JPH0331765B2 - - Google Patents
Info
- Publication number
- JPH0331765B2 JPH0331765B2 JP61210013A JP21001386A JPH0331765B2 JP H0331765 B2 JPH0331765 B2 JP H0331765B2 JP 61210013 A JP61210013 A JP 61210013A JP 21001386 A JP21001386 A JP 21001386A JP H0331765 B2 JPH0331765 B2 JP H0331765B2
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- flow rate
- furnace temperature
- control
- temperature control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 claims description 21
- 239000000446 fuel Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 13
- 229910000831 Steel Inorganic materials 0.000 claims description 12
- 239000010959 steel Substances 0.000 claims description 12
- 239000000725 suspension Substances 0.000 claims 2
- 230000008859 change Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Landscapes
- Control Of Heat Treatment Processes (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、連続式鋼片加熱炉の燃焼制御方法に
関し、特に操業の突発休止時の如き非定常時の燃
料消費量を低減して全体としての燃料原単位を低
減できるようにした燃焼制御方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a combustion control method for a continuous steel billet heating furnace, and in particular reduces fuel consumption during unsteady periods such as sudden stoppage of operation, thereby improving overall efficiency. The present invention relates to a combustion control method that can reduce the fuel consumption rate.
一般に連続式鋼片加熱炉は、多数の鋼片を、複
数帯からなる炉本体内をウオーキングビーム等の
搬送装置により連続的に搬送しつつ、次工程の圧
延に適した所定温度に均一に加熱する熱設備であ
る。この鋼片を加熱炉装入温度から抽出温度に加
熱する場合、予め燃料消費量を最小にできるヒー
トパターンを求め、該ヒートパターンに沿つて鋼
片の温度が上昇するように各帯の炉内温度を設定
するとともに、鋼片の焼き上がり温度に応じて例
えば4分程度の一定周期毎に設定温度を変更する
ようにしている。また、この一回当たりの設定温
度の変更幅については、炉の制御応答遅れ、及び
燃焼状態の安定化を考慮して、例えば上下限30℃
程度の制約を設けるのが一般的である。
In general, a continuous billet heating furnace continuously transports a large number of billets through a furnace body made up of multiple belts using a conveyor device such as a walking beam, and uniformly heats the billets to a predetermined temperature suitable for the next rolling process. It is a thermal equipment that When heating this steel billet from the furnace charging temperature to the extraction temperature, a heat pattern that can minimize fuel consumption is determined in advance, and the temperature of the steel billet is increased in accordance with the heat pattern in the furnace of each zone. In addition to setting the temperature, the set temperature is changed at regular intervals of about 4 minutes, for example, depending on the baking temperature of the steel piece. In addition, regarding the range of change of the set temperature per one time, for example, the upper and lower limits are 30°C, taking into account the delay in the control response of the furnace and the stabilization of the combustion state.
It is common to set some restrictions.
しかしながら上記従来の燃焼制御方法では、例
えば操業の突発休止時のような非定常時には、燃
料が無駄に消費されるという問題がある。即ち、
このような非定常時においても、第6図に示すよ
うに、4分毎に30℃ずつ設定温度A1が段階的に
変更され、これに応じて燃料流量A2はなだらか
に減少することとなる。その結果、突発休止入力
により燃料流量をTからFに急激に減少させた場
合に比較して、図示斜線領域の分だけ燃料消費量
が多いこととなる。
However, the conventional combustion control method described above has a problem in that fuel is wasted during unsteady conditions, such as when the operation is suddenly stopped. That is,
Even in such an unsteady state, as shown in Figure 6, the set temperature A1 is changed step by step by 30℃ every 4 minutes, and the fuel flow rate A2 is gradually decreased accordingly. Become. As a result, compared to the case where the fuel flow rate is suddenly decreased from T to F due to the sudden stop input, the fuel consumption amount is increased by the shaded area in the figure.
そこで本発明の目的は、上記従来の問題点を解
決し、非定常時の燃料消費量を軽減して全体とし
ての燃料原単位を低減する点にある。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned conventional problems, reduce fuel consumption during unsteady conditions, and reduce overall fuel consumption.
本発明は、連続式鋼片加熱炉の燃焼制御方法に
おいて、鋼片を連続的に抽出する定常時には炉内
温度を所定温度に制御する炉温制御を行い、鋼片
が炉内に停滞している非定常時には、上記炉温制
御に復帰する炉温制御復帰開始時刻を入力された
休止時間長に応じて設定するとともに、燃料流量
を休止時間長が長いほど少量に設定された設定流
量に制御する流量制御に切り換え、かつ上記復帰
開始時刻になつたとき炉温制御に復帰するように
したことを特徴としている。
The present invention is a combustion control method for a continuous billet heating furnace, in which the furnace temperature is controlled to a predetermined temperature during steady state when steel billets are continuously extracted, so that the billet does not stagnate in the furnace. In the unsteady state, the furnace temperature control return start time to return to the above furnace temperature control is set according to the input pause time length, and the fuel flow rate is controlled to a set flow rate that is set to be smaller as the pause time length is longer. The present invention is characterized in that the furnace temperature control is switched to the flow rate control, and the furnace temperature control is returned to when the above-mentioned return start time is reached.
ここで上記炉温制御復帰開始時刻は、例えば実
際の休止解除時刻より一定時間前の時刻が設定さ
れる。 Here, the furnace temperature control return start time is set, for example, to a time a certain period of time before the actual stop release time.
本発明に係る連続式鋼片加熱炉の燃焼制御方法
では、例えば操業の突発休止信号が入力される
と、炉温制御から流量制御に切り換えられるか
ら、従来の設定温度を段階的に下降させる場合と
異なり、燃料流量は設定流量に急激に減少され、
それだけ非定常時の燃料消費量が減少して全体と
しての燃料原単位が低減される。
In the combustion control method for a continuous billet heating furnace according to the present invention, for example, when a sudden stop signal of operation is input, the furnace temperature control is switched to the flow rate control, so when lowering the conventional set temperature in stages, Unlike, the fuel flow rate is suddenly reduced to the set flow rate,
The amount of fuel consumed during unsteady conditions is correspondingly reduced, and the overall fuel consumption rate is reduced.
また、予め炉温制御復帰開始時刻を設定したの
で、温度制御の応答性の悪化を回避できる。 Furthermore, since the furnace temperature control return start time is set in advance, it is possible to avoid deterioration in the responsiveness of temperature control.
以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1図及び第2図は本発明の一実施例方法を実
施するための燃焼制御装置を示す。 FIGS. 1 and 2 show a combustion control device for carrying out an embodiment of the method of the present invention.
図において、1は加熱炉であり、これは主とし
て、予熱帯2a、第1、第2加熱帯2b,2c及
び均熱帯2dからなる4帯式加熱炉本体2と、鋼
片Wを搬送するウオーキングビーム式搬送装置2
eとから構成されている。 In the figure, 1 is a heating furnace, which mainly includes a four-zone heating furnace main body 2 consisting of a pre-heating zone 2a, first and second heating zones 2b, 2c, and a soaking zone 2d, and a walking section for conveying the billet W. Beam type transport device 2
It is composed of e.
3は上記炉本体2の燃焼バーナを制御する燃焼
制御装置であり、これは第2図に示す構成になつ
ている。即ち、流量設定用ブロツク3a、温度設
定用ブロツク3dと、第1段切替信号B1によつ
て炉温、流量設定信号を上記ブロツク3a,3b
のいずれかに入力する第1切替装置3cと、上記
各ブロツク3a,3bからの設定値のいずれかを
設定値フイードバツク信号として切り替えて出力
する第2切替装置3eと、検出炉温と上記設定炉
温との偏差を出力する炉温調節計3fと、検出流
量が流量設定用ブロツク3aからの設定値又は炉
温調節計3fからの偏差信号に応じた値になるよ
う流量調節弁を開閉制御する調節計3gと、第2
段切替信号B2によつて流量設定用ブロツク3a
又は炉温調節計3fのいずれかの出力を流量調節
計3gに切替出力する第3切替装置3hとから構
成されている。 Reference numeral 3 denotes a combustion control device for controlling the combustion burner of the furnace body 2, and this has the configuration shown in FIG. That is, the furnace temperature and flow rate setting signals are transferred to the blocks 3a and 3b by the flow rate setting block 3a, the temperature setting block 3d, and the first stage switching signal B1.
a first switching device 3c that inputs one of the set values from each of the blocks 3a and 3b, and a second switching device 3e that switches and outputs one of the set values from the blocks 3a and 3b as a set value feedback signal; The furnace temperature controller 3f outputs the deviation from the furnace temperature, and the flow rate control valve is controlled to open and close so that the detected flow rate becomes a value corresponding to the set value from the flow rate setting block 3a or the deviation signal from the furnace temperature controller 3f. Controller 3g and 2nd
Flow rate setting block 3a by stage switching signal B2
or a third switching device 3h that switches and outputs the output of the furnace temperature controller 3f to the flow rate controller 3g.
4は休止入力処理装置であり、これは予定休止
又は突発操業停止等非定常状態が発生した時点に
おいて、燥炉オペレータが休止時間Tを入力する
と、この休止時間Tを記憶するとともに休止フラ
ツグをセツトし、休止時間Tに応じた炉温制御復
帰時刻tを演算してタイマ処理装置5に出力す
る。 4 is a stoppage input processing device, which, when an unsteady state such as a scheduled stoppage or a sudden stoppage of operation occurs, and the drying furnace operator inputs a stoppage time T, it memorizes the stoppage time T and sets a stoppage flag. Then, a furnace temperature control return time t corresponding to the downtime T is calculated and output to the timer processing device 5.
7は流量制御量計算装置であり、これは休止入
力処理装置4によつて休止フラツグがセツトされ
ると、上記一定の遅延時間をおいて、燃焼制御装
置3から設定流量値と実績流量値とを取り込み、
休止時間T及びいずれの帯であるかに応じて選択
される流量の変更幅を演算し、これを設定値出力
処理装置8に出力するとともに、上記第2段切替
信号B2を燃焼制御装置3に出力する。また、上
記設定値出力処理装置8は、上記流量設定値の変
更幅を絶対値又は変更値に変換した変換信号を燃
焼制御装置3に出力する。 Reference numeral 7 denotes a flow rate control amount calculation device, which, when the pause flag is set by the pause input processing device 4, calculates the set flow rate value and actual flow rate value from the combustion control device 3 after the above-mentioned certain delay time. Incorporate the
The change width of the flow rate to be selected depending on the pause time T and which zone is calculated is outputted to the set value output processing device 8, and the second stage switching signal B2 is sent to the combustion control device 3. Output to. Further, the set value output processing device 8 outputs to the combustion control device 3 a conversion signal obtained by converting the change width of the flow rate set value into an absolute value or a change value.
9は抽出スケジユール計算装置であり、これは
鋼片の予測在炉時間を、上記休止時間Tに応じて
変更するとともに、ヒートパターンを変更し、こ
れを燃焼制御装置3に出力する。 Reference numeral 9 denotes an extraction schedule calculation device, which changes the predicted in-furnace time of the steel billet according to the above-mentioned downtime T, changes the heat pattern, and outputs this to the combustion control device 3.
10は流量制御を炉温制御に再び切り替えるた
めの炉温復帰計算装置であり、タイマ処理装置5
からの遅延時間経過時又は休止中断信号が入力さ
れた時、上記休止フラツグをリセツトするととも
に、第1、第2切替装置3c,3eをそれぞれ温
度設定用ブロツク3b、温度設定値フイードバツ
ク信号側に切り替える第1段切替信号B1を出力
し、一定時間経過後第3切替装置3hを温度調節
計3f側に切り替える第2段切替信号B2を出力
する。 10 is a furnace temperature return calculation device for switching the flow rate control to furnace temperature control again, and a timer processing device 5
When the delay time has elapsed or the pause interruption signal is input, the pause flag is reset and the first and second switching devices 3c and 3e are switched to the temperature setting block 3b and temperature set value feedback signal side, respectively. A first stage switching signal B 1 is outputted, and after a certain period of time has elapsed, a second stage switching signal B 2 is outputted to switch the third switching device 3h to the temperature controller 3f side.
次に上記制御装置によつて本実施例方法を実施
する場合について説明する。 Next, a case will be described in which the method of this embodiment is implemented by the above-mentioned control device.
まず、鋼片Wが所定ピツチで抽出されている定
常時には、燃料制御装置3は、その第1、第2切
替装置3c,3eが炉温設定用ブロツク3b側
に、第3切替装置3hが炉温調節計3f側にそれ
ぞれ切り替えられており、これにより検出炉温が
設定温度になるよう燃料流量を制御する炉温制御
が行われている。 First, in a steady state when steel pieces W are being extracted at a predetermined pitch, the fuel control device 3 has its first and second switching devices 3c and 3e on the furnace temperature setting block 3b side, and its third switching device 3h on the furnace temperature setting block 3b side. They are respectively switched to the temperature controller 3f side, thereby performing furnace temperature control that controls the fuel flow rate so that the detected furnace temperature becomes the set temperature.
次に上記炉温制御が行われている状態におい
て、突発休止又は予定休止等鋼片Wが炉内に停滞
する非定常状態になつた場合の燃焼制御について
説明する。 Next, combustion control in the case where the furnace temperature control is being performed and an unsteady state occurs in which the steel billet W stagnates in the furnace, such as a sudden stop or a scheduled stop, will be described.
非定常状態になると、燥炉オペレータ休止入
力処理装置4に休止時間Tを入力する。すると
該処理装置4は、上記休止時間Tを記憶し、こ
の休止時間Tに応じた炉温制御復帰開始時刻t
を演算してこれをタイマ処理装置5に出力する
とともに、休止フラツグをセツトする。 When the unsteady state occurs, the downtime T is input to the drying oven operator downtime input processing device 4. Then, the processing device 4 stores the above-mentioned downtime T, and sets the furnace temperature control return start time t according to this downtime T.
is calculated and outputted to the timer processing device 5, and a pause flag is set.
休止フラツグのセツトにより、流量制御量計
算装置7が燃焼制御装置3に第1段切替信号
B1を出力する。すると第1、第2切替装置3
c,3eが流量設定用ブロツク3a側にそれぞ
れ切り換えられ、これにより流量設定値フイー
ドバツク信号が流量制御量計算装置7に入力さ
れ、また該計算装置7には流量実績値も入力さ
れており、この両値から、第3図の流れ図に沿
つて流量変更幅を決定し、これを設定値出力処
理装置8に出力する。 By setting the pause flag, the flow rate control amount calculation device 7 sends a first stage switching signal to the combustion control device 3.
Output B 1 . Then, the first and second switching devices 3
c and 3e are respectively switched to the flow rate setting block 3a side, whereby the flow rate set value feedback signal is input to the flow rate control amount calculation device 7, and the flow rate actual value is also input to the calculation device 7. From both values, a flow rate change range is determined according to the flowchart in FIG. 3, and this is output to the set value output processing device 8.
この流量変更幅は以下のステツプで決定され
る。 This flow rate change range is determined by the following steps.
() 流量実績値と設定下限値とを比較し、実
績値が大きい場合は、まず下げ幅をテーブル
から読み出し、実績値からこの下げ幅を減算
したものを新たな設定値とする(ステツプ
S1〜S3)。ここで、下げ幅は、予め実験等に
よつて求めた休止時間―下げ幅テーブルから
マツプ演算したものであり、このテーブルは
予熱帯、加熱帯、均熱帯等各帯毎に求められ
ており、休止時間Tが長いほど、また装入側
帯ほど大きな下げ幅となつている。 () Compare the actual flow rate value and the set lower limit value, and if the actual value is large, first read the amount of decrease from the table, and subtract this amount of decrease from the actual value as the new set value (step
S1-S3). Here, the reduction width is a map calculation from the downtime-reduction width table obtained in advance through experiments, etc., and this table is calculated for each zone such as the preheating zone, heating zone, soaking zone, etc. The longer the pause time T is, the wider the charging side band, the greater the reduction.
() 上記新設定値と設定下限値とを比較し、
新設定値が設定下限値より大きいときはその
まま、小さい時は設定下限値を新設定値とし
て次のステツプに進む(ステツプS4、S5)。 () Compare the above new setting value and the setting lower limit value,
If the new set value is larger than the lower limit value, the process continues as is; if it is smaller, the lower limit value is used as the new value and the process proceeds to the next step (steps S4 and S5).
() 次に新設定値からの前回の設定値を減算
してこれを流量変更幅とする(ステツプ
S6)。なお、ステツプS1で流量実績値が設定
下限値より小さい場合は、流量実績値を新設
定値としてステツプS6に進む(ステツプ
S7)。 () Next, subtract the previous set value from the new set value and use this as the flow rate change width (step
S6). Note that if the actual flow rate value is smaller than the set lower limit value in step S1, the actual flow rate value is used as the new set value and the process proceeds to step S6 (step
S7).
流量変更幅が上記設定値出力処理装置8に入
力されると、該処理装置8はこの変更幅を絶対
値又は変更値に変換した信号を燃焼制御装置3
に出力する。また、抽出スケジユール計算装置
9は休止入力処理装置4からの休止入力が入力
されると、予測在炉時間及びヒートパターンを
変更し、これを燃焼制御装置3に入力する。 When the flow rate change width is input to the set value output processing device 8, the processing device 8 converts this change width into an absolute value or a change value and sends a signal to the combustion control device 3.
Output to. Further, when the extraction schedule calculation device 9 receives the shutdown input from the shutdown input processing device 4 , it changes the predicted in-furnace time and heat pattern, and inputs these to the combustion control device 3 .
ここで休止中に在炉している鋼片は休止時間
分だけ在炉時間が長くなるのであるが、休止中
を含む全ての条件に対し、在炉時間予測値Tn
は下記式のとおりである。 Here, the steel slabs in the furnace during outage have a longer in-furnace time by the amount of downtime, but for all conditions including outage, the predicted in-furnace time Tn
is as shown in the following formula.
Tn=Tno+o
〓i=1
Pi+o
〓i=1
τstop+Tstop ……(1)
Tno: 休止時間を除く実績在炉時間
Pi: 抽出ピツチ
τstop: 予定休止時間
Tstop: 残突発休止時間
燃焼制御装置3は、上記第1段切替信号B1
で、流量設定用ブロツク3aが選択され、第2
段切替信号B2で炉温調節計3fが流量調節計
3gから切り離されるとともに、この流量調節
計3gと流量設定用ブロツク3aとが接続され
る。するとこの時点から流用制御に切り換えら
れ、流量設定値は第4図の曲線C2上の点Tか
ら点Fに変更され、実際の流量もこの設定値に
追随することとなる。なお、この場合、帯によ
つては炉温制御を継続するようにしてもよく、
これは予め選択情報を入力しておくことによつ
て実現できる。炉温制御を継続する場合は、第
4図の曲線C1で示すように、炉温設定値を低
下させる指示信号を入力するよう構成するとよ
い。Tn=Tno+ o 〓 i=1 Pi+ o 〓 i=1 τstop+Tstop ...(1) Tno: Actual operating time excluding downtime Pi: Extraction pitch τstop: Planned downtime Tstop: Remaining unplanned downtime Combustion control device 3 , the above first stage switching signal B 1
, the flow rate setting block 3a is selected and the second
The stage switching signal B2 disconnects the furnace temperature controller 3f from the flow rate controller 3g, and connects the flow rate controller 3g to the flow rate setting block 3a. Then, from this point on, the flow control is switched to diversion control, and the flow rate set value is changed from point T to point F on curve C2 in FIG. 4, and the actual flow rate also follows this set value. In this case, depending on the zone, furnace temperature control may be continued.
This can be achieved by inputting selection information in advance. If the furnace temperature control is to be continued, it is preferable to input an instruction signal to lower the furnace temperature set value, as shown by curve C1 in FIG. 4.
次に非定状態から定常状態に戻り、流量制御
から炉温制御に復帰する場合について説明すれ
ば、この炉温制御への復帰はタイマ処理装置5
からの遅延時間の経過後、又は休止中断信号が
入力された場合に、炉温復帰計算装置10によ
つて行われる。即ち、該装置10が休止フラツ
グをリセツトするとともに、第1段切替信号
B1′を燃焼制御装置3に入力する。これにより、
第1、第2切替装置3c,3eが温度設定用ブ
ロツク3b側に切り換えられ、一定時間経過
後、設定炉温及び実績炉温が読み込まれ、設定
値を実績値に合わせた後、第2段切替信号
B2′を出力する。すると第3切替装置3hが炉
温調節計3fと流量調節計3gとを接続し、こ
の時点から炉温制御に復帰する。 Next, we will explain the case of returning from an unsteady state to a steady state and returning from flow rate control to furnace temperature control.
This is performed by the furnace temperature return calculation device 10 after the delay time has elapsed or when a pause interruption signal is input. That is, the device 10 resets the pause flag and also outputs the first stage switching signal.
B 1 ' is input to the combustion control device 3. This results in
The first and second switching devices 3c and 3e are switched to the temperature setting block 3b side, and after a certain period of time, the set furnace temperature and actual furnace temperature are read, and after adjusting the set value to the actual value, the second stage switching signal
Output B 2 ′. Then, the third switching device 3h connects the furnace temperature controller 3f and the flow rate controller 3g, and from this point on, the furnace temperature control is resumed.
このように本実施例では、休止入力が入力され
た場合のような非定常時には、炉温制御から流量
制御に切り換えるようにしたので、燃料消費量を
大幅に低減できる。 In this way, in this embodiment, in an unsteady state such as when a stop input is input, the furnace temperature control is switched to the flow rate control, so that fuel consumption can be significantly reduced.
なお、上記実施例では、各装置がハード回路で
構成されている場合について説明したが、これら
の各装置の機能は勿論マイクロコンピユータでも
実現できる。 In the above embodiments, the case where each device is constituted by a hardware circuit has been described, but the functions of each device can of course be realized by a microcomputer.
また、炉の休止時間Tが入力されると、炉温制
御復帰開始時刻tを設定し、この時刻tになると
炉温制御に復帰するようにしたので、温度制御の
応答遅れを回避できる。 Further, when the furnace down time T is input, the furnace temperature control return start time t is set, and the furnace temperature control is returned to at this time t, so that a delay in response of temperature control can be avoided.
以上のように本発明に係る連続式鋼片加熱炉の
燃焼制御方法によれば、定常時には炉温制御を行
うとともに、非定常時には、炉温制御への復帰開
始時刻を設定するとともに、流量制御に切り換え
るようにしたので、非定常時の燃料消費量を削減
して全体としての燃料原単位を低減でき、かつ復
帰時の温度制御応答遅れを回避できる効果があ
る。
As described above, according to the combustion control method for a continuous billet heating furnace according to the present invention, the furnace temperature is controlled in steady state, and in unsteady state, the time to start returning to furnace temperature control is set, and the flow rate is controlled. This has the effect of reducing the amount of fuel consumed during unsteady conditions, reducing the overall fuel consumption rate, and avoiding a delay in temperature control response upon recovery.
第1図ないし第4図は本発明の一実施例方法を
説明するための図であり、第1図及び第2図は該
方法を実施するための制御装置のブロツク構成
図、第3図はその流れ図、第4図はその効果を説
明するための特性図、第5図は従来の問題点を説
明するための特性図である。
図において、1は連続鋼片加熱炉、Wは鋼片で
ある。
1 to 4 are diagrams for explaining a method according to an embodiment of the present invention, FIGS. 1 and 2 are block diagrams of a control device for implementing the method, and FIG. The flow chart, FIG. 4 is a characteristic diagram for explaining its effects, and FIG. 5 is a characteristic diagram for explaining conventional problems. In the figure, 1 is a continuous billet heating furnace, and W is a steel billet.
Claims (1)
は、炉内温度を設定温度に制御する炉温制御を行
い、操業の突発休止時の如き鋼片が炉内に停滞し
ている非定常時には、上記炉温制御に復帰する炉
温制御復帰開始時刻を入力された休止時間長に応
じて設定するとともに、燃料流量を上記休止時が
長いほど少量に設定された設定流量に制御する流
量制御に切り換え、かつ上記復帰開始時刻になつ
た時点で炉温制御に復帰するようにしたことを特
徴とする連続式鋼片加熱炉の燃焼制御方法。1 During steady state when steel billets are being extracted at a predetermined pitch, furnace temperature control is performed to control the temperature inside the furnace to the set temperature, and during unsteady conditions when steel billets are stagnant in the furnace, such as during a sudden stoppage of operation, The furnace temperature control return start time to return to the above-mentioned furnace temperature control is set according to the input suspension time length, and the fuel flow rate is switched to a flow rate control that is set to a smaller amount the longer the above-mentioned suspension time is. A combustion control method for a continuous billet heating furnace, characterized in that the furnace temperature control is returned to when the above-mentioned return start time is reached.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21001386A JPS6365025A (en) | 1986-09-05 | 1986-09-05 | Combustion control method for continuous billet heating furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21001386A JPS6365025A (en) | 1986-09-05 | 1986-09-05 | Combustion control method for continuous billet heating furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6365025A JPS6365025A (en) | 1988-03-23 |
JPH0331765B2 true JPH0331765B2 (en) | 1991-05-08 |
Family
ID=16582380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21001386A Granted JPS6365025A (en) | 1986-09-05 | 1986-09-05 | Combustion control method for continuous billet heating furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6365025A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022049859A1 (en) | 2020-09-03 | 2022-03-10 | Jfeスチール株式会社 | Steel strip absorbed hydrogen amount prediction method, absorbed hydrogen amount control method, manufacturing method, generation method of absorbed hydrogen amount prediction model, and absorbed hydrogen amount prediction device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH076004B2 (en) * | 1990-01-25 | 1995-01-25 | 新日本製鐵株式会社 | Optimal control device for heating furnace |
JP6035817B2 (en) * | 2012-03-30 | 2016-11-30 | Jfeスチール株式会社 | Automatic combustion control method and apparatus for continuous heating furnace |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62263927A (en) * | 1986-05-12 | 1987-11-16 | Kawasaki Steel Corp | Controlling method for non-stationary heating of continuous heating furnace |
-
1986
- 1986-09-05 JP JP21001386A patent/JPS6365025A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62263927A (en) * | 1986-05-12 | 1987-11-16 | Kawasaki Steel Corp | Controlling method for non-stationary heating of continuous heating furnace |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022049859A1 (en) | 2020-09-03 | 2022-03-10 | Jfeスチール株式会社 | Steel strip absorbed hydrogen amount prediction method, absorbed hydrogen amount control method, manufacturing method, generation method of absorbed hydrogen amount prediction model, and absorbed hydrogen amount prediction device |
Also Published As
Publication number | Publication date |
---|---|
JPS6365025A (en) | 1988-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB1143384A (en) | Improvements in or relating to the control of furnaces | |
JPH0331765B2 (en) | ||
JP2008303407A (en) | Method for controlling temperature of continuous heat treatment furnace for steel strip | |
US5006061A (en) | Method for bringing a plurality of steel slabs to rolling temperature in a furnace | |
JPH0799311B2 (en) | Heating furnace temperature control method | |
JPH0791590B2 (en) | Velocity changing method in plate temperature control of continuous annealing furnace | |
JPS6217480Y2 (en) | ||
JPS6141725A (en) | Method for controlling hearth roll temperature of continuous annealing furnace | |
JPS6411693B2 (en) | ||
JPS586931A (en) | Controlling method for conveying speed of object to be heated in continuous heating furace | |
JPH01246322A (en) | Apparatus for setting furnace temperature in continuous heating furnace | |
JPS6148524A (en) | Regulating method of heating furnace | |
JP3160374B2 (en) | Heating furnace temperature control method and apparatus | |
JP2000054033A (en) | Method for distributing load, device therefor and recording medium | |
SU1137452A1 (en) | Device for controlling mode of multi-zone furnace heating | |
JPS6327201Y2 (en) | ||
JPS63307217A (en) | Method for controlling temperature of stepped shaft in heating furnace | |
JPS6411690B2 (en) | ||
JPH0123527B2 (en) | ||
JPS62263927A (en) | Controlling method for non-stationary heating of continuous heating furnace | |
JPS6338522A (en) | Method for controlling conveyance and combustion in continuous heating furnace | |
JPH0332606B2 (en) | ||
JPH0684867B2 (en) | Furnace temperature setting device for continuous heating furnace | |
JPH02115316A (en) | Operating method for continuous heating furnace | |
JPS5893818A (en) | Optimum controller for ingot heating furnace |