JP4998655B2 - Combustion control method for continuous heating furnace - Google Patents

Combustion control method for continuous heating furnace Download PDF

Info

Publication number
JP4998655B2
JP4998655B2 JP2004288799A JP2004288799A JP4998655B2 JP 4998655 B2 JP4998655 B2 JP 4998655B2 JP 2004288799 A JP2004288799 A JP 2004288799A JP 2004288799 A JP2004288799 A JP 2004288799A JP 4998655 B2 JP4998655 B2 JP 4998655B2
Authority
JP
Japan
Prior art keywords
temperature
zone
slab
furnace
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004288799A
Other languages
Japanese (ja)
Other versions
JP2006104490A (en
Inventor
太紀 衞藤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2004288799A priority Critical patent/JP4998655B2/en
Publication of JP2006104490A publication Critical patent/JP2006104490A/en
Application granted granted Critical
Publication of JP4998655B2 publication Critical patent/JP4998655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱間圧延用スラブを加熱する連続式加熱炉の燃焼制御方法に関し、特に炉内におけるスラブ温度を正確に把握して、加熱炉抽出温度が目標温度となるように燃焼制御を行なう技術に関する。   The present invention relates to a combustion control method for a continuous heating furnace that heats a slab for hot rolling, and in particular, accurately grasps the slab temperature in the furnace and controls the combustion so that the heating furnace extraction temperature becomes a target temperature. Regarding technology.
スラブを圧延可能な温度に加熱する加熱炉の形式は、バッチ式と連続式に大別される。鉄鋼圧延工場の加熱炉は生産性に優れ、自動化が容易な連続式炉が主流で、特に連続式炉のなかでも大型のスラブの加熱処理が容易なウォーキングビーム炉が用いられることが多い。   The type of heating furnace that heats the slab to a temperature at which it can be rolled is roughly divided into a batch type and a continuous type. The heating furnaces of steel rolling mills are mainly continuous furnaces that are excellent in productivity and easy to automate. In particular, walking beam furnaces that can easily heat large slabs are often used among continuous furnaces.
加熱炉の操業では、炉内で隣接するスラブ厚の差や、圧延作業ロールの磨耗を考慮した装入計画に従って炉内に搬入されるスラブを圧延可能な目標温度まで最少の燃料使用量で加熱することが課題とされ、種々の自動燃焼制御方法が提案されている。   In the operation of the heating furnace, the slab carried into the furnace is heated to the target temperature that can be rolled with the minimum amount of fuel used according to the charging plan that takes into account the difference in the thickness of adjacent slabs in the furnace and the wear of the rolling work rolls. Therefore, various automatic combustion control methods have been proposed.
特許文献1は、連鋳ブルーム、連鋳スラブ等の連鋳片を連続的に加熱する加熱炉において、時間経過とともに対象ゾーンの炉温を大きく変化させる非定常な操業条件下においても省エネルギーを考慮した最適制御が可能となるように、装入温度と目標抽出温度を初期値として与え、ゾーン毎に目標温度を設定したヒートパターンと各ゾーンにおける実績温度とを比較することを特徴とする。   Patent Document 1 considers energy saving even in unsteady operating conditions in which the furnace temperature of the target zone changes greatly with time in a heating furnace that continuously heats continuous cast pieces such as continuous cast blooms and continuous cast slabs. The charging temperature and the target extraction temperature are given as initial values so that the optimum control can be performed, and the heat pattern in which the target temperature is set for each zone is compared with the actual temperature in each zone.
特許文献2は、加熱炉抽出温度の制御方法に関し、圧延能率を低下させることなく、加熱炉の燃料原単位を低減させることを目的とし、鋼材1本ごとに圧延ドラフトスケジュールを計算し、所要パス回数を維持できる抽出温度の最低値を求め、その温度を指標として加熱炉を操業することを特徴とする。   Patent Document 2 relates to a method for controlling the heating furnace extraction temperature, and aims to reduce the fuel intensity of the heating furnace without reducing the rolling efficiency. The minimum value of the extraction temperature that can maintain the number of times is obtained, and the heating furnace is operated using the temperature as an index.
特許文献3は、各加熱ゾーンを独立に炉温制御できる連続式加熱炉における自動燃焼制御方法に関し、複数の種類の異なるスラブを同時に連続的に加熱する場合において、各々の鋼材のヒートパターンを加重平均化して求めて、炉温制御した際に生じる、各鋼材毎の予定ヒートパターンとの差を解消するために必要とされる昇温時間を、当該鋼材より出側にある全ての鋼材に均等に振り分け、ウォーキングビームの搬送速度を調整することを特徴とする。
特開昭56−81637号公報 特開昭56−6325号公報 特開平8−246057号公報
Patent Document 3 relates to an automatic combustion control method in a continuous heating furnace capable of independently controlling the furnace temperature of each heating zone, and when heating a plurality of different types of different slabs simultaneously, weighting the heat pattern of each steel material The average heating time required to eliminate the difference from the planned heat pattern for each steel material, which occurs when the furnace temperature is controlled by averaging, is equalized for all steel materials on the outlet side of the steel material. And the walking beam conveyance speed is adjusted.
JP 56-81637 A JP 56-6325 A JP-A-8-246057
特許文献1〜3に記載の加熱炉の自動燃焼制御方法は、いずれも省エネルギーを考慮して最適燃焼制御を行うものであるが、地球環境の観点から鉄鋼業におけるCO排出量の削減要望が強まり、加熱炉操業においても更なる燃料原単位の削減が求められている。 Although all the automatic combustion control methods for heating furnaces described in Patent Documents 1 to 3 perform optimum combustion control in consideration of energy saving, there is a demand for reducing CO 2 emissions in the steel industry from the viewpoint of the global environment. There is a growing demand for further reduction in fuel consumption even in furnace operation.
従来、連続式加熱炉においては予熱ゾーン、加熱ゾーンおよび均熱ゾーンに設置された温度計によって各ゾーンの雰囲気温度を測定し、得られた温度をそのゾーンの平均炉温としてスラブ温度を推定していた。   Conventionally, in a continuous heating furnace, the ambient temperature of each zone is measured by a thermometer installed in the preheating zone, heating zone and soaking zone, and the slab temperature is estimated using the obtained temperature as the average furnace temperature of that zone. It was.
しかしながら、各ゾーンの境界部近傍の炉温は隣接するゾーンの影響を受け、各ゾーンの平均炉温から乖離した温度非定常部となるため、平均炉温を用いて燃焼制御を行なうとスラブ抽出温度のバラツキが大きくなるという問題があった。   However, the furnace temperature near the boundary of each zone is affected by the adjacent zone and becomes a temperature unsteady part that deviates from the average furnace temperature of each zone. Therefore, if combustion control is performed using the average furnace temperature, slab extraction There was a problem that the variation in temperature became large.
また、平均温度からスラブ温度を推定しているためスラブの均熱性が不明であり、スラブ温度を目標温度に均一に加熱するためには在炉時間を長めに設定する在炉時間規制の必要があったため、燃料原単位を悪化させるとともに、生産能率の低下を招いていた。
特に、加熱ゾーンでは、予熱ゾーンと加熱ゾーンの境界で大きな温度勾配を生じ、さらに加熱燃焼による燃料消費量も多いため、スラブ抽出温度や燃料原単位に及ぼす影響が大きい。
In addition, because the slab temperature is estimated from the average temperature, the heat uniformity of the slab is unknown, and in order to uniformly heat the slab temperature to the target temperature, it is necessary to regulate the in-furnace time to set the in-furnace time longer. As a result, the fuel consumption rate was deteriorated and the production efficiency was reduced.
In particular, in the heating zone, a large temperature gradient is generated at the boundary between the preheating zone and the heating zone, and the amount of fuel consumed by heating combustion is large, so that the influence on the slab extraction temperature and the fuel consumption rate is large.
本発明は、予熱ゾーン、加熱ゾーンおよび均熱ゾーンを有する連続式加熱炉において、加熱ゾーンにおける炉内雰囲気温度分布からスラブ温度を精度良く推定し、最小の燃料原単位でスラブ抽出温度を目標温度とする燃焼制御方法を提供することを目的とする。   The present invention, in a continuous heating furnace having a preheating zone, a heating zone, and a soaking zone, accurately estimates the slab temperature from the atmospheric temperature distribution in the furnace in the heating zone, and sets the slab extraction temperature to the target temperature with the minimum fuel intensity. An object of the present invention is to provide a combustion control method.
本発明の課題は以下の手段により達成できる。
1.予熱ゾーン、加熱ゾーンおよび均熱ゾーンからなり、前記加熱ゾーンはそれぞれ独立して燃焼制御可能な複数の分割ゾーンを有する連続式加熱炉において、炉内におけるスラブ温度から加熱炉抽出温度を予測し、前記予測される加熱炉抽出温度が目標温度となるように燃焼状態を制御する燃焼制御方法であって、
加熱ゾーン内の各分割ゾーンに設けた温度計によりスラブが位置する分割ゾーンの雰囲気温度を求め、前記雰囲気温度からスラブ温度を計算し、その計算結果から前記加熱炉抽出温度が目標温度となるように前記分割ゾーンの雰囲気温度を燃焼制御し、次いで前記スラブが次の分割ゾーンに搬入された際に前記同様の燃焼制御を繰り返すことを特徴とする連続式加熱炉の燃焼制御方法。
The object of the present invention can be achieved by the following means.
1. A continuous heating furnace comprising a preheating zone, a heating zone and a soaking zone, each of the heating zones having a plurality of divided zones that can be independently controlled for combustion, predicting a heating furnace extraction temperature from a slab temperature in the furnace, A combustion control method for controlling a combustion state so that the predicted heating furnace extraction temperature becomes a target temperature,
The atmosphere temperature of the division zone where the slab is located is obtained by a thermometer provided in each division zone in the heating zone, the slab temperature is calculated from the atmosphere temperature, and the heating furnace extraction temperature becomes the target temperature from the calculation result The combustion control method for a continuous heating furnace is characterized in that the combustion temperature is controlled in the divided zone and the same combustion control is repeated when the slab is carried into the next divided zone.
.前記分割ゾーンの燃焼制御を蓄熱式加熱バーナを用いて制御することを特徴とする1に記載の連続式加熱炉の燃焼制御方法。 2 . The combustion control method for a continuous heating furnace according to 1, wherein combustion control of the divided zones is controlled using a regenerative heating burner.
本発明によれば、予熱ゾーン、加熱ゾーン、均熱ゾーンなどの各ゾーン、特に燃料原単位の大きな加熱ゾーンにおいて、スラブ温度を正確に把握できるため、加熱炉抽出温度を目標温度に制御することが可能である。   According to the present invention, since the slab temperature can be accurately grasped in each zone such as a preheating zone, a heating zone, and a soaking zone, particularly in a heating zone with a large fuel consumption rate, the heating furnace extraction temperature is controlled to the target temperature. Is possible.
また、スラブ温度が正確に把握されるので、スラブの温度均一性を確保するための在炉時間が適正化され、燃料原単位を削減できるとともに生産性を向上させることが可能である。   In addition, since the slab temperature can be accurately grasped, the in-furnace time for ensuring the temperature uniformity of the slab can be optimized, and the fuel intensity can be reduced and the productivity can be improved.
本発明に係る第1の実施形態における燃焼制御方法は、加熱ゾーンに設置した複数の温度計から加熱ゾーンの炉内雰囲気温度分布を正確に推定し、加熱ゾーン内のスラブ位置での雰囲気推定温度からスラブ温度を計算して求めることを特徴とする。   The combustion control method according to the first embodiment of the present invention accurately estimates the furnace atmosphere temperature distribution in the heating zone from a plurality of thermometers installed in the heating zone, and estimates the atmosphere temperature at the slab position in the heating zone. The slab temperature is calculated from the above and obtained.
図1に本発明を適用する連続式加熱炉の一例を模式的な構造図で示す。連続式加熱炉1は予熱ゾーン11、加熱ゾーン12および均熱ゾーン13を有し、各ゾーン内はさらにa〜kのゾーンに分割されている。予熱ゾーン11、加熱ゾーン12および均熱ゾーン13の境界には仕切り壁111、112が設置されている。
予熱ゾーン入り側を除いた分割ゾーンには燃焼バーナ15を有し、各ゾーン毎の燃焼制御が可能である。また炉内雰囲気温度を測定するための炉温温度計14a,14bが炉の上下に設置されている。加熱ゾーン12は、この例では分割ゾーンeとgに炉温温度計14a、14bが配置されている。
本発明を適用する炉において燃焼バーナの構造、数および配置位置は特に規定しないが、蓄熱式燃焼バーナを用いるとゾーン毎の燃焼制御が可能であり、各ゾーンの温度を容易に目標値に設定できるので好ましい。
FIG. 1 is a schematic structural diagram showing an example of a continuous heating furnace to which the present invention is applied. The continuous heating furnace 1 has a preheating zone 11, a heating zone 12, and a soaking zone 13, and each zone is further divided into zones a to k. Partition walls 111 and 112 are installed at boundaries between the preheating zone 11, the heating zone 12 and the soaking zone 13.
The divided zones excluding the preheating zone entry side have combustion burners 15, and combustion control for each zone is possible. Furnace temperature thermometers 14a and 14b for measuring the atmospheric temperature in the furnace are installed above and below the furnace. In the heating zone 12, in this example, furnace temperature thermometers 14a and 14b are arranged in the divided zones e and g.
In the furnace to which the present invention is applied, the structure, number and arrangement position of the combustion burner are not particularly defined. However, if a regenerative combustion burner is used, combustion control for each zone is possible, and the temperature of each zone is easily set to the target value. It is preferable because it is possible.
図2は、炉温温度計141、142の測定結果t、tから推定した加熱ゾーン内の雰囲気温度分布である。炉内温度は一定ではなく、勾配を有することがわかる。また、予熱ゾーンおよび均熱ゾーンとの境界には仕切り壁が設置されているため、温度分布は不連続である。
本発明に係る燃焼制御方法では、まず、スラブ2が加熱ゾーンの分割ゾーンeに搬入された際に、上述した雰囲気温度分布からゾーンeでの炉内温度を推定し、炉内温度からスラブの内部温度を計算する。
スラブ内部温度の計算方法は特に規定しないが、炉内温度をスラブ表面温度とし、伝熱計算により板厚方向の温度分布を求め、平均値をスラブ温度とすることが好ましい。上述した方法でスラブ温度を求め、該スラブ温度の場合に加熱炉から抽出される際のスラブ温度(加熱炉抽出温度)を計算で予測する。
スラブ抽出温度が目標値となるように、各分割ゾーンでの燃焼量や搬送速度を制御する。ゾーンf、ゾーンgでも同様の制御を行えば、目標値に対するスラブ抽出温度の精度は向上する。
Figure 2 is a ambient temperature distribution in the heating zone was estimated from measurements t 1, t 2 of the furnace temperature thermometer 141 and 142. It can be seen that the furnace temperature is not constant but has a gradient. Moreover, since the partition wall is installed in the boundary with the preheating zone and the soaking zone, the temperature distribution is discontinuous.
In the combustion control method according to the present invention, first, when the slab 2 is carried into the divided zone e of the heating zone, the in-furnace temperature in the zone e is estimated from the atmospheric temperature distribution described above, and the slab temperature is estimated from the in-furnace temperature. Calculate the internal temperature.
Although the calculation method of the slab internal temperature is not particularly defined, it is preferable that the furnace temperature is the slab surface temperature, the temperature distribution in the thickness direction is obtained by heat transfer calculation, and the average value is the slab temperature. A slab temperature is calculated | required with the method mentioned above, and the slab temperature at the time of extracting from a heating furnace in the case of this slab temperature (heating furnace extraction temperature) is estimated by calculation.
The combustion amount and the conveyance speed in each divided zone are controlled so that the slab extraction temperature becomes the target value. If the same control is performed in the zone f and the zone g, the accuracy of the slab extraction temperature with respect to the target value is improved.
この計算により得られた加熱ゾーンでのスラブ温度分布は、実際に熱電対でスラブ温度を実測した結果と良い相関が得られており、少なくとも2箇所で炉内温度を測定して雰囲気温度分布を推定すれば、スラブ温度を精度よく推定できることが判明した。   The slab temperature distribution in the heating zone obtained by this calculation has a good correlation with the result of actually measuring the slab temperature with a thermocouple, and the temperature inside the furnace is measured at at least two locations to obtain the atmospheric temperature distribution. It was found that the slab temperature can be estimated accurately if estimated.
尚、本発明ではスラブが予熱ゾーン11や均熱ゾーン13にある場合の燃焼制御は特に規定しないが、加熱ゾーン12における場合と同様の燃焼制御を行うことも可能である。   In the present invention, the combustion control when the slab is in the preheating zone 11 or the soaking zone 13 is not particularly defined, but the same combustion control as in the heating zone 12 can be performed.
本発明に係る第2の実施形態における燃焼制御方法は、加熱ゾーン内の各分割ゾーンに設けた温度計によりスラブが位置する分割ゾーンの雰囲気温度を求め、その雰囲気温度からスラブ温度を計算して求めることを特徴とする。
図3に本発明を適用する連続式加熱炉の一例を模式的な構造図で示す。第2の実施形態では、加熱ゾーンの各分割ゾーンe,f,gのそれぞれに炉温温度計14a,14bが設置されている。それ以外については、第1の実施形態と同じである。
本発明に係る燃焼制御方法では、まず、スラブ2が加熱ゾーンの分割ゾーンeに搬入された際に、分割ゾーンeに設置された炉温温度計14a,14bで分割ゾーンeの炉内温度を測定する。測定された炉内温度からスラブの内部温度を計算する。
スラブ内部温度の計算方法は特に規定しないが、炉内温度をスラブ表面温度とし、伝熱計算により板厚方向の温度分布を求め、平均値をスラブ温度とすることが好ましい。上述した方法でスラブ温度を求め、該スラブ温度の場合に加熱炉から抽出される際のスラブ温度(加熱炉抽出温度)を計算で予測する。
スラブ抽出温度が目標値となるように、各分割ゾーンでの燃焼量や搬送速度を制御する。ゾーンf、ゾーンgでも同様の制御を行えば、目標値に対するスラブ抽出温度の精度は向上する。実施形態1に比べて直接分割ゾーンの温度を測定するため、実施形態2の方がより正確にスラブ温度を推定することが可能となる。
In the combustion control method according to the second embodiment of the present invention, the ambient temperature of the divided zone where the slab is located is obtained by a thermometer provided in each divided zone in the heating zone, and the slab temperature is calculated from the ambient temperature. It is characterized by seeking.
FIG. 3 is a schematic structural diagram showing an example of a continuous heating furnace to which the present invention is applied. In the second embodiment, furnace temperature thermometers 14a and 14b are installed in the respective divided zones e, f and g of the heating zone. The rest is the same as in the first embodiment.
In the combustion control method according to the present invention, first, when the slab 2 is carried into the division zone e of the heating zone, the furnace temperature in the division zone e is set by the furnace temperature thermometers 14a and 14b installed in the division zone e. taking measurement. Calculate the internal temperature of the slab from the measured furnace temperature.
Although the calculation method of the slab internal temperature is not particularly defined, it is preferable that the furnace temperature is the slab surface temperature, the temperature distribution in the thickness direction is obtained by heat transfer calculation, and the average value is the slab temperature. A slab temperature is calculated | required with the method mentioned above, and the slab temperature at the time of extracting from a heating furnace in the case of this slab temperature (heating furnace extraction temperature) is estimated by calculation.
The combustion amount and the conveyance speed in each divided zone are controlled so that the slab extraction temperature becomes the target value. If the same control is performed in the zone f and the zone g, the accuracy of the slab extraction temperature with respect to the target value is improved. To measure the temperature of the direct separate zones compared to the first embodiment, it is possible to better embodiments 2 to more accurately estimate the slab temperature.
図1に示す構造の蓄熱式加熱バーナを用いた連続式加熱炉で、加熱ゾーンを数m間隔に区分した分割ゾーンを有するものを用いて本発明例と比較例でスラブ加熱を行い、加熱状況を調査した。   In the continuous heating furnace using the regenerative heating burner having the structure shown in FIG. 1, the slab heating is performed in the present invention example and the comparative example using the one having the divided zones divided into several m intervals. investigated.
本発明例では加熱ゾーン内の分割ゾーンe,gに設置した炉温温度計で炉内雰囲気温度分布を求め、スラブが分割ゾーンeに搬入された際に、炉内雰囲気温度分布から分割ゾーンeの雰囲気温度を推定し、その温度をスラブ表面温度としてスラブ温度を計算した。スラブが分割ゾーンf,gに搬入され場合には、同様の方法でスラブ温度を計算した。 In the present invention example, the furnace temperature thermometer installed in the divided zones e and g in the heating zone is used to determine the furnace atmosphere temperature distribution, and when the slab is loaded into the divided zone e, the furnace zone temperature distribution is determined from the furnace atmosphere temperature distribution. The ambient temperature was estimated, and the slab temperature was calculated using that temperature as the slab surface temperature. If the slab is carried divided zone f, in g calculated the slab temperature in the same way.
一方、比較例では分割ゾーンfに設置した炉温温度計で求めた雰囲気温度を加熱ゾーンの炉内平均温度とし、炉内平均温度をスラブ表面温度としてスラブ温度を計算した。   On the other hand, in the comparative example, the slab temperature was calculated using the atmospheric temperature obtained by the furnace temperature thermometer installed in the divided zone f as the furnace average temperature in the heating zone and the furnace average temperature as the slab surface temperature.
本発明例、比較例で、スラブの加熱炉抽出温度が目標温度となるように燃焼制御を同じ方法で行い、スラブの加熱状況を調査した。燃焼制御における予熱ゾーン、均熱ゾーンでの熱履歴は本発明例と比較例で同じとし、均熱ゾーンでの炉温は目標温度とした。   In the present invention example and the comparative example, the combustion control was performed in the same manner so that the extraction temperature of the heating furnace of the slab became the target temperature, and the heating situation of the slab was investigated. The heat history in the preheating zone and the soaking zone in combustion control was the same in the present invention example and the comparative example, and the furnace temperature in the soaking zone was set as the target temperature.
図4に加熱炉からの抽出温度を目標温度1200℃とした場合のスラブ加熱状況を示す。本発明例と比較例でスラブの抽出温度の平均値は等しかったが、標準偏差において本発明例ではσ=10℃に対して比較例ではσ=14℃であり、本発明によりバラツキが改善された。   FIG. 4 shows a slab heating state when the extraction temperature from the heating furnace is set to a target temperature of 1200 ° C. The average value of the slab extraction temperature was the same in the inventive example and the comparative example. However, in the standard deviation, σ = 10 ° C. in the inventive example and σ = 14 ° C. in the comparative example, and the variation was improved by the present invention. It was.
図5に加熱炉へのスラブ装入温度が加熱炉からの抽出温度に及ぼす影響を示す。本発明例では装入温度によらず安定した抽出温度が得られたが、比較例では、装入温度が高くなると抽出温度も高くなり、目標温度(1150℃)から大きく逸脱する傾向が得られた。   FIG. 5 shows the influence of the slab charging temperature into the heating furnace on the extraction temperature from the heating furnace. In the example of the present invention, a stable extraction temperature was obtained regardless of the charging temperature, but in the comparative example, when the charging temperature was high, the extraction temperature was high, and a tendency to deviate greatly from the target temperature (1150 ° C.) was obtained. It was.
スラブ抽出温度のバラツキは熱間圧延後の材質のバラツキにつながるため、本発明による品質安定化に対する寄与は大きい。   Since the variation in the slab extraction temperature leads to the variation in the material after hot rolling, the contribution to quality stabilization according to the present invention is large.
また、スラブ温度を正確に計算できるようになったため、在炉時間規制の必要が無くなり、在炉時間の短縮、ひいては圧延能率の向上を達成することができた。   In addition, since the slab temperature can be accurately calculated, there is no need for the in-furnace time regulation, and the in-furnace time can be shortened and, consequently, the rolling efficiency can be improved.
第1の実施形態における連続式加熱炉の構造の一例を模式的に示す図。The figure which shows typically an example of the structure of the continuous heating furnace in 1st Embodiment. 第1の実施形態における加熱ゾーンの炉内雰囲気温度分布の測定結果を示す 図。The figure which shows the measurement result of the atmospheric temperature distribution in the furnace of the heating zone in 1st Embodiment. 第2の実施形態における連続式加熱炉の構造の一例を模式的に説明する図。The figure which illustrates typically an example of the structure of the continuous heating furnace in 2nd Embodiment. 実施例(加熱炉抽出温度の分布状態を示す図)。Example (the figure which shows the distribution state of heating furnace extraction temperature). 実施例(加熱炉抽出温度に及ぼす装入温度の影響を示す図)。Example (figure showing influence of charging temperature on heating furnace extraction temperature).
符号の説明Explanation of symbols
1 連続式加熱炉
11 予熱ゾーン
12 加熱ゾーン
13 均熱ゾーン
14a、14b、141、142、143、144 炉温温度計
15 燃焼バーナ
111、112 仕切り壁
a〜k 分割ゾーン
DESCRIPTION OF SYMBOLS 1 Continuous heating furnace 11 Preheating zone 12 Heating zone 13 Soaking zone 14a, 14b, 141, 142, 143, 144 Furnace temperature thermometer 15 Combustion burner 111, 112 Partition wall ak Partition zone

Claims (2)

  1. 予熱ゾーン、加熱ゾーンおよび均熱ゾーンからなり、前記加熱ゾーンはそれぞれ独立して燃焼制御可能な複数の分割ゾーンを有する連続式加熱炉において、炉内におけるスラブ温度から加熱炉抽出温度を予測し、前記予測される加熱炉抽出温度が目標温度となるように燃焼状態を制御する燃焼制御方法であって、
    加熱ゾーン内の各分割ゾーンに設けた温度計によりスラブが位置する分割ゾーンの雰囲気温度を求め、前記雰囲気温度からスラブ温度を計算し、その計算結果から前記加熱炉抽出温度が目標温度となるように前記分割ゾーンの雰囲気温度を燃焼制御し、次いで前記スラブが次の分割ゾーンに搬入された際に前記同様の燃焼制御を繰り返すことを特徴とする連続式加熱炉の燃焼制御方法。
    A continuous heating furnace comprising a preheating zone, a heating zone and a soaking zone, each of the heating zones having a plurality of divided zones that can be independently controlled for combustion, predicting a heating furnace extraction temperature from a slab temperature in the furnace, A combustion control method for controlling a combustion state so that the predicted heating furnace extraction temperature becomes a target temperature,
    The atmosphere temperature of the division zone where the slab is located is obtained by a thermometer provided in each division zone in the heating zone, the slab temperature is calculated from the atmosphere temperature, and the heating furnace extraction temperature becomes the target temperature from the calculation result The combustion control method for a continuous heating furnace is characterized in that the combustion temperature is controlled in the divided zone and the same combustion control is repeated when the slab is carried into the next divided zone.
  2. 前記分割ゾーンの燃焼制御を蓄熱式加熱バーナを用いて制御することを特徴とする請求項1に記載の連続式加熱炉の燃焼制御方法。 The combustion control method for a continuous heating furnace according to claim 1, wherein combustion control of the divided zones is controlled using a regenerative heating burner.
JP2004288799A 2004-09-30 2004-09-30 Combustion control method for continuous heating furnace Active JP4998655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004288799A JP4998655B2 (en) 2004-09-30 2004-09-30 Combustion control method for continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004288799A JP4998655B2 (en) 2004-09-30 2004-09-30 Combustion control method for continuous heating furnace

Publications (2)

Publication Number Publication Date
JP2006104490A JP2006104490A (en) 2006-04-20
JP4998655B2 true JP4998655B2 (en) 2012-08-15

Family

ID=36374566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004288799A Active JP4998655B2 (en) 2004-09-30 2004-09-30 Combustion control method for continuous heating furnace

Country Status (1)

Country Link
JP (1) JP4998655B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108278906A (en) * 2018-01-17 2018-07-13 上海曙佳科技发展有限公司 Suitable for the optimal control method under the conditions of recuperative heater low load combustion

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024966A (en) * 2006-07-18 2008-02-07 Sumitomo Metal Ind Ltd Method for controlling furnace temperature in continuous type heating furnace, and method for producing steel material
ITRE20060094A1 (en) * 2006-07-28 2008-01-29 Sacmi Forni Spa Tunnel kiln for ceramic products
CN102564108A (en) * 2012-03-15 2012-07-11 机械工业第六设计研究院有限公司 Multi-burner-chamber type heating furnace temperature control method
CN102853448B (en) * 2012-07-05 2015-05-06 北京首钢股份有限公司 Optimization method for combustion system of slab heat accumulating type heating furnace
CN107560446B (en) * 2017-09-25 2019-12-03 佛山市南海鑫隆机工机械有限公司 A kind of full-automatic control system and its control method of consecutive production kiln

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59574B2 (en) * 1979-11-26 1984-01-07 Nippon Kokan Kk
JPH0532448B2 (en) * 1985-02-27 1993-05-17 Mitsubishi Electric Corp
JPS63140036A (en) * 1986-12-02 1988-06-11 Toshiba Corp Method for identifying overall heat absorptivity of continuous heating furnace
JPH04276029A (en) * 1991-03-01 1992-10-01 Sumitomo Metal Ind Ltd Method for controlling temperature in continuous heating furnace
JPH05209235A (en) * 1992-01-30 1993-08-20 Nippon Steel Corp In-furnace temperature control device of heating furnace
JPH06264153A (en) * 1993-03-09 1994-09-20 Sumitomo Metal Ind Ltd Method for predicting slab temperature in continuous type heating furnace
JP3710572B2 (en) * 1996-09-11 2005-10-26 東芝三菱電機産業システム株式会社 Heating furnace control device
JPH11323431A (en) * 1998-05-13 1999-11-26 Nkk Corp Method and device for controlling temperature of heating furnace
JPH11335739A (en) * 1998-05-28 1999-12-07 Kawasaki Steel Corp Method and device for heating temp. control of continuous heating furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108278906A (en) * 2018-01-17 2018-07-13 上海曙佳科技发展有限公司 Suitable for the optimal control method under the conditions of recuperative heater low load combustion

Also Published As

Publication number Publication date
JP2006104490A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
CN102481610B (en) cooling method for hot-rolled sheet steel
EP1197720B1 (en) Continuous sintering furnace and use thereof
RU2128717C1 (en) Aggregate for making stainless steel strip
CN100507027C (en) Method for dynamic setting and control of hot-roll heating furnace temperature
US8945319B2 (en) Manufacturing method and manufacturing apparatus of hot-rolled steel sheet
CN103397171B (en) Method for determining furnace-temperature set value of billet heating furnace
US5990464A (en) Method for producing hot rolled steel sheet using induction heating and apparatus therefor
US20100101690A1 (en) Method for continously annealing steel strip having a curie point and continous annealing facility of the same
TWI224144B (en) Heat treating device, heat treating method, recording medium recording heat treating program and steel product
KR101500595B1 (en) Method and apparatus for controlling a furnace pressure of a continuous annealing furnace
JP2006265606A (en) High frequency induction heat-treatment method, high frequency induction heat-treatment facility and high frequency induction heat-treating article
US8394212B2 (en) High frequency induction heating treatment equipment and method and induction heated and thus treated product
CN101806541B (en) Model for optimally controlling heating system of large walking beam type heating furnace plate blank
Tucker et al. Identifying and quantifying energy savings on fired plant using low cost modelling techniques
CN106636606B (en) A kind of method for controlling furnace temperature of heating furnace based on simulation model
GB2048442A (en) Furnace temperature control
KR102094623B1 (en) High-speed response heaters and associated control systems used in combination with metal processing furnaces
US4606529A (en) Furnace controls
EP2792756A1 (en) Method and apparatus for controlling the strip temperature of the rapid cooling section of a continuous annealing line
JP2005528531A (en) Method for reducing temperature deviation on heated material, skid member, and skid device using the same
CN105018718B (en) Heating furnace process furnace temperature control method based on thermal load distribution
JP4221002B2 (en) Cooling control method, cooling control device, and cooling water amount calculation device
CN106636610B (en) A kind of double dimension walking beam furnace heating curve optimal setting methods based on time and furnace superintendent
Parsunkin et al. Energy-saving optimal control over heating of continuous cast billets
CN105886751A (en) Coordinated control system and method for plate temperature of cold-rolled hot-galvanized annealing furnace

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4998655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250