钢工业炉工程技术有限公司 Warning method for vertical type continuous annealing furnace radiant tube burner and heat exchanger thereof
CN103088191B (en) * 2011-10-27 2015-09-30 宝钢工业炉工程技术有限公司 The method for early warning of vertical continuous annealing furnace radiation pipe burner tip and interchanger thereof

Similar Documents

Publication Publication Date Title
CN100422356C (en) Method for controlling furnace temperature of heating furnace for continuous annealing
JPH02166235A (en) Method for controlling sheet temperature in metallic sheet heating furnace
JP3231601B2 (en) Electric furnace temperature control method and apparatus
JP2555116B2 (en) Steel material cooling control method
JP2809925B2 (en) Sheet temperature control method for continuous annealing furnace
JPH01184233A (en) Sheet temperature control method for continuously annealing furnace
JP3537215B2 (en) Heating furnace temperature controller
JPS63307223A (en) Method for changing speed in sheet temperature control in continuous annealing furnace
JPH07138658A (en) Device for controlling dew point in continuous heat treatment furnace
JPS5831373B2 (en) Temperature control method and device for continuous strip heat treatment furnace
JPS6345454B2 (en)
JPH052728B2 (en)
JPH09296228A (en) Method for controlling combustion of continuous heating furnace and device therefor
JPS5841328B2 (en) Heating control method for annealing furnace
SU1107347A2 (en) Device for adjusting heat mode of methodical induction plant
JPS6070127A (en) Method for controlling temperature of strip with continuous annealing furnace
JPH0327608B2 (en)
JPS61199013A (en) Method for controlling continuous heating furnace
JPS609087B2 (en) Heating control method for continuous heating furnace
JPS5858229A (en) Method and device for heating with continuous heating furnace
JPH06303746A (en) Control method of heating temperature of motor core
JPS62263927A (en) Controlling method for non-stationary heating of continuous heating furnace
JPS5836648B2 (en) How to control a heating furnace
JPH0160529B2 (en)
JPH0575815U (en) Temperature raising device