JPS5941489B2 - How to set the furnace temperature correction amount for a multi-zone continuous heating furnace - Google Patents

How to set the furnace temperature correction amount for a multi-zone continuous heating furnace

Info

Publication number
JPS5941489B2
JPS5941489B2 JP54083317A JP8331779A JPS5941489B2 JP S5941489 B2 JPS5941489 B2 JP S5941489B2 JP 54083317 A JP54083317 A JP 54083317A JP 8331779 A JP8331779 A JP 8331779A JP S5941489 B2 JPS5941489 B2 JP S5941489B2
Authority
JP
Japan
Prior art keywords
zone
furnace
temperature
correction amount
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54083317A
Other languages
Japanese (ja)
Other versions
JPS569331A (en
Inventor
喜弘 山口
一郎 小久保
篤男 水田
隆一 石田
朗紀 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP54083317A priority Critical patent/JPS5941489B2/en
Publication of JPS569331A publication Critical patent/JPS569331A/en
Publication of JPS5941489B2 publication Critical patent/JPS5941489B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Description

【発明の詳細な説明】 本発明は、多帯式連続加熱炉の温度制御を行なう際の炉
温修正量設定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for setting a furnace temperature correction amount when controlling the temperature of a multi-zone continuous heating furnace.

多帯式連続加熱炉は、通常予熱帯、加熱帯、均熱帯より
成り、該加熱炉の主目的は、スラブ等の鋼片(被加熱体
)を圧延するに充分な所定温度まで加熱することであり
、同時に、圧延能力を充分に発揮させる即ち圧延ライン
を停止させることなく鋼片を圧延機へ供給できるように
操業することが重要である。
A multi-zone continuous heating furnace usually consists of a preheating zone, a heating zone, and a soaking zone, and the main purpose of the heating furnace is to heat a slab or other piece of steel (object to be heated) to a predetermined temperature sufficient for rolling it. At the same time, it is important to operate the rolling mill so that the rolling capacity is fully utilized, that is, the rolling line can be supplied with billets to the rolling mill without stopping.

ところが、実操業において、加熱炉内に装入される鋼片
(被加熱体)は種々のサイズのものであり、各々につい
て所定の必要温度がある為に、各各を個別に温度管理す
ることが困難であると共に、圧延ピッチに応じて鋼片を
抽出すれば、鋼片サイズにより、加熱の過不足を生じる
ことになる。
However, in actual operation, the steel pieces (objects to be heated) charged into the heating furnace are of various sizes, and each has a predetermined required temperature, so it is necessary to control the temperature of each piece individually. It is difficult to do so, and if the billet is extracted according to the rolling pitch, heating may be excessive or insufficient depending on the size of the billet.

実際の炉温制御にあっては、装入側帯(予熱帯)炉温を
低く、抽出側帯(均熱帯)炉温を高くするような炉温設
定を採用してはいるものの加熱過剰を許容し、加熱不足
を防ぐように、各相において最も加熱されにくい鋼片を
対象として炉温制御しており、この為に燃料原単位をさ
ほど低下できないという問題が生じている。
In actual furnace temperature control, although the furnace temperature is set so that the furnace temperature in the charging side zone (preparation zone) is low and the furnace temperature in the extraction side zone (soaking zone) is high, overheating is not allowed. In order to prevent insufficient heating, the furnace temperature is controlled by targeting the steel slabs that are least likely to be heated in each phase, which causes the problem that the fuel consumption rate cannot be significantly reduced.

近年、連続加熱炉制御に関して種々の提案がなさねてい
る。
In recent years, various proposals have been made regarding continuous heating furnace control.

例えば、特公昭49−29403号公報では、炉内各鋼
片について平均温度を求め、該温度と設定温度との偏差
に、その炉内位置によって重みを加えて、これらを組合
せて性能指数を求め、該性能指数の大きさによって加熱
手段を制御する方法が公知であるが、この方法では、上
記温度偏差の大小に拘らず、炉内位置によって重みを変
えている即ち各帯出口に近い方の鋼片の温度偏差により
大きな重みを加える手段を採っているが、加熱炉内のス
ラブ温度を制御するような場合、時定数が大きいので現
時点の偏差のみによる制御ではあまり好ましくなく予測
制御が好ましい。
For example, in Japanese Patent Publication No. 49-29403, the average temperature of each piece of steel in the furnace is determined, the deviation between this temperature and the set temperature is weighted according to its position in the furnace, and these are combined to determine the performance index. A method is known in which the heating means is controlled according to the magnitude of the figure of merit, but in this method, the weight is changed depending on the position in the furnace, regardless of the size of the temperature deviation, that is, the weight is changed depending on the position in the furnace. Although a method is used to give greater weight to the temperature deviation of the steel slab, when controlling the temperature of the slab in the heating furnace, the time constant is large, so control based only on the current deviation is not so desirable, and predictive control is preferable.

又、特公昭51−30526号公報では、各帯内各鋼片
について必要炉内温度を求め、該必要炉内温度群の中よ
り各帯毎に1つを選定して代表炉内温度を決定して温度
制御する方法、より詳しくは、加熱炉を損傷させない温
度、鋼片の表面を溶損させない温度、鋼片の品質上決ま
る温度の制限を付して決定し、又、必要炉内温度群が制
限温度以下である場合は、最も高い温度を代表温度に選
定する方法が公知であるが、この方法では圧延作業との
関係を考慮しており、生産性低下の問題はないが、特に
負荷が大きい帯でのこの制御方法は炉温変更および燃料
変化が大きく、実際の操業上の誤差および燃焼の安定性
から問題があり、しかも、上記温度制限の下で最も加熱
されにくいものに対応して温度制御している為に、燃料
原単位の低減は計れないのである。
Furthermore, in Japanese Patent Publication No. 51-30526, the required furnace temperature is determined for each slab in each band, and one furnace temperature is selected for each zone from the required furnace temperature group to determine the representative furnace temperature. More specifically, the method is to determine the temperature that will not damage the heating furnace, the temperature that will not melt the surface of the steel billet, and the temperature that is determined by the quality of the steel billet, and also the required furnace temperature. When the group temperature is below the limit temperature, there is a known method of selecting the highest temperature as the representative temperature, but this method takes into account the relationship with the rolling operation, and there is no problem of reduced productivity, but This control method in a zone with a large load has large changes in furnace temperature and fuel, and has problems due to actual operational errors and combustion stability.Moreover, it is suitable for those that are least likely to be heated under the above temperature limits. Since the temperature is controlled using the same method, it is not possible to reduce the fuel consumption rate.

従来の加熱炉制御において生産性の安定、品質の安定の
面ではある程度改善されてはいるものの、上記したよう
に、この温度制御に係る燃料コストの問題即ち燃料原単
位の低減問題については依然として解決されていないの
が現状である。
Although conventional heating furnace control has improved to some extent in terms of productivity stability and quality stability, as mentioned above, the problem of fuel cost related to temperature control, that is, the problem of reducing fuel consumption, remains unsolved. The current situation is that this has not been done.

本発明は上記問題点に鑑み、燃料原単位を低減し、しか
も生産性の安定、品質の安定を計る温度制御を行なう為
の炉温修正量を決定する方法を提供するものであって、
その特徴とするところは、多帯式連続加熱炉の各帯内に
位置する各被加熱体の温度を、その帯内の雰囲気温度と
、炉特性と、その被加熱体の熱特性、熱履歴とから求め
ると共に、各被加熱体の各帯内残り滞留時間を、その被
加熱体の位置、その被加熱体より抽出方向前方の被加熱
体の位置、抽出ピッチから求め、各被加熱体の各々につ
いて各相の炉温修正量△Tliを、その被加熱体のその
帯における出口目標温度と、前記被加熱体温度と、前記
残り滞留時間と、その帯内の雰囲気温度とから求めて、
各相における炉温修止量△Tlを決定する方法において
、各被加熱体についての各帯炉温修正量△Tliに対し
て重み係数Wliを定めて、 (但し、nはl帯における被加熱体の個数)により、各
相における炉温修正量△Tlを決定するところ、並びに
、各被加熱体についての各帯炉温修正量△Tliに対し
て重み係数W11を、その重み勾配α(−d’Mi/d
△Tli )を装入側帯で小さく抽出側帯で大きくする
ように定め、 (但し、nはl帯における被加熱体の個数)により、各
相における炉温修正量△Tlを決定するところにある。
In view of the above-mentioned problems, the present invention provides a method for determining the amount of furnace temperature correction for performing temperature control to reduce fuel consumption rate, stabilize productivity, and stabilize quality.
Its characteristics are that the temperature of each heated object located in each zone of a multi-zone continuous heating furnace can be calculated based on the atmospheric temperature within that zone, the furnace characteristics, the thermal characteristics of the heated object, and the thermal history. In addition, the remaining residence time of each heated object in each zone is determined from the position of the heated object, the position of the heated object in front of the heated object in the extraction direction, and the extraction pitch. For each phase, the furnace temperature correction amount ΔTli of each phase is determined from the outlet target temperature of the heated body in that zone, the heated body temperature, the remaining residence time, and the atmospheric temperature in that zone,
In the method of determining the amount of furnace temperature correction △Tl in each phase, a weighting coefficient Wli is determined for each zone furnace temperature correction amount △Tli for each heated object (where n is The furnace temperature correction amount ΔTl in each phase is determined by the number of objects), and the weighting coefficient W11 is determined for each zone furnace temperature correction amount ΔTli for each heated object by its weight gradient α(- d'Mi/d
ΔTli ) is set to be small in the charging side zone and large in the extraction side zone (where n is the number of objects to be heated in the l zone), and the amount of furnace temperature correction ΔTl in each phase is determined.

すなわち、本発明は、まず各帯内における各鋼片の温度
を求めると共に、各鋼片の各帯内での残り滞留時間を求
め、該鋼片温度、残り滞留時間から、各鋼片が各帯出口
で所定温度になるには炉温をどの程度修正すればよいか
を求め、該修正量の大小により重みを加えて、加重平均
したものを各相の炉温修正量とするものであり、さらに
、各相によって(加熱炉の装入側から抽出側のどの帯に
位置するかによって)重みの加え方を変化させようとす
るものである。
That is, the present invention first determines the temperature of each billet in each zone, and determines the remaining residence time of each billet in each zone, and from the billet temperature and remaining residence time, each billet is The degree to which the furnace temperature needs to be corrected in order to reach a predetermined temperature at the zone exit is determined, weight is added depending on the magnitude of the correction amount, and the weighted average is used as the furnace temperature correction amount for each phase. The idea is to change the way weights are applied to each phase (depending on which zone it is located in from the charging side to the extraction side of the heating furnace).

以下、本発明を詳説する。The present invention will be explained in detail below.

まず、各帯内における各鋼片の温度計算の一例について
説明すると、炉内各鋼片温度Uiは周知の一次元前進差
分法による数値解析によって求められ、鋼片内部では次
式で表わせる。
First, an example of calculating the temperature of each billet in each zone will be described. The temperature Ui of each billet in the furnace is determined by numerical analysis using the well-known one-dimensional forward difference method, and inside the billet can be expressed by the following equation.

ただし、θは鋼片内部位置に△X2時刻J△tにおける
温度の数値解であり、θ一計へ1/(△x)2.aは温
度伝導率、△tは時間の微小区間、△Xは鋼片内部位置
の微小区間である。
However, θ is the numerical solution of the temperature at the internal position of the steel billet at ΔX2 time JΔt, and the sum of θ is 1/(Δx)2. a is the temperature conductivity, Δt is a minute interval of time, and ΔX is a minute interval of the internal position of the steel billet.

又、鋼片境界における熱流束をq(t)とすれば、鋼片
境界条件は次式で表わせる。
Further, if the heat flux at the boundary of the steel slab is q(t), the boundary condition of the steel slab can be expressed by the following equation.

ここで、A=△X/λ、λは熱伝導率である。Here, A=ΔX/λ, λ is thermal conductivity.

さらに、上記鋼片境界における熱流束q(t)は式7式
% ただし、φcGは総括熱吸収率であって、加熱炉炉形状
、操業条件によって測温実験等から求めることができ、
又、Tgは炉内雰囲気温度であって、炉内に設置されて
いる熱電対等の温度検出器により検出される。
Furthermore, the heat flux q(t) at the boundary of the steel billet is expressed by formula 7%. However, φcG is the overall heat absorption rate, which can be determined from temperature measurement experiments etc. depending on the heating furnace shape and operating conditions.
Further, Tg is the temperature of the atmosphere inside the furnace, and is detected by a temperature detector such as a thermocouple installed inside the furnace.

上古ハ1)〜(3)式によって各帯内における各鋼片に
ついてその温度θliが求められるのであり、該計算は
所定時間毎に、あるいは、鋼片が装入される毎に、又は
、鋼片が抽出される毎に行なわれる。
The temperature θli of each billet in each band is determined by equations 1) to (3), and this calculation is performed every predetermined time, or each time a billet is charged, or This is done every time a piece is extracted.

次に各帯内における各鋼片の各帯残り滞留時間を求める
Next, the remaining residence time of each steel slab in each band is determined.

炉内鋼片を抽出側よりSl、S2.S3.・・・・・・
Sk・・・・・・とし、今、i番目の鋼片Siが4帯内
に位置しているとすると、そのl帯での残り滞留時間T
Aiは以下のように求められる。
The steel pieces in the furnace are taken from the extraction side as Sl, S2. S3.・・・・・・
Assuming that the i-th steel billet Si is currently located within the 4th zone, the remaining residence time T in that 1th zone is Sk...
Ai is determined as follows.

が成立するmであれば、鋼片がm個抽出されても鋼片S
iはまだl帯内に存在している。
If m holds true, even if m pieces of steel are extracted, the piece of steel S
i still exists within the l band.

ここで、 Xi:鋼片Siの位置 XF’# : 1.帯出口位置 SBk:鋼片の幅 Gk :鋼片Skと鋼片Sk+tとの間隔であり、鋼片
の炉内トラッキング、炉内インスト ラクタ−によって決まる。
Here, Xi: position of steel piece Si XF'#: 1. Band exit position SBk: Width Gk of steel billet: Distance between steel billet Sk and steel billet Sk+t, determined by in-furnace tracking of the steel billet and in-furnace instructor.

従って、滞留時間τeiは次式で表わせる。Therefore, the residence time τei can be expressed by the following equation.

ただし、 C:圧延ロール取替えによるミル休止等のロスタイムで
あり、通常の操業においては零である。
However, C: loss time due to mill suspension due to rolling roll replacement, etc., which is zero in normal operation.

Pk:抽出ピッチであり、(k−1)番目の鋼片が抽出
されてからに番目の鋼片が抽出さ れるまでの時間である。
Pk: Extraction pitch, which is the time from when the (k-1)th steel piece is extracted until when the (k-1)th steel piece is extracted.

次に、上記計算式により求められた鋼片温度θAi、残
り滞留時間τei等から各鋼片について各帯出口での目
標温度になる為に必要な炉温修正量△Th?iを求める
Next, from the billet temperature θAi, remaining residence time τei, etc. determined by the above calculation formula, what is the furnace temperature correction amount ΔTh required for each billet to reach the target temperature at each zone outlet? Find i.

この炉温修正量△TIIは例として次式で表わされる。This furnace temperature correction amount ΔTII is expressed by the following equation, for example.

ただし、 all :l帯内の鋼片Siの温度 θlim:l帯内の鋼片S1のl帯出L1目標温度T′
li:l帯内の鋼片Siがl帯出口で目標温度θ11
になるに必要な炉温 Tl:l帯の実測炉温 τeiニア帯内の鋼片Siのl帯内残り滞留時間 Shi :鋼片Siの厚み alo、all、a12:各相ごとに伝熱特性、鋼片寸
法、計算時の鋼片温度を考慮し、実験に より決定できる。
However, all: Temperature of the steel billet Si in the l band θlim: L1 target temperature T' of the steel billet S1 in the l band
li: The steel billet Si in the l band has a target temperature θ11 at the exit of the l band
Required furnace temperature Tl: Actual furnace temperature in l band τei Remaining residence time of steel billet Si in l zone in near zone Shi: Thickness of steel billet Si alo, all, a12: Heat transfer characteristics for each phase , can be determined by experiment, taking into consideration the billet dimensions and billet temperature during calculation.

上記(6)式により各帯内における鋼片すべてについて
炉温修正量△Tliが求まったところで、各相の炉温修
正量△Tlを決定する。
When the furnace temperature correction amount ΔTli for all the steel slabs in each zone is determined by the above equation (6), the furnace temperature correction amount ΔTl for each phase is determined.

各鋼片によりその炉温修正量△Tliは異なっているが
、この炉温修正量△Tliの大小によって、例えば太き
いものからランクづけをして、予じめ炉温修正量△Tl
iの大きさに応じてその値を決定している重み係数Wl
Iを、次式により加重平均して炉温修正量△Tlを求め
る。
The furnace temperature correction amount △Tli differs depending on each piece of steel, but the furnace temperature correction amount △Tli is ranked in advance according to the size of the furnace temperature correction amount △Tli.
Weighting coefficient Wl whose value is determined according to the size of i
The furnace temperature correction amount ΔTl is determined by weighted averaging of I using the following formula.

ただし、nはl帯内における鋼片数 尚、重み係数W11は、第1図に示す如く、各鋼片の炉
温修正量△Tllの大きさに応じ、直線的に変化するよ
うにその値を決めておいてもよいが、△Tliの大きさ
によって曲線的あるいは段階的に変化するようにVWi
O値を決めてもよく、要するに、炉温修正量△T11の
大きいものほど重み係数W11の値が大きくなるように
、その勾配乃至変化率を炉の特性あるいは被加熱材、加
熱条件に応じて選択しておけばよい。
However, n is the number of steel slabs in the l band, and the weighting coefficient W11 is a value that varies linearly according to the magnitude of the furnace temperature correction amount ΔTll of each steel slab, as shown in Fig. 1. may be determined in advance, but VWi may be changed in a curved or stepwise manner depending on the size of △Tli.
The O value may be determined, and in short, the slope or rate of change is adjusted according to the characteristics of the furnace, the material to be heated, and the heating conditions so that the larger the furnace temperature correction amount ΔT11, the larger the value of the weighting coefficient W11. Just select it.

すなわち、上記重み係数’、VWiは、各帯内における
バーナー能力、炉内伝熱特性、炉内鋼片構成、生産ピッ
チ、を考慮し、各鋼片についての必要炉温修正量△Tl
iの大きさにより決定するのである。
In other words, the weighting coefficient ', VWi, is determined by the necessary furnace temperature correction amount ΔTl for each slab, taking into account the burner capacity in each zone, the heat transfer characteristics in the furnace, the slab configuration in the furnace, and the production pitch.
It is determined by the size of i.

本発明によれば、各相における炉温修正量△T7を求め
るにあたり、各相の被加熱体の各々について、各々炉温
修正量△Tliを求め、この被加熱鉢合々の炉温修正量
△Tliと、△Tliの大きさに応じて定められた重み
係数Wllとから、各相における炉温修正量△Tlを、
前記(方式、すなわち、で求めるものであり、単に加熱
されにくいもののみをとりあげることなく、又、加熱炉
内の位置によって重みをつけるのではなく、各被加熱体
毎に求めた炉温修正量△TlIの大きさによって、各々
異なる値の重み係数Wliを加重平均するものであると
ころから、サイズの異なる種々の被加熱体を連続的に加
熱する場合、より小さな熱量で全被加熱体を必要温度に
加熱することができ、燃料原単位は飛躍的に低減される
According to the present invention, in determining the furnace temperature correction amount ΔT7 for each phase, the furnace temperature correction amount ΔTli is determined for each of the objects to be heated in each phase, and the furnace temperature correction amount for each heated pot is determined. From △Tli and the weighting coefficient Wll determined according to the size of △Tli, the furnace temperature correction amount △Tl in each phase is calculated as follows:
The amount of furnace temperature correction determined for each object to be heated is determined by the above-mentioned (method). Since weighting coefficients Wli of different values are weighted and averaged depending on the size of △TlI, when heating various objects of different sizes continuously, it is necessary to heat all the objects with a smaller amount of heat. It can be heated to a high temperature, and the fuel consumption rate is dramatically reduced.

次に、上記重み係数’、Wl iの設定を各相によって
変化せしめて炉温修正量△Tlを決定する場合について
説明する。
Next, a case will be described in which the furnace temperature correction amount ΔTl is determined by changing the settings of the weighting coefficient ' and Wl i for each phase.

従来から燃料原単位低減の為に、加熱炉においては装入
側帯炉温を低く、抽出側帯炉温を高くするような炉温設
定を採っている。
Conventionally, in order to reduce fuel consumption, furnace temperatures have been set in heating furnaces such that the charging side zone furnace temperature is low and the extraction side zone furnace temperature is high.

本発明は、これをさらに推進するものであり、まず、各
相においてその炉内温度を変化させた場合即ち各相にお
いて燃料を多く投入した場合に各帯内の鋼片が抽出され
る時どれだけ変化しているか即ち各帯炉温変化が鋼片抽
出温度にどの程度影響しているかを検討した。
The present invention further promotes this. First, when the temperature inside the furnace is changed in each phase, that is, when a large amount of fuel is input in each phase, when the steel billets in each band are extracted, In other words, the extent to which changes in each zone furnace temperature affect the billet extraction temperature was investigated.

第2図は、予熱帯、第1加熱帯、第2加熱帯、均熱帯か
ら成る連続4帯加熱炉において、各相の炉温を昇温させ
た場合の鋼片の温度変化を示したものであり、曲線Aは
、鋼片昇温の基本パターンを示し、曲線B、C,D、E
は予熱帯、第1加熱帯、第2加熱帯、均熱帯の各々の炉
温を50℃。
Figure 2 shows the temperature change of a steel billet when the furnace temperature of each phase is raised in a continuous four-zone heating furnace consisting of a preheating zone, a first heating zone, a second heating zone, and a soaking zone. Curve A shows the basic pattern of steel billet temperature rise, and curves B, C, D, and E
The furnace temperature in each of the preheating zone, first heating zone, second heating zone, and soaking zone is 50℃.

50°C240°C250°C上昇せしめた時の鋼片昇
温パターンを示している。
It shows the temperature increase pattern of the steel piece when the temperature was increased by 50°C, 240°C, and 250°C.

又、第1表は、鋼片厚み160mm〜250 mm、在
炉時間8000SeC〜15000secの場合の一般
的な設定温度に対する平均的な各帯炉温の抽出温度への
影響度を示したものである。
Furthermore, Table 1 shows the degree of influence of each average zone furnace temperature on the extraction temperature with respect to the general set temperature when the slab thickness is 160 mm to 250 mm and the furnace time is 8000 Sec to 15000 sec. .

この第2図、第1表からも明らかなように、装入側帯炉
温の変化による鋼片の温度変化は、鋼片が抽出側へ移行
する過程で緩和され、鋼片抽出温度に対する影響度は小
さく、抽出側帯炉温変化が抽出温度に大きく影響してい
る。
As is clear from Fig. 2 and Table 1, the temperature change in the billet caused by the change in the charging side zone furnace temperature is alleviated during the process of the billet moving to the extraction side, and the influence on the billet extraction temperature is is small, and the temperature change in the extraction side zone has a large effect on the extraction temperature.

従って、装入側に近い帯はどえの帯内で最も加熱されに
くい鋼片に対応させて炉温設定する必要はなく、より平
均的な炉温設定を採用し、抽出側帯ではその帯内におけ
る加熱されにくい鋼片により大きな重みをかけて炉温設
定をすればよいのである。
Therefore, it is not necessary to set the furnace temperature in the zone near the charging side to correspond to the steel billet that is least heated in the other zone, and to adopt a more average furnace temperature setting, and in the extraction side zone, The furnace temperature can be set by placing more weight on the steel pieces that are less likely to be heated.

ただし、この場合、各鋼片抽出温度が各々圧延可能なあ
る許容範囲におさまるよう考慮しなければならない。
However, in this case, consideration must be given so that the extraction temperature of each billet falls within a certain allowable range for rolling.

すなわち、上記各鋼片に対する炉温修正量△Tliが求
められた時点で、第3図に示す如く、装入側帯では、△
Tliに大差があるにも拘らず、重み係数Wliにあま
り差をつけず、重み勾配αを小さくして、より平均的に
前記式(7)によりその帯の炉温修正量△Tdを決定し
、抽出側帯では、△Tliの差にもとづき、その重み係
数wllに差をもたせて重み勾配αを大きくして上記式
(7)によりその帯の炉温修正量△T7を決定するので
ある。
That is, at the time when the furnace temperature correction amount ΔTli for each steel billet is determined, as shown in FIG.
Even though there is a large difference in Tli, the weighting gradient α is made small without making much of a difference in the weighting coefficient Wli, and the furnace temperature correction amount ΔTd for that zone is determined more averagely using the above formula (7). , in the extraction side band, the weighting coefficient wll is made different based on the difference in ΔTli to increase the weighting gradient α, and the furnace temperature correction amount ΔT7 for that band is determined by the above equation (7).

尚、各相についてその炉温修正量△Tlが決定されれば
該炉温修正量△T[にもとづき従来公知の加熱手段によ
り温度制御するものである。
Incidentally, once the furnace temperature correction amount ΔTl is determined for each phase, the temperature is controlled by a conventionally known heating means based on the furnace temperature correction amount ΔT.

本発明は以上の通りであって、本発明によれば、各帯内
における各鋼片の各々について炉温修正量△Tliを求
め、この修正量の値によって重み係数VWiを定め加重
平均して各相の炉温修正量△Tlを求める為に、従来の
制御方法に比して著しく燃料原単位を低減できるのであ
り、又、装入側帯では加重平均してはいるが、重み勾配
を小さくして、より平均的な設定をし、抽出側帯では、
各鋼片の目標温度を考慮して、重み勾配を大きくして加
重平均している為に、さらに燃料原単位を低減できるの
である。
The present invention is as described above, and according to the present invention, the furnace temperature correction amount ΔTli is determined for each steel slab in each band, and the weighting coefficient VWi is determined based on the value of this correction amount, and the weighted average is calculated. Since the furnace temperature correction amount △Tl for each phase is determined, the fuel consumption rate can be significantly reduced compared to conventional control methods, and although weighted averaging is performed in the charging side zone, the weight gradient can be reduced. and set it to a more average setting, and in the extraction sideband,
Since weighted averaging is performed by increasing the weight gradient in consideration of the target temperature of each steel billet, fuel consumption can be further reduced.

又、当然のことながら、後工程である圧延、および、各
鋼片の目標温度も考慮している為に、生産性、製品品質
が低下するという懸念は全くないのである。
Also, as a matter of course, since the subsequent process of rolling and the target temperature of each piece of steel are taken into account, there is no concern that productivity or product quality will deteriorate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における重み係数の1例を示し、第2図
は、4帯式連続加熱炉の各相における炉温変化による鋼
片昇温状況を示し、第3図は、各相における重み係数の
1例を示すグラフである。
Fig. 1 shows an example of the weighting coefficient in the present invention, Fig. 2 shows the situation of steel billet temperature rise due to furnace temperature changes in each phase of a four-zone continuous heating furnace, and Fig. 3 shows an example of the steel billet temperature in each phase. It is a graph showing an example of weighting coefficients.

Claims (1)

【特許請求の範囲】 1 多帯式連続加熱炉の各帯内に位置する各被加熱体の
温度を、その帯内の雰囲気温度と、炉特性と、その被加
熱体の熱特性、熱履歴とから求めると共に、各被加熱体
の各帯内残り滞留時間を、その被加熱体の位置、その被
加熱体より抽出方向前方の被加熱体の位置、抽出ピッチ
から求め、各被加熱体の各々について各相の炉温修正量
△Tliを、その被加熱体のその帯における出口目標温
度と、前記被加熱体温度と、前記残り滞留時間と、その
帯内の雰囲気温度とから求めて、各相における炉温修正
量△Tlを決定する方法において、各被加熱体について
の各帯炉温修正量△Tliに対して重み係数Wliを定
めて、 (但し、nはl帯における被加熱体の個数)により、各
相における炉温修正量△Tlを決定することを特徴とす
る多帯式連続加熱炉の炉温修正量設定方法。 2 多帯式連続加熱炉の各帯内に位置する各被加熱体の
温度を、その帯内の雰囲気温度と、炉特性と、その被加
熱体の熱特性、熱履歴とから求めると共に、各被加熱体
の各帯内残り滞留時間を、その被加熱体の位置、その被
加熱体より抽出方向前方の被加熱体の位置、抽出ピッチ
力;ら求め、各被加熱体の各々について各相の炉温修正
量△Triを、その被加熱体のその帯における出口目標
温度と、前記被加熱体温度と、前記残り滞留時間と、そ
の帯内の雰囲気温度とから求めて、各相における炉温修
正量△Tlを決定する方法において、各被加熱体につい
ての各帯炉温修正量△Tliに対して重み係数Wliを
、ソノ重み勾配α(−dwli / d△T#i )を
装入側帯で小さく抽出側帯で大きくするように定め、 (但し、nはl帯における被加熱体の個数)により、各
相における炉温修正量△Tlを決定することを特徴とす
る多帯式連続加熱炉の炉温修正量設定方法。
[Claims] 1. The temperature of each object to be heated located in each zone of a multi-zone continuous heating furnace can be determined based on the ambient temperature within that zone, the furnace characteristics, the thermal characteristics and thermal history of the object to be heated. In addition, the remaining residence time of each heated object in each zone is determined from the position of the heated object, the position of the heated object in front of the heated object in the extraction direction, and the extraction pitch. For each phase, the furnace temperature correction amount ΔTli of each phase is determined from the outlet target temperature of the heated body in that zone, the heated body temperature, the remaining residence time, and the atmospheric temperature in that zone, In the method of determining the furnace temperature correction amount △Tl in each phase, a weighting coefficient Wli is determined for each zone furnace temperature correction amount △Tli for each heated object (where n is the heated object in the l zone). A method for setting a furnace temperature correction amount for a multi-zone continuous heating furnace, characterized in that the furnace temperature correction amount ΔTl in each phase is determined based on the number of furnace temperature correction amounts ΔTl in each phase. 2. Determine the temperature of each heated object located in each zone of the multi-zone continuous heating furnace from the ambient temperature in that zone, the furnace characteristics, the thermal characteristics and thermal history of the heated object, and The remaining residence time of the heated object in each zone is determined from the position of the heated object, the position of the heated object in front of the heated object in the extraction direction, and the extraction pitch force, and each phase is determined for each heated object. The furnace temperature correction amount ΔTri in each phase is calculated from the outlet target temperature of the heated body in that zone, the heated body temperature, the remaining residence time, and the ambient temperature in the zone. In the method of determining the temperature correction amount △Tl, a weighting coefficient Wli and a sono weight gradient α (-dwli / d△T#i) are inserted for each zone furnace temperature correction amount △Tli for each heated object. Multi-zone continuous heating characterized by determining the furnace temperature correction amount △Tl in each phase to be small in the side zone and large in the extraction side zone (where n is the number of objects to be heated in the 1 zone). How to set the furnace temperature correction amount.
JP54083317A 1979-06-29 1979-06-29 How to set the furnace temperature correction amount for a multi-zone continuous heating furnace Expired JPS5941489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54083317A JPS5941489B2 (en) 1979-06-29 1979-06-29 How to set the furnace temperature correction amount for a multi-zone continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54083317A JPS5941489B2 (en) 1979-06-29 1979-06-29 How to set the furnace temperature correction amount for a multi-zone continuous heating furnace

Publications (2)

Publication Number Publication Date
JPS569331A JPS569331A (en) 1981-01-30
JPS5941489B2 true JPS5941489B2 (en) 1984-10-08

Family

ID=13799039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54083317A Expired JPS5941489B2 (en) 1979-06-29 1979-06-29 How to set the furnace temperature correction amount for a multi-zone continuous heating furnace

Country Status (1)

Country Link
JP (1) JPS5941489B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126919A (en) * 1981-01-30 1982-08-06 Kawasaki Steel Corp Controlling method for continuous steel-heating purnace
JPS57137424A (en) * 1981-02-20 1982-08-25 Kawasaki Steel Corp Control method for continuous heating furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130526A (en) * 1974-09-07 1976-03-15 Nippon Steel Corp ATSUENMAMAKOJINSEIKOZAINOSEIZOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130526A (en) * 1974-09-07 1976-03-15 Nippon Steel Corp ATSUENMAMAKOJINSEIKOZAINOSEIZOHO

Also Published As

Publication number Publication date
JPS569331A (en) 1981-01-30

Similar Documents

Publication Publication Date Title
US4257767A (en) Furnace temperature control
US4606529A (en) Furnace controls
CA1085611A (en) Method for enhancing the heating efficiency of continuous slab reheating furnaces
JPS5941489B2 (en) How to set the furnace temperature correction amount for a multi-zone continuous heating furnace
JP4998655B2 (en) Combustion control method for continuous heating furnace
JP3710572B2 (en) Heating furnace control device
JP2006272395A (en) Method and apparatus for controlling cooling and computer program
JPS61261433A (en) Method for controlling temperature of heating furnace
JPS6133884B2 (en)
JPH076001B2 (en) Furnace temperature setting device for continuous heating furnace
JP2011005517A (en) Method for reducing width of slab for hot rolling
JPH0332607B2 (en)
JP4815837B2 (en) Combustion control method for continuous heating furnace
JPS6411686B2 (en)
JPH046224A (en) Method for controlling temperature of continuous annealing furnace
JPH06306453A (en) Method for eliminating skid mark in continuous heating furnace
JPS5818401B2 (en) Continuous heating furnace control method
JPS5950121A (en) Method for controlling temperature in multizone continuous heating furnace
JPS5819727B2 (en) Heating furnace control method in hot rolling
JPS61170508A (en) Method for erasing skid mark in continuous heating furnace
JPS637843B2 (en)
JPH0759722B2 (en) Induction heating control method during subsequent induction heating of a slab previously gas-heated
Andreev et al. Obtaining reliable information on energy-saving regimes for the heating of continuous-cast semifinished products prior to rolling
JPH0360887B2 (en)
JPS608886B2 (en) Temperature measuring device for rolled plate materials during hot rolling