WO2020149205A1 - Polymerizable liquid crystal composition, retardation plate, elliptically polarizing plate and organic el display device - Google Patents

Polymerizable liquid crystal composition, retardation plate, elliptically polarizing plate and organic el display device Download PDF

Info

Publication number
WO2020149205A1
WO2020149205A1 PCT/JP2020/000431 JP2020000431W WO2020149205A1 WO 2020149205 A1 WO2020149205 A1 WO 2020149205A1 JP 2020000431 W JP2020000431 W JP 2020000431W WO 2020149205 A1 WO2020149205 A1 WO 2020149205A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polymerizable liquid
cured film
film
group
Prior art date
Application number
PCT/JP2020/000431
Other languages
French (fr)
Japanese (ja)
Inventor
由紀 西上
伸行 幡中
慶史 小松
鈴鹿 住吉
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019165203A external-priority patent/JP7384600B2/en
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202080009315.6A priority Critical patent/CN113330040A/en
Priority to KR1020217025374A priority patent/KR20210116520A/en
Publication of WO2020149205A1 publication Critical patent/WO2020149205A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/10Esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a polymerizable liquid crystal composition, a retardation plate including a liquid crystal cured film which is a cured product of the polymerizable liquid crystal composition, an elliptically polarizing plate including the retardation plate, and an organic EL display device.
  • Patent Document 1 As a retardation plate used for a flat panel display, a retardation plate showing reverse wavelength dispersion is known (Patent Document 1). Particularly in recent years, there has been a demand for a thinner flat panel display, and a retardation plate including a liquid crystal cured layer formed by curing a polymerizable liquid crystal compound in an aligned state by irradiation with ultraviolet rays has been developed (Patent Document 2). ).
  • JP 2012-214801 A JP, 2005-163935, A
  • a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound is generally low in stability and may cause gelation of the polymerizable liquid crystal compound during storage. In order to prevent such gelation, polymerization is prohibited.
  • the agent is blended, there is a problem that the polymerization inhibitor inhibits the curing of the polymerizable liquid crystal compound and the polymerization rate of the obtained retardation plate is lowered.
  • a polymerizable liquid crystal compound exhibiting reverse wavelength dispersibility generally has maximum absorption in the ultraviolet region, and when irradiated with high-intensity ultraviolet light to increase the polymerization rate of the polymerizable liquid crystal compound, its optical The characteristics may be deteriorated, and the optical performance of the obtained retardation plate may not always be sufficiently satisfied.
  • An object of the present invention is to provide a polymerizable liquid crystal composition that has high stability during storage and can be polymerized at a high polymerization rate.
  • a polymerizable liquid crystal composition comprising a polymerizable liquid crystal compound, at least one primary antioxidant, at least one secondary antioxidant and a photoradical polymerization initiator, wherein the polymerizable liquid crystal compound is an ester.
  • a polymerizable liquid crystal composition having a structure and a (meth)acryloyl group and exhibiting maximum absorption at a wavelength of 300 to 400 nm.
  • Retardation plate including. [11] The retardation plate according to the above [10], wherein the content of the primary antioxidant in the liquid crystal cured film is 0.001 part by mass or less based on 100 parts by mass of the polymer of the polymerizable liquid crystal compound. [12] In the above [10] or [11], the content of the secondary antioxidant in the cured liquid crystal film is 0.05 to 15 parts by mass with respect to 100 parts by mass of the polymer of the polymerizable liquid crystal compound. The retardation plate described.
  • nx represents the main refractive index at a wavelength ⁇ nm in the direction parallel to the plane of the liquid crystal cured film
  • ny represents the refractive index ellipsoid formed by the liquid crystal cured film.
  • the retardation plate according to any one of [10] to [12], which has optical characteristics represented by [14]
  • the refractive index at a wavelength ⁇ nm in the direction parallel to the plane of the liquid crystal cured film and orthogonal to the direction of nx is represented, and nz is the refraction formed by the liquid crystal cured film.
  • the refractive index at the wavelength ⁇ nm in the direction perpendicular to the plane of the liquid crystal cured film is represented)], and the unit according to any one of the above [10] to [12].
  • the polymerizable liquid crystal composition of the present invention contains a polymerizable liquid crystal compound, at least one primary antioxidant, at least one secondary antioxidant, and a photoradical polymerization initiator.
  • the polymerizable liquid crystal composition of the present invention contains a combination of a primary antioxidant and a secondary antioxidant, thereby suppressing deterioration of the polymerizable liquid crystal compound when stored for a long period of time as a polymerizable liquid crystal composition, and stable. It is possible to improve the sex.
  • the polymerizable liquid crystal composition can sufficiently cure the polymerizable liquid crystal compound while suppressing damage due to high-intensity ultraviolet rays, etc.
  • the polymerizable liquid crystal composition has a liquid crystal cured film excellent in optical properties. Can be obtained. Therefore, it is considered that it is possible to obtain a retardation plate including a liquid crystal cured film that is unlikely to change in performance even under a harsh environment.
  • the polymerizable liquid crystal composition of the present invention comprises a polymerizable liquid crystal compound having an ester structure and a (meth)acryloyl group and exhibiting maximum absorption at a wavelength of 300 to 400 nm (hereinafter referred to as “polymerizable liquid crystal compound (A)”). (Also referred to as).
  • a polymerizable liquid crystal compound having an ester structure in its molecular structure is likely to be decomposed and deteriorated at the ester structure portion when exposed to light such as ultraviolet rays. For this reason, for example, by irradiating with high-intensity ultraviolet light during curing, the optical characteristics of the liquid crystal cured film formed from the polymerizable liquid crystal compound tends to deteriorate.
  • the polymerizable liquid crystal composition of the present invention is excellent in the effect of suppressing photodegradation of the polymerizable liquid crystal compound, the effect of the present invention can be particularly remarkably exhibited when a polymerizable liquid crystal compound having an ester structure that easily causes photodegradation is used. ..
  • a polymerization reaction or gelation of the polymerizable liquid crystal compound may proceed during long-term storage, but the polymerizable liquid crystal compound showing maximum absorption at a wavelength of 300 to 400 nm.
  • the polymerizable liquid crystal compound exhibiting the maximum absorption at a wavelength of 300 to 400 nm is contained, whereby the long-term stability of the polymerizable liquid crystal composition is improved. This is advantageous, and the orientation and film thickness uniformity of the resulting liquid crystal cured film can be improved.
  • the maximum absorption wavelength of the polymerizable liquid crystal compound can be measured in a solvent using an ultraviolet-visible spectrophotometer.
  • the solvent is a solvent capable of dissolving the polymerizable liquid crystal compound, and examples thereof include chloroform.
  • the polymerizable liquid crystal compound (A) means a liquid crystal compound having a photopolymerizable group, a polymerizable liquid crystal compound having an ester structure and a (meth)acryloyl group, and having a maximum absorption at a wavelength of 300 to 400 nm.
  • a liquid crystal compound there is no particular limitation as long as it is a liquid crystal compound, and for example, a polymerizable liquid crystal compound known in the art in the field of retardation plates can be used.
  • the photopolymerizable group is a polymerizable group and refers to a reactive active species generated from a photopolymerization initiator, for example, a group capable of participating in a polymerization reaction by an active radical or an acid, such as vinyl.
  • a photopolymerization initiator for example, a group capable of participating in a polymerization reaction by an active radical or an acid, such as vinyl.
  • the photopolymerizable liquid crystal compound (A) is a liquid crystal compound having one photopolymerizable group
  • the photopolymerizable group is a (meth)acryloyl group.
  • the polymerizable liquid crystal compound (A) has two or more photopolymerizable groups, at least one of them is a (meth)acryloyl group, and all the photopolymerizable groups contained in the polymerizable liquid crystal compound (A). Is preferably a (meth)acryloyl group.
  • (meth)acryloyl means an acryloyl group or a methacryloyl group.
  • the liquid crystallinity exhibited by the polymerizable liquid crystal compound (A) may be a thermotropic liquid crystal or a lyotropic liquid crystal, but the thermotropic property is that the film thickness can be precisely controlled. Liquid crystals are preferred.
  • the phase ordered structure in the thermotropic liquid crystal may be nematic liquid crystal or smectic liquid crystal.
  • the polymerizable liquid crystal compound (A) only one kind may be used, or two or more kinds may be used in combination.
  • Examples of the polymerizable liquid crystal compound (A) include compounds having the following characteristics (a) to (d).
  • (A) A compound capable of forming a nematic phase or a smectic phase.
  • (C) ⁇ electrons are present in a direction [intersection direction (b)] intersecting with the major axis direction (a).
  • D A polymerizable liquid crystal compound defined by the following formula (i), where N( ⁇ a) is the total of ⁇ electrons existing in the major axis direction (a) and N(Aa) is the total of molecular weights present in the major axis direction.
  • ⁇ electron density in the major axis direction (a) of: D( ⁇ a) N( ⁇ a)/N(Aa) (i) And a total of ⁇ electrons existing in the cross direction (b) is N( ⁇ b), and a total of molecular weights existing in the cross direction (b) is N(Ab), and the polymerizable liquid crystal compound is defined by the following formula (ii).
  • a polymerizable liquid crystal compound having ⁇ electrons in the major axis and in a direction intersecting with the major axis is generally likely to have a T-shaped structure.
  • the major axis direction (a) and the ⁇ electron number N are defined as follows.
  • the major axis direction (a) is, for example, a rod-shaped major axis direction in the case of a compound having a rod-shaped structure.
  • the number of ⁇ electrons N ( ⁇ a) existing in the major axis direction (a) does not include ⁇ electrons that disappear due to the polymerization reaction.
  • the number of ⁇ electrons existing in the major axis direction (a) is the total number of ⁇ electrons on the major axis and ⁇ electrons conjugated with this, and exists in the major axis direction (a), for example.
  • the number of ⁇ electrons existing in a ring that satisfies Huckel's rule is included.
  • the number of ⁇ electrons N ( ⁇ b) existing in the cross direction (b) does not include ⁇ electrons that disappear due to the polymerization reaction.
  • the polymerizable liquid crystal compound satisfying the above has a mesogenic structure in the major axis direction.
  • a liquid crystal phase (nematic phase, smectic phase) is developed by this mesogenic structure.
  • the polymerizable liquid crystal compound satisfying the above (a) to (d) can be applied on the substrate or the alignment film and heated to the phase transition temperature or higher to form a nematic phase or a smectic phase.
  • the polymerizable liquid crystal compounds are usually aligned such that the major axis directions thereof are parallel to each other, and the major axis direction is the alignment direction of the nematic phase.
  • a polymer film composed of a polymer polymerized in a state of being aligned in the major axis direction (a) can be formed.
  • This polymer film absorbs ultraviolet rays by ⁇ electrons in the major axis direction (a) and ⁇ electrons in the cross direction (b).
  • the maximum absorption wavelength of ultraviolet rays absorbed by ⁇ electrons in the crossing direction (b) is ⁇ bmax.
  • ⁇ bmax is usually 300 nm to 400 nm.
  • the density of ⁇ electrons satisfies the above formula (iii), and the ⁇ electron density in the crossing direction (b) is higher than the ⁇ electron density in the major axis direction (a).
  • the absorption of the linearly polarized ultraviolet light having a wavelength of ⁇ bmax is larger than that of the linearly polarized ultraviolet light having a vibration plane in the major axis direction (a) (the wavelength is ⁇ bmax).
  • the ratio (the ratio of the absorbance in the crossing direction (b) of the linearly polarized ultraviolet light/the absorbance in the major axis direction (a)) is, for example, more than 1.0, preferably 1.2 or more and usually 30 or less, for example 10 or less. Is.
  • the polymerizable liquid crystal compound having the above-mentioned characteristics is often one in which the birefringence of the homopolymer in the aligned state exhibits reverse wavelength dispersion.
  • the polymerizable compound (A) contained in the polymerizable liquid crystal composition of the present invention is a homopolymer thereof having reverse wavelength dispersion.
  • polymerizable liquid crystal compound (A) specifically, for example, the following formula (A1): The compound represented by
  • Ar represents a divalent group having an aromatic group which may have a substituent.
  • aromatic group refers to an aromatic group having a number of ⁇ electrons of [4n+2] according to Huckel's rule, and is exemplified by (Ar-1) to (Ar-23) described later. You may have two or more such Ar groups through the bivalent coupling group.
  • n represents an integer.
  • the aromatic group contains at least one of a nitrogen atom, an oxygen atom and a sulfur atom.
  • the divalent group Ar may contain one aromatic group or two or more aromatic groups. When there is one aromatic group, the divalent group Ar may be a divalent aromatic group which may have a substituent. When the divalent group Ar contains two or more aromatic groups, the two or more aromatic groups are bonded to each other by a single bond or a divalent bonding group such as —CO—O— or —O—. May be.
  • G 1 and G 2 each independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group.
  • the hydrogen atom contained in the divalent aromatic group or the divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, or a carbon atom.
  • the carbon atom which may be substituted with an alkoxy group, a cyano group or a nitro group of the formulas 1 to 4 and which constitutes the divalent aromatic group or divalent alicyclic hydrocarbon group is an oxygen atom or a sulfur atom. Alternatively, it may be substituted with a nitrogen atom.
  • L 1 and L 2 are each independently a divalent linking group having an ester structure.
  • B 1 and B 2 are each independently a single bond or a divalent linking group.
  • k and l each independently represent an integer of 0 to 3 and satisfy the relationship of 1 ⁇ k+l.
  • B 1 and B 2 , and G 1 and G 2 may be the same as or different from each other.
  • E 1 and E 2 each independently represent an alkanediyl group having 1 to 17 carbon atoms, and an alkanediyl group having 4 to 12 carbon atoms is more preferable.
  • P 1 and P 2 each independently represent a photopolymerizable group or a hydrogen atom, and at least one is a (meth)acryloyl group.
  • G 1 and G 2 are each independently preferably a 1,4-phenylenediyl group optionally substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • a 1,4-cyclohexanediyl group which may be substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms, more preferably 1 substituted with a methyl group.
  • At least one of a plurality of G 1 and G 2 present is preferably a divalent alicyclic hydrocarbon group, and at least 1 of G 1 and G 2 bonded to L 1 or L 2 More preferably, it is a divalent alicyclic hydrocarbon group.
  • L 1 and L 2 are each independently preferably —R a1 COOR a2 — (R a1 and R a2 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms), and more preferably — COOR a2-1 - a (R a2-1 is a single bond, -CH 2 -, - - CH 2 CH 2 of representing any), more preferably -COO- or -COOCH 2 CH 2 - is.
  • B 1 and B 2 are preferably each independently a single bond, an alkylene group having 1 to 4 carbon atoms, —O—, —S—, —R a3 OR a4 —, —R a5 COOR a6 —, —R. a7 OCOR a8 ⁇ , or —R a9 OC ⁇ OOR a10 ⁇ .
  • R a3 to R a10 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms.
  • B 1 and B 2 are each independently, more preferably a single bond, —OR a4-1 —, —CH 2 —, —CH 2 CH 2 —, —COOR a6-1 —, or —OCOR a8-1 —. is there.
  • R a4-1 , R a6-1 and R a8-1 each independently represent a single bond, —CH 2 — or —CH 2 CH 2 —.
  • B 1 and B 2 are each independently more preferably a single bond, -O -, - CH 2 CH 2 -, - COO -, - COOCH 2 CH 2 -, - OCO- or -OCOCH 2 CH 2 - is ..
  • Examples of the photopolymerizable group represented by P 1 or P 2 include epoxy group, vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyl group, methacryloyl group, oxiranyl group, And oxetanyl group and the like.
  • P 1 or P 2 at least one acryloyl group or a methacryloyl group, P 1 and P 2 are both an acryloyl group or a methacryloyl group is preferable, an acryloyl group is more preferable.
  • Ar preferably has at least one selected from an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocycle which may have a substituent, and an electron-withdrawing group.
  • aromatic hydrocarbon ring examples include a benzene ring, a naphthalene ring and an anthracene ring, and a benzene ring and a naphthalene ring are preferable.
  • the aromatic heterocycle includes a furan ring, a benzofuran ring, a pyrrole ring, an indole ring, a thiophene ring, a benzothiophene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazole ring, a triazine ring, a pyrroline ring, an imidazole ring and a pyrazole ring.
  • a thiazole ring, a benzothiazole ring, or a benzofuran ring is preferable, and a benzothiazole group is more preferable.
  • Ar contains a nitrogen atom, the nitrogen atom preferably has ⁇ electrons.
  • the total number N ⁇ of ⁇ electrons contained in the divalent aromatic group represented by Ar is preferably 8 or more, more preferably 10 or more, further preferably 14 or more, and particularly It is preferably 16 or more. Further, it is preferably 30 or less, more preferably 26 or less, and further preferably 24 or less.
  • Examples of the aromatic group represented by Ar include the following groups.
  • Z 0 , Z 1 and Z 2 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 12 carbon atoms.
  • Z 0 , Z 1 and Z 2 may include a polymerizable group.
  • Q 1 and Q 2 each independently represent —CR 1′ R 2′ —, —S—, —NH—, —NR 1′ —, —CO— or —O—, and R 1′ and R 2 ' Independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • J 1 and J 2 each independently represent a carbon atom or a nitrogen atom.
  • Y 1 , Y 2 and Y 3 each independently represent an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group.
  • W 1 and W 2 each independently represent a hydrogen atom, a cyano group, a methyl group or a halogen atom, and m represents an integer of 0 to 6.
  • Examples of the aromatic hydrocarbon group for Y 1 , Y 2 and Y 3 include aromatic hydrocarbon groups having 6 to 20 carbon atoms such as phenyl group, naphthyl group, anthryl group, phenanthryl group and biphenyl group, and phenyl group. , A naphthyl group is preferable, and a phenyl group is more preferable.
  • the aromatic heterocyclic group includes a furyl group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group, a benzothiazolyl group and the like, a nitrogen atom, an oxygen atom, a sulfur atom and the like, which has at least one hetero atom and has 4 to 20 carbon atoms.
  • Examples of the aromatic heterocyclic group include furyl group, thienyl group, pyridinyl group, thiazolyl group and benzothiazolyl group.
  • Y 1 , Y 2 and Y 3 may each independently be an optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group.
  • the polycyclic aromatic hydrocarbon group means a condensed polycyclic aromatic hydrocarbon group or a group derived from an aromatic ring assembly.
  • the polycyclic aromatic heterocyclic group means a condensed polycyclic aromatic heterocyclic group or a group derived from an aromatic ring assembly.
  • Z 0 , Z 1 and Z 2 are preferably each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, a cyano group, a nitro group or an alkoxy group having 1 to 12 carbon atoms
  • Z 0 is more preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or a cyano group
  • Z 1 and Z 2 are further preferably a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group or a cyano group.
  • Z 0 , Z 1 and Z 2 may include a polymerizable group.
  • Q 1 and Q 2 are preferably —NH—, —S—, —NR 1′ — and —O—, and R 1′ is preferably a hydrogen atom.
  • R 1′ is preferably a hydrogen atom.
  • —S—, —O—, and —NH— are particularly preferable.
  • formulas (Ar-1) to (Ar-23), formula (Ar-6) and formula (Ar-7) are preferable from the viewpoint of molecular stability.
  • Y 1 may form an aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 .
  • the aromatic heterocyclic group include those described above as the aromatic heterocyclic ring which Ar may have, and examples thereof include a pyrrole ring, an imidazole ring, a pyrroline ring, a pyridine ring, a pyrazine ring, a pyrimidine ring and an indole. Ring, quinoline ring, isoquinoline ring, purine ring, pyrrolidine ring and the like. This aromatic heterocyclic group may have a substituent.
  • Y 1 may be the above-mentioned optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 .
  • examples thereof include a benzofuran ring, a benzothiazole ring, a benzoxazole ring and the like.
  • the polymerizable liquid crystal composition of the present invention may contain a polymerizable liquid crystal compound other than the polymerizable liquid crystal compound (A) as long as it does not affect the effects of the present invention.
  • a polymerizable liquid crystal compound include polymerization as described in JP 2010-31223 A, JP 2010-270108 A, JP 2011-6360 A and JP 2011-207765 A. Liquid crystal compounds, polymerizable liquid crystal compounds exhibiting positive wavelength dispersion, and the like.
  • the content of the polymerizable liquid crystal compound in the polymerizable liquid crystal composition is, for example, 70 to 99.5 parts by mass, preferably 80 to 99 parts by mass, based on 100 parts by mass of the solid content of the polymerizable liquid crystal composition. %, more preferably 85 to 98 parts by mass, still more preferably 90 to 95 parts by mass.
  • the content of the polymerizable liquid crystal compound is within the above range, it is advantageous from the viewpoint of the orientation of the resulting liquid crystal cured film.
  • the solid content of the polymerizable liquid crystal composition means all components excluding volatile components such as an organic solvent from the polymerizable liquid crystal composition.
  • the polymerizable liquid crystal composition of the present invention contains a primary antioxidant.
  • a primary antioxidant By containing the primary antioxidant, gelation of the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition is suppressed, and the storage stability of the polymerizable liquid crystal composition can be enhanced.
  • primary antioxidants include phenolic antioxidants and amine antioxidants that have a function of trapping generated radicals. As the primary antioxidant, only one kind may be used, or two or more kinds may be used in combination.
  • phenolic antioxidants examples include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, and 2,6-dicyclohexyl-4-methylphenol.
  • phenolic antioxidants examples include Sumilizer (registered trademark) BHT (2,6-di-t-butyl-4-methylphenol) and Sumilizer GM (2-tert-butyl-6-(3 -Tert-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenyl acrylate), Sumilizer GS(F)(2-[1-(2-hydroxy-3,5-di-tert-pentylphenyl)ethyl ]-4,6-Di-tert-pentylphenyl acrylate), Sumilizer GA-80 (3,9-bis[2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]] -1,1-Dimethylethyl]-2,4,8,10-tetraoxaspiro[5.5]undecane), Sumilizer MDP-S (2,2'-methylenebis(
  • Butylbenzyl) isocyanurate (Cyanox 1790, manufactured by Cytec), vitamin E (dl- ⁇ -tocopherol) (manufactured by Eisai) and the like.
  • the phenolic antioxidants may be used alone or in combination of two or more.
  • amine-based antioxidants include N,N′-di-sec-butyl-p-phenylenediamine, N,N′-di-isopropyl-p-phenylenediamine, N,N′-bis(1,4) -Dimethylpentyl)-p-phenylenediamine, N,N'-bis(1-ethyl-3-methylpentyl)-p-phenylenediamine, N,N'-bis(1-methylheptyl)-p-phenylenediamine, N,N'-dicyclohexyl-p-phenylenediamine, N,N'-diphenyl-p-phenylenediamine, N,N'-bis(2-naphthyl)-p-phenylenediamine, N-isopropyl-N'-phenyl- p-phenylenediamine, N-(1,3-dimethylbutyl)-N'-phenyl-p-p
  • a commercially available product may be used as the amine antioxidant.
  • examples of commercially available amine-based antioxidants include Sumilizer BPA (N,N′-di-sec-butyl-p-phenylenediamine), Sumilizer BPA-M1, Sumilizer 4ML (p-phenylenediamine derivative), Sumilizer 9A (alkalinized difinylamine) and the like.
  • the amine antioxidant may be used alone or in combination of two or more kinds.
  • the polymerizable liquid crystal composition of the present invention preferably contains a phenol compound as a primary antioxidant.
  • the molecular weight of the primary antioxidant is preferably 400 g/mol or less, more preferably 350 g/mol or less, further preferably 300 g/mol or less, and particularly preferably 250 g/mol or less.
  • the radical scavenging function is sufficiently exhibited in the polymerizable liquid crystal composition, and gelation of the polymerizable liquid crystal compound when the polymerizable liquid crystal composition is stored for a long time is suppressed.
  • the primary antioxidant when producing a liquid crystal cured film from a polymerizable liquid crystal composition, the primary antioxidant is easily vaporized in a drying step or the like, and the polymerization rate of the polymerizable liquid crystal compound is suppressed by suppressing the influence on the polymerization. Can be realized.
  • the lower limit of the molecular weight of the primary antioxidant is not particularly limited, and may be 90 g/mol or more, for example.
  • the content of the primary antioxidant in the polymerizable liquid crystal composition of the present invention is preferably 0.1 to 5 parts by mass, more preferably 0.5 parts by mass or more, based on 100 parts by mass of the polymerizable liquid crystal compound. , And more preferably 3 parts by mass or less.
  • the content of the primary antioxidant is at least the above lower limit, the polymerizable liquid crystal composition can sufficiently function as a radical scavenger, and when the content is at most the above upper limit, the influence on the polymerization of the polymerizable liquid crystal compound is exerted. Can be suppressed and a high polymerization rate can be realized.
  • the polymerizable liquid crystal composition of the present invention contains a secondary antioxidant.
  • a secondary antioxidant By containing a secondary antioxidant, it is possible to suppress damage to the polymerizable liquid crystal compound when the polymerizable liquid crystal composition is irradiated with ultraviolet rays or the like to form a liquid crystal cured film, and thus the liquid crystal is cured with excellent optical properties. A membrane can be obtained. Further, when the polymerizable liquid crystal compound is cured, it is possible to irradiate ultraviolet rays with higher intensity while suppressing damage to the polymerizable liquid crystal compound, and thus the polymerizable liquid crystal compound can be sufficiently cured.
  • the polymerizable liquid crystal composition can be used to prepare a liquid crystal cured film having high durability in which change in optical performance hardly occurs even in a severe environment such as a high temperature environment.
  • secondary antioxidants include phosphorus-based antioxidants and sulfur-based antioxidants that have the function of decomposing peroxides generated from radicals. As the secondary antioxidant, only one kind may be used, or two or more kinds may be used in combination.
  • phosphorus-based antioxidants include trioctyl phosphite, trilauryl phosphite, tridecyl phosphite, (octyl)diphenyl phosphite, tris(2,4-di-tert-butylphenyl)phosphite, triphenyl Phosphite, tris(butoxyethyl)phosphite, tris(nonylphenyl)phosphite, distearyl pentaerythritol diphosphite, tetra(tridecyl)-1,1,3-tris(2-methyl-5-tert-butyl-) 4-hydroxyphenyl)butanediphosphite, tetra(C12-C15 mixed alkyl)-4,4'-isopropylidenediphenyldiphosphite, tetra(tridecyl)-4,4'-butylidenebis(
  • a commercially available product may be used as the phosphorus antioxidant.
  • Examples of commercially available phosphorus antioxidants include Sumilizer GP (6-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra -Tert-butyl-dibenzo[d,f][1,3,2]dioxaphosphepine) (manufactured by Sumitomo Chemical Co., Ltd.), Irgafos (registered trademark) 168 (tris(2,4-di -Tert-butylphenyl)phosphite), Irgafos 12 (2-[[2,4,8,10-tetrakis(1,1-dimethylethyl)dibenzo[d,f][1,3,2]dioxaphos) Fepin 6-yl]oxy]-N,N-bis[2-[[2,4,8,10-tetrakis(1,1
  • sulfur-based antioxidants include dialkylthiodipropionates such as dilaurylthiodipropionate, dimyristylthiodipropionate and distearylthiodipropionate; polyhydric alcohol esters of butylthiopropionic acid, octylthiopropionate.
  • Propionic acid polyhydric alcohol ester, lauryl thiopropionic acid polyhydric alcohol ester, stearyl thiopropionic acid polyhydric alcohol ester (as the polyhydric alcohol, for example, glycerin, trimethylolethane, trimethylolpropane, pentaerythritol , Trishydroxyethyl isocyanurate, etc.) and polyhydric alcohol esters of alkylthiopropionic acid such as pentaerythryltetrakis-3-laurylthiopropionate.
  • a commercially available product may be used as the sulfur antioxidant.
  • sulfur antioxidants include Sumilizer TPL-R (dilauryl-3,3′-thiodipropionate), Sumilizer TPM (dimyristyl-3,3′-thiodipropionate), Sumilizer TPS.
  • the polymerizable liquid crystal composition of the present invention preferably contains a phosphite compound as a secondary antioxidant from the viewpoint of effectively suppressing deterioration of the liquid crystal upon light irradiation.
  • the molecular weight of the secondary antioxidant is preferably 200 g/mol or more, more preferably 250 g/mol or more, even more preferably 280 g/mol or more.
  • the secondary antioxidant is less likely to disappear in the process of forming a liquid crystal cured film from the polymerizable liquid crystal composition, and the polymerizable liquid crystal compound when irradiated with ultraviolet rays or the like. It is possible to suppress damage to the liquid crystal and obtain a liquid crystal cured film having excellent optical characteristics. Further, it becomes possible to irradiate the ultraviolet ray with higher intensity, and thereby the polymerizable liquid crystal compound can be sufficiently cured.
  • the molecular weight of the secondary antioxidant is preferably 1500 g/mol or less, It is preferably 1000 g/mol or less.
  • the molecular weight of the secondary antioxidant in the polymerizable liquid crystal composition of the present invention is preferably larger than the molecular weight of the primary antioxidant, preferably within the above upper and lower limits.
  • the molecular weight of the secondary antioxidant is larger than that of the primary antioxidant, high storage stability can be achieved, while a liquid crystal cured film having high durability can be obtained while suppressing a decrease in the polymerization rate. it can.
  • the content of the secondary antioxidant in the polymerizable liquid crystal composition of the present invention is preferably 0.1 to 15 parts by mass, more preferably 0.5 part by mass, based on 100 parts by mass of the polymerizable liquid crystal compound.
  • the amount is more preferably 1 part by mass or more, particularly preferably 2 parts by mass or more, more preferably 14 parts by mass or less, and further preferably 12 parts by mass or less.
  • the content of the secondary antioxidant in the polymerizable liquid crystal composition of the present invention is preferably larger than the content of the primary antioxidant.
  • the content of the secondary antioxidant is higher than that of the primary antioxidant, the intermolecular interaction with other components of the primary antioxidant in the polymerizable liquid crystal composition is affected, and the primary oxidation occurs in the drying process.
  • the inhibitor may be easily vaporized.
  • the content of the secondary antioxidant and the primary antioxidant is preferably 2:1 to 150:1, more preferably 5:1 to 100: It is 1.
  • the polymerizable liquid crystal composition of the present invention contains a photo radical polymerization initiator.
  • the photoradical polymerization initiator include benzoin compounds, benzophenone compounds, benzyl ketal compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, oxime compounds, triazine compounds, iodonium salts and sulfonium salts.
  • the photo-radical polymerization initiator only one kind may be used, or two or more kinds may be used in combination.
  • a commercially available product may be used as the photoradical polymerization initiator.
  • Irgacure registered trademark
  • Irgacure 184 Irgacure 651, Irgacure 819, Irgacure 250, Irgacure 369, Irgacure 379, Irgacure 127, Irgacure 2959, Irgacure 754, Irgacure 379EG.
  • Adeka Optimer SP-152 Adeka Optimer SP-170, Adeka Optimer N-1717, Adeka Optimer N-1919, Adeka Arcules NCI-831, Adeka Arcules NCI-930 (above, manufactured by ADEKA Corporation) ), TAZ-A, TAZ-PP (above, manufactured by Nihon Siber Hegner) and TAZ-104 (manufactured by Sanwa Chemical Co., Ltd.).
  • the photoradical polymerization initiator is capable of fully utilizing the energy emitted from the light source and is excellent in productivity. Therefore, the maximum absorption wavelength thereof is preferably 300 nm to 400 nm, more preferably 300 nm to 380 nm, and particularly ⁇ -acetophenone.
  • a system polymerization initiator and an oxime system photopolymerization initiator are preferred.
  • Examples of the ⁇ -acetophenone compound include 2-methyl-2-morpholino-1-(4-methylsulfanylphenyl)propan-1-one and 2-dimethylamino-1-(4-morpholinophenyl)-2-benzylbutane-1.
  • Examples of commercially available ⁇ -acetophenone compounds include Irgacure 369, 379EG, 907 (all manufactured by BASF Japan Ltd.) and Sequol BEE (manufactured by Seiko Chemical Co., Ltd.).
  • Oxime-based photopolymerization initiators generate radicals such as phenyl radicals and methyl radicals when irradiated with light. Polymerization of the polymerizable liquid crystal compound suitably proceeds with this radical, but among them, an oxime-based photopolymerization initiator that generates a methyl radical is preferable because the initiation efficiency of the polymerization reaction is high. Further, from the viewpoint of more efficiently proceeding the polymerization reaction, it is preferable to use a photopolymerization initiator capable of efficiently utilizing ultraviolet rays having a wavelength of 350 nm or more.
  • a triazine compound or a carbazole compound having an oxime structure is preferable, and a carbazole compound having an oxime ester structure is more preferable from the viewpoint of sensitivity.
  • an oxime ester compound having a thioether structure is also preferable in that a liquid crystal cured film having good optical characteristics can be easily obtained.
  • the carbazole compound containing an oxime structure includes 1,2-octanedione, 1-[4-(phenylthio)-2-(O-benzoyloxime)], ethanone, 1-[9-ethyl-6-(2-methyl Examples thereof include benzoyl)-9H-carbazol-3-yl]-1-(O-acetyloxime).
  • oxime ester-based photopolymerization initiators include Irgacure OXE-01, Irgacure OXE-02, Irgacure OXE-03 (above, manufactured by BASF Japan Ltd.), Adeka Optimer N-1919, and Adeka Arcules NCI-831. (Above, manufactured by ADEKA Co., Ltd.) and the like.
  • the content of the photoradical polymerization initiator is usually 0.1 to 30 parts by mass, preferably 1 to 20 parts by mass, and more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. It is a department. Within the above range, the reaction of the polymerizable group sufficiently proceeds, and it is difficult to disturb the alignment of the polymerizable liquid crystal compound.
  • the polymerizable liquid crystal composition of the invention contains two or more photo radical polymerization initiators, the total content of the photo radical polymerization initiators is preferably within the above range.
  • the polymerizable liquid crystal composition of the present invention preferably contains at least one oxime photopolymerization initiator, and more preferably contains an oxime ester compound having a thioether structure.
  • the polymerizable liquid crystal composition of the invention contains two or more photo-radical polymerization initiators, it preferably contains an oxime-based photopolymerization initiator and an ⁇ -acetophenone-based polymerization initiator.
  • the ⁇ -acetophenone-based polymerization initiator an alkylphenone-based polymerization initiator is preferable, and an ⁇ -aminoalkylphenone-based polymerization initiator is more preferable.
  • the polymerizable liquid crystal composition of the present invention further comprises a polymerizable liquid crystal compound, a primary antioxidant, a secondary antioxidant and a photoradical polymerization initiator, as well as a solvent, a leveling agent, a photosensitizer and other additives. May be included. Each of these components may be used alone or in combination of two or more.
  • the solvent a solvent capable of dissolving the polymerizable liquid crystal compound is preferable, and a solvent inert to the polymerization reaction of the polymerizable liquid crystal compound is preferable.
  • the solvent include water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, 2-butoxyethanol, propylene glycol monomethyl ether, and the like.
  • Ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, propylene glycol methyl ether acetate and ethyl lactate; acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone Ketone solvent; Aliphatic hydrocarbon solvent such as pentane, hexane and heptane; Alicyclic hydrocarbon solvent such as ethylcyclohexane; Aromatic hydrocarbon solvent such as toluene and xylene; Nitrile solvent such as acetonitrile; Tetrahydrofuran and dimethoxyethane etc.
  • ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, propylene
  • Ether solvents chlorine-containing solvents such as chloroform and chlorobenzene
  • amide solvents such as dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone (NMP), and 1,3-dimethyl-2-imidazolidinone.
  • NMP N-methyl-2-pyrrolidone
  • 1,3-dimethyl-2-imidazolidinone 1,3-dimethyl-2-imidazolidinone.
  • solvents can be used alone or in combination of two or more.
  • alcohol solvents, ester solvents, ketone solvents, chlorine-containing solvents, amide solvents and aromatic hydrocarbon solvents are preferable.
  • the content of the solvent in the polymerizable liquid crystal composition is preferably 50 to 98 parts by weight, more preferably 70 to 95 parts by weight, based on 100 parts by weight of the polymerizable liquid crystal composition. Therefore, the solid content in 100 parts by mass of the polymerizable liquid crystal composition is preferably 2 to 50 parts by mass. When the solid content is 50 parts by mass or less, the viscosity of the polymerizable liquid crystal composition becomes low, so that the thickness of the film becomes substantially uniform and unevenness tends not to occur easily. The solid content can be appropriately determined in consideration of the thickness of the liquid crystal cured film to be produced.
  • the leveling agent is an additive having a function of adjusting the fluidity of the polymerizable liquid crystal composition and making the coating film obtained by applying the composition more flat.
  • Fluoroalkyl-based leveling agents may be mentioned.
  • a commercially available product may be used as the leveling agent, and specifically, DC3PA, SH7PA, DC11PA, SH28PA, SH29PA, SH30PA, ST80PA, ST86PA, SH8400, SH8700, FZ2123 (all manufactured by Toray Dow Corning Co., Ltd.) , KP321, KP323, KP324, KP326, KP340, KP341, X22-161A, KF6001 (all manufactured by Shin-Etsu Chemical Co., Ltd.), TSF400, TSF401, TSF410, TSF4300, TSF4440, TSF4445, TSF-4446, TSF4452, TSF4452, TSF4452.
  • the content of the leveling agent is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound.
  • the content of the leveling agent is within the above range, it is easy to align the polymerizable liquid crystal compound, and the obtained liquid crystal cured film tends to be smoother, which is preferable.
  • the photoradical polymerization initiator can be made highly sensitive.
  • the photosensitizer include xanthones such as xanthone and thioxanthone; anthracenes having a substituent such as anthracene and alkyl ether; phenothiazine; rubrene.
  • the photosensitizer can be used alone or in combination of two or more kinds.
  • the content of the photosensitizer is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. 3 parts by mass.
  • the polymerizable liquid crystal composition of the present invention comprises a polymerizable liquid crystal compound, a primary antioxidant, a secondary antioxidant and a radical photopolymerization initiator, and optionally a polymerizable liquid crystal compound such as a solvent or an additive, an antioxidant. It can be obtained by stirring the agent and components other than the photo-radical polymerization initiator at a predetermined temperature.
  • the polymerizable liquid crystal composition of the present invention is capable of being highly polymerized by high-intensity ultraviolet light or the like while suppressing damage to the polymerizable liquid crystal compound, and thus has excellent optical properties and is capable of being used under high temperature environments. It can be suitably used to prepare a liquid crystal cured film that exhibits high durability that is unlikely to cause changes in optical performance even in a harsh environment. The resulting liquid crystal cured film is suitable for optical applications such as retardation plates. Is.
  • the present invention is a cured product of the polymerizable liquid crystal composition of the present invention, and is intended for a retardation plate including a liquid crystal cured film cured in a state in which the polymerizable liquid crystal compound in the polymerizable liquid crystal composition is aligned. To do.
  • the content of the primary antioxidant contained in the liquid crystal cured film forming the retardation plate is preferably 0.001 part by mass or less based on 100 parts by mass of the polymer of the polymerizable liquid crystal compound. It is more preferably 0.8 ⁇ 10 ⁇ 3 parts by mass or less, further preferably 0.5 ⁇ 10 ⁇ 3 parts by mass or less, and usually 0.1 ⁇ 10 ⁇ 3 parts by mass or more.
  • the content of the secondary antioxidant contained in the liquid crystal cured film forming the retardation plate is preferably 0.05 to 15 parts by mass with respect to 100 parts by mass of the polymer of the polymerizable liquid crystal compound. , 0.1 to 15 parts by mass, more preferably 1 to 10 parts by mass.
  • the retardation plate of the present invention is a cured product of the polymerizable liquid crystal composition of the present invention and has optical characteristics represented by the following formulas (I), (II) and (III).
  • a liquid crystal cured film is usually a cured product obtained by curing a polymerizable liquid crystal compound in a state of being aligned in the horizontal direction with respect to the plane of the liquid crystal cured film (hereinafter, also referred to as “horizontal alignment liquid crystal cured film”).
  • Re(450)/Re(550) ⁇ 1.00 (I) 1.00 ⁇ Re(650)/Re(550) (II) 100 nm ⁇ Re(550) ⁇ 180 nm (III) [Wherein Re( ⁇ ) represents an in-plane retardation value at a wavelength ⁇ nm of the liquid crystal cured film, and Re (nx( ⁇ ) ⁇ ny( ⁇ )) ⁇ d (d is the thickness of the liquid crystal cured film).
  • nx represents the main refractive index at a wavelength ⁇ nm in the direction parallel to the plane of the liquid crystal cured film
  • ny represents the refractive index ellipsoid formed by the liquid crystal cured film.
  • the horizontal alignment liquid crystal cured film When the horizontal alignment liquid crystal cured film satisfies the formulas (I) and (II), the horizontal alignment liquid crystal cured film has an in-plane retardation value at a short wavelength smaller than an in-plane retardation value at a long wavelength. It exhibits so-called reverse wavelength dispersion.
  • Re(450)/Re(550) is preferably 0.70 or more, more preferably 0.78 or more, since the reverse wavelength dispersibility is improved and the optical characteristics of the retardation plate are further improved. It is preferably 0.92 or less, more preferably 0.90 or less, still more preferably 0.87 or less, particularly preferably 0.86 or less, and particularly preferably 0.85 or less.
  • Re(650)/Re(550) is preferably 1.0 or more, more preferably 1.01 or more, and further preferably 1.02 or more.
  • the effect of improving the front reflection hue coloring when an elliptically polarizing plate having a retardation plate including the horizontally aligned liquid crystal cured film is applied to an organic EL display device (coloring)
  • the effect of suppressing is excellent.
  • a more preferable range of the in-plane retardation value is 120 nm ⁇ Re(550) ⁇ 170 nm, and a further preferable range is 130 nm ⁇ Re(550) ⁇ 150 nm.
  • the retardation plate of the present invention is a cured product of the polymerizable liquid crystal composition of the present invention and has optical characteristics represented by the following formulas (IV), (V) and (VI).
  • a liquid crystal cured film is usually a cured product (hereinafter, also referred to as “vertically aligned liquid crystal cured film”) obtained by curing a polymerizable liquid crystal compound in a state of being aligned in a direction perpendicular to the plane of the liquid crystal cured film.
  • Rth( ⁇ ) represents a retardation value in the thickness direction of the liquid crystal cured film at a wavelength of ⁇ nm
  • Rth ((nx( ⁇ )+ny( ⁇ ))/2 ⁇ nz) ⁇ d
  • Nx represents the thickness of the liquid crystal cured film
  • nx represents the main refractive index at a wavelength ⁇ nm in the direction parallel to the plane of the liquid crystal cured film in the refractive index ellipsoid formed by the liquid crystal cured film
  • ny represents the liquid crystal cured film formed.
  • the refractive index at a wavelength ⁇ nm in the direction parallel to the plane of the liquid crystal cured film and orthogonal to the direction of nx is represented, and nz is the refraction formed by the liquid crystal cured film.
  • the index ellipsoid represents the refractive index at a wavelength ⁇ nm in the direction perpendicular to the plane of the liquid crystal cured film).
  • the value of Rth(450)/Rth(550) in the vertically aligned liquid crystal cured film is preferably 0.70 or more, more preferably 0.78 or more, and preferably 0.92 or less, more preferably 0. It is 90 or less, more preferably 0.87 or less, particularly preferably 0.86 or less, more preferably 0.85 or less.
  • Rth(650)/Rth(550) is preferably 1.0 or more, more preferably 1.01 or more, and further preferably 1.02 or more.
  • the retardation value Rth(550) in the film thickness direction of the vertically aligned liquid crystal cured film is more preferably ⁇ 90 nm or more, further preferably ⁇ 80 nm or more, and more preferably ⁇ 50 nm or less.
  • the retardation plate of the present invention is, for example, A step of forming a coating film of the polymerizable liquid crystal composition of the present invention, drying the coating film to remove the primary antioxidant, and aligning the polymerizable liquid crystal compound in the polymerizable liquid crystal composition; and , It can be produced by a method including a step of polymerizing a polymerizable liquid crystal compound by light irradiation while maintaining the alignment state to form a liquid crystal cured film.
  • the coating film of the polymerizable liquid crystal composition can be formed by applying the polymerizable liquid crystal composition on a substrate or an alignment film described later.
  • the base material include a glass base material and a film base material, and a resin film base material is preferable from the viewpoint of processability.
  • the resin that constitutes the film substrate examples include polyolefins such as polyethylene, polypropylene, and norbornene-based polymers; cyclic olefin-based resins; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid ester; polyacrylic acid ester; triacetyl cellulose, Cellulose esters such as diacetyl cellulose and cellulose acetate propionate; polyethylene naphthalate; polycarbonates; polysulfones; polyether sulfones; polyether ketones; plastics such as polyphenylene sulfide and polyphenylene oxide.
  • polyolefins such as polyethylene, polypropylene, and norbornene-based polymers
  • cyclic olefin-based resins examples include polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid ester; polyacrylic acid ester; triacetyl cellulose, Cellulose esters such as diace
  • Such a resin can be formed into a film as a substrate by a known means such as a solvent casting method or a melt extrusion method.
  • the surface of the base material may have a protective layer formed of an acrylic resin, a methacrylic resin, an epoxy resin, an oxetane resin, a urethane resin, a melamine resin, or the like, a release treatment such as a silicone treatment, a corona treatment, Surface treatment such as plasma treatment may be applied.
  • a commercially available cellulose ester base material for example, a cellulose ester base material manufactured by Fuji Photo Film Co., Ltd. such as Fujitac Film; manufactured by Konica Minolta Opto Co., Ltd. such as “KC8UX2M”, “KC8UY”, and “KC4UY” Cellulose ester base materials and the like.
  • a commercially available cyclic olefin-based resins include cyclic olefin-based resins manufactured by Ticona (Germany) such as “Topas (registered trademark)"; cyclic olefins manufactured by JSR Corporation such as "Arton (registered trademark)".
  • cyclic olefin resins manufactured by Nippon Zeon Co., Ltd. such as "ZEONOR (registered trademark)” and “ZEONEX (registered trademark)”; Mitsui such as "Apel” (registered trademark)
  • a cyclic olefin resin manufactured by Kagaku Co., Ltd. may be mentioned.
  • a commercially available cyclic olefin resin base material can also be used. Examples of commercially available cyclic olefin resin base materials include cyclic olefin resin base materials manufactured by Sekisui Chemical Co., Ltd.
  • the thickness of the substrate is usually 5 to 300 ⁇ m, and preferably 10 to 150 ⁇ m, from the viewpoints of thinning the laminate, easiness of peeling of the substrate, handleability of the substrate, and the like.
  • a spin coating method As a method for applying the polymerizable liquid crystal composition to a substrate or the like, a spin coating method, an extrusion method, a gravure coating method, a die coating method, a bar coating method, a coating method such as an applicator method, and a printing method such as a flexo method. And other known methods.
  • the solvent is removed by drying or the like to form a dry coating film.
  • the drying method include a natural drying method, a ventilation drying method, a heat drying method and a reduced pressure drying method.
  • the solvent is removed from the coating film by drying and the primary antioxidant is removed, and the polymerizable liquid crystal compound is applied to the coating film plane. It can be oriented in any desired direction (eg horizontal or vertical).
  • the heating temperature of the coating film can be appropriately determined in consideration of the polymerizable liquid crystal compound to be used and the material such as the base material forming the coating film, but it is at least a temperature at which the primary antioxidant can be volatilized, and In order to cause the polymerizable liquid crystal compound to undergo a phase transition to a liquid crystal phase state, it is usually necessary that the temperature is not lower than the liquid crystal phase transition temperature. In order to bring the polymerizable liquid crystal compound into a desired alignment state while removing the solvent and the primary antioxidant contained in the polymerizable liquid crystal composition, for example, a liquid crystal phase of the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition is used.
  • the liquid crystal phase transition temperature can be measured using, for example, a polarization microscope equipped with a temperature adjustment stage, a differential scanning calorimeter (DSC), a thermogravimetric differential thermal analyzer (TG-DTA), or the like. Further, when two or more polymerizable liquid crystal compounds are used in combination, the above-mentioned phase transition temperature is the polymerization in which all polymerizable liquid crystal compounds constituting the polymerizable liquid crystal composition are mixed in the same ratio as the composition in the polymerizable liquid crystal composition.
  • the liquid crystal phase transition temperature of the polymerizable liquid crystal compound in the polymerizable liquid crystal composition may be lower than the liquid crystal phase transition temperature of the polymerizable liquid crystal compound itself.
  • the heating time can be appropriately determined depending on the heating temperature, the type of polymerizable liquid crystal compound used, the type of solvent and the boiling point and amount thereof, etc., but is usually 15 seconds to 10 minutes, preferably 0.5 to 10 minutes. 5 minutes.
  • the removal of the solvent from the coating film may be carried out at the same time as heating the liquid crystal phase transition temperature of the polymerizable liquid crystal compound or higher, or may be carried out separately, but it is preferably carried out simultaneously from the viewpoint of improving productivity.
  • the solvent in the coating film Before heating to above the liquid crystal phase transition temperature of the polymerizable liquid crystal compound, the solvent in the coating film is moderately added under the condition that the polymerizable liquid crystal compound contained in the coating film obtained from the polymerizable liquid crystal composition does not polymerize.
  • a preliminary drying step for removing may be provided. Examples of the drying method in the preliminary drying step include a natural drying method, a ventilation drying method, a heating drying method and a reduced pressure drying method.
  • the drying temperature (heating temperature) in the drying step is the kind of the polymerizable liquid crystal compound used, the solvent. It can be appropriately determined according to the type, the boiling point and the amount thereof.
  • the polymerizable liquid crystal composition of the present invention can be highly polymerized by irradiation with light such as high-intensity ultraviolet light while suppressing damage to the polymerizable liquid crystal compound, the polymerization method is usually a photopolymerization method. Is used.
  • the type of the photoradical polymerization initiator contained in the dry coating film As the light to be applied to the dry coating film, the type of the photoradical polymerization initiator contained in the dry coating film, the type of the polymerizable liquid crystal compound (particularly, the type of the polymerizable group contained in the polymerizable liquid crystal compound) ) And its amount.
  • Specific examples thereof include one or more kinds of light selected from the group consisting of visible light, ultraviolet light, infrared light, X-rays, ⁇ rays, ⁇ rays and ⁇ rays and active electron rays.
  • ultraviolet light is preferable in that it is easy to control the progress of the polymerization reaction, and that those widely used in the art as a photopolymerization device can be used, and by ultraviolet light, photopolymerization is possible. It is preferable to select the type of the polymerizable liquid crystal compound or the photoradical polymerization initiator contained in the polymerizable liquid crystal composition. Further, during the polymerization, the polymerization temperature can be controlled by irradiating with light while cooling the dried coating film by an appropriate cooling means. By adopting such a cooling means, if the polymerizable liquid crystal compound is polymerized at a lower temperature, the liquid crystal cured film can be appropriately formed even if the base material has a relatively low heat resistance.
  • the light source of the active energy rays for example, low-pressure mercury lamp, medium-pressure mercury lamp, high-pressure mercury lamp, ultra-high pressure mercury lamp, xenon lamp, halogen lamp, carbon arc lamp, tungsten lamp, gallium lamp, excimer laser, wavelength range
  • Examples thereof include an LED light source emitting 380 to 440 nm, a chemical lamp, a black light lamp, a microwave excited mercury lamp, and a metal halide lamp.
  • the ultraviolet irradiation intensity is usually 10 to 3,000 mW/cm 2 .
  • the ultraviolet irradiation intensity is preferably an intensity in a wavelength region effective for activating the photopolymerization initiator.
  • the irradiation time with light is usually 0.1 seconds to 10 minutes, preferably 0.1 seconds to 5 minutes, more preferably 0.1 seconds to 3 minutes, and further preferably 0.1 seconds to 1 minute. is there.
  • the integrated light amount thereof is 10 to 3,000 mJ/cm 2 , preferably 50 to 2,000 mJ/cm 2 , and more preferably 100 to 1,000 mJ/cm 2. It is 2 .
  • the thickness of the liquid crystal cured film can be appropriately selected according to the applied display device, and is preferably 0.2 to 3 ⁇ m, more preferably 0.2 to 2 ⁇ m.
  • the coating film of the polymerizable liquid crystal composition may be formed on the alignment film.
  • the alignment film has an alignment regulating force for aligning the polymerizable liquid crystal compound in a desired direction.
  • an alignment film having an alignment controlling force for horizontally aligning the polymerizable liquid crystal compound may be called a horizontal alignment film
  • an alignment film having an alignment controlling force for vertically aligning the liquid crystal compound may be called a vertical alignment film.
  • the alignment control force can be arbitrarily adjusted depending on the type of the alignment film, the surface condition, the rubbing conditions, etc., and when the alignment film is made of a photoalignable polymer, it can be adjusted arbitrarily by the polarized light irradiation conditions, etc. It is possible to
  • the alignment film has solvent resistance such that it is not dissolved by coating the polymerizable liquid crystal composition and the like, and has heat resistance in the heat treatment for removing the solvent and aligning the polymerizable liquid crystal compound described later.
  • the alignment film include an alignment film containing an alignment polymer, a photo-alignment film and a glob alignment film having an uneven pattern and a plurality of grooves on the surface, a stretched film stretched in the alignment direction, and the like. From the viewpoint of quality, a photo-alignment film is preferable.
  • the oriented polymer examples include polyamides and gelatins having an amide bond in the molecule, polyimides having an imide bond in the molecule and polyamic acid which is a hydrolyzate thereof, polyvinyl alcohol, alkyl modified polyvinyl alcohol, polyacrylamide, polyacrylamide. Examples include oxazole, polyethyleneimine, polystyrene, polyvinylpyrrolidone, polyacrylic acid and polyacrylic acid esters. Of these, polyvinyl alcohol is preferable.
  • the oriented polymer may be used alone or in combination of two or more kinds.
  • the alignment film containing the alignment polymer is usually obtained by applying a composition in which the alignment polymer is dissolved in a solvent (hereinafter, sometimes referred to as “alignment polymer composition”) to a substrate to remove the solvent, or It is obtained by applying the oriented polymer composition to a substrate, removing the solvent, and rubbing (rubbing method).
  • a solvent hereinafter, sometimes referred to as “alignment polymer composition”
  • the solvent include the same solvents as those exemplified above as the solvent that can be used for the polymerizable liquid crystal composition.
  • the concentration of the oriented polymer in the oriented polymer composition may be in the range where the oriented polymer material can be completely dissolved in the solvent, but is preferably 0.1 to 20% in terms of solid content in the solution, and 0 It is more preferably about 1 to 10%.
  • a commercially available alignment film material may be used as it is as the alignment polymer composition.
  • Examples of commercially available alignment film materials include Sanever (registered trademark, manufactured by Nissan Chemical Industries, Ltd.) and Optomer (registered trademark, manufactured by JSR Corporation).
  • the same methods as those exemplified as the method of applying the polymerizable liquid crystal composition to the substrate can be mentioned.
  • Examples of the method for removing the solvent contained in the oriented polymer composition include a natural drying method, a ventilation drying method, a heat drying method, and a reduced pressure drying method.
  • Rubbing treatment can be performed as necessary to give the alignment control force to the alignment film (rubbing method).
  • a rubbing cloth is wrapped around a rubbing roll which is rotated, and the orientational polymer composition is applied to the substrate and annealed to form the substrate surface. Examples include a method of bringing a film of an oriented polymer into contact. If masking is performed during the rubbing treatment, a plurality of regions (patterns) having different alignment directions can be formed in the alignment film.
  • the photo-alignment film is usually prepared by applying a composition containing a polymer or monomer having a photoreactive group and a solvent (hereinafter, also referred to as “composition for forming photo-alignment film”) to a substrate and polarizing the film after removing the solvent. (Preferably polarized UV).
  • composition for forming photo-alignment film a composition containing a polymer or monomer having a photoreactive group and a solvent
  • polarized UV Preferably polarized UV.
  • the photo-alignment film is also advantageous in that the direction of the alignment regulating force can be arbitrarily controlled by selecting the polarization direction of the polarized light to be irradiated.
  • Photoreactive group refers to a group that produces liquid crystal alignment ability when irradiated with light. Specific examples thereof include a group involved in a photoreaction which is a source of liquid crystal alignment ability such as an orientation induction or isomerization reaction of molecules generated by light irradiation, a dimerization reaction, a photocrosslinking reaction or a photodecomposition reaction. Of these, a group involved in a dimerization reaction or a photocrosslinking reaction is preferable in terms of excellent orientation.
  • a photoreactive group involved in the photodimerization reaction is preferable, the irradiation amount of polarized light required for photoalignment is relatively small, and in that a photoalignment film excellent in thermal stability and stability over time is easily obtained, Cinnamoyl and chalcone groups are preferred.
  • the polymer having a photoreactive group a polymer having a cinnamoyl group such that the end portion of the polymer side chain has a cinnamic acid structure is particularly preferable.
  • the photo-alignment inducing layer can be formed on the substrate by applying the composition for forming a photo-alignment film onto the substrate.
  • the solvent contained in the composition include the same solvents as those exemplified above as the solvent that can be used in the polymerizable liquid crystal composition, and are appropriately selected depending on the solubility of the photoreactive group-containing polymer or monomer. can do.
  • the content of the polymer or monomer having a photoreactive group in the composition for forming a photo-alignment film can be appropriately adjusted depending on the kind of the polymer or the monomer and the thickness of the desired photo-alignment film. It is preferably at least 0.2% by mass, and more preferably in the range of 0.3 to 10% by mass.
  • the composition for forming a photo-alignment film may contain a polymer material such as polyvinyl alcohol or polyimide, or a photosensitizer as long as the characteristics of the photo-alignment film are not significantly impaired.
  • the same method as the method of applying the oriented polymer composition to the base material can be mentioned.
  • the method for removing the solvent from the applied composition for forming a photo-alignment film include a natural drying method, a ventilation drying method, a heat drying method and a reduced pressure drying method.
  • the polarized light is irradiated from the substrate side. It may be in a form of transmitting and irradiating. Further, it is particularly preferable that the polarized light is substantially parallel light.
  • the wavelength of the polarized light to be irradiated is preferably in the wavelength range in which the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy. Specifically, UV (ultraviolet) having a wavelength range of 250 to 400 nm is particularly preferable.
  • Examples of the light source used for the irradiation of polarized light include xenon lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, and ultraviolet lasers such as KrF and ArF.
  • High-pressure mercury lamps, ultra-high-pressure mercury lamps and metal halide lamps are more preferable.
  • a high pressure mercury lamp, an ultrahigh pressure mercury lamp, and a metal halide lamp are preferable because they have high emission intensity of ultraviolet rays having a wavelength of 313 nm.
  • Polarized UV can be irradiated by irradiating the light from the light source through an appropriate polarizer.
  • a polarizer a polarizing filter, a polarizing prism such as Glan-Thompson or Glan-Taylor, or a wire grid type polarizer can be used.
  • masking can be performed to form a plurality of regions (patterns) having different liquid crystal alignment directions.
  • the groove alignment film is a film having an uneven pattern or a plurality of grooves (grooves) on the film surface.
  • a polymerizable liquid crystal compound is applied to a film having a plurality of linear globbings arranged at equal intervals, liquid crystal molecules are aligned in the direction along the groove.
  • a method for obtaining a glube alignment film after exposure through an exposure mask having a patterned slit on the surface of a photosensitive polyimide film, a method of forming an uneven pattern by developing and rinsing, a plate having a groove on the surface
  • a method for forming a layer of UV curable resin before curing on a sheet-shaped master, transferring the formed resin layer to a substrate, and then curing, and a film of the UV curable resin before curing formed on the substrate Examples include a method in which a roll-shaped master having a plurality of grooves is pressed to form irregularities and then cured.
  • a fluorine-based polymer such as perfluoroalkyl and a silane compound and those You may use the polysiloxane compound obtained by the condensation reaction of.
  • the constituent elements include a Si element and a C element from the viewpoints of easily lowering the surface tension and easily increasing the adhesiveness with a layer adjacent to the alignment film.
  • Compounds are preferable, and silane compounds can be preferably used.
  • a silane-containing ionic compound or the like can be used as the silane compound, and the use of such a silane compound can enhance the vertical alignment control force.
  • the silane compound one type may be used alone, two or more types may be used in combination, and may be used as a mixture with other materials.
  • silane compound is a nonionic silane compound
  • a silane compound having an alkyl group at the molecular end is preferable, and a silane compound having an alkyl group having 3 to 30 carbon atoms is more preferable, from the viewpoint of easily increasing the vertical alignment control force. ..
  • the thickness of the alignment film is usually in the range of 10 to 10000 nm, preferably 10 to 1000 nm, more preferably 10 to 500 nm or less, and further preferably Is in the range of 10 to 300 nm, particularly preferably in the range of 50 to 250 nm.
  • the present invention includes an elliptically polarizing plate including the retardation plate of the present invention and a polarizing film.
  • the polarizing film is a film having a polarizing function, and examples thereof include a stretched film having adsorbed a dye having absorption anisotropy and a film including a film coated with a dye having absorption anisotropy as a polarizer. Examples of the dye having absorption anisotropy include dichroic dyes.
  • a film containing a stretched film adsorbing a dye having absorption anisotropy as a polarizer is usually a step of uniaxially stretching a polyvinyl alcohol-based resin film, by dyeing the polyvinyl alcohol-based resin film with a dichroic dye, At least a polarizer produced through a step of adsorbing a dichroic dye, a step of treating a polyvinyl alcohol-based resin film on which a dichroic pigment is adsorbed with a boric acid aqueous solution, and a step of washing with water after the treatment with the boric acid aqueous solution. It is produced by sandwiching one surface with a transparent protective film via an adhesive.
  • Polyvinyl alcohol resin is obtained by saponifying polyvinyl acetate resin.
  • polyvinyl acetate-based resin in addition to polyvinyl acetate which is a homopolymer of vinyl acetate, a copolymer of vinyl acetate and another monomer copolymerizable therewith is used.
  • the other monomer copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the saponification degree of the polyvinyl alcohol resin is usually about 85 to 100 mol %, preferably 98 mol% or more.
  • the polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used.
  • the degree of polymerization of the polyvinyl alcohol-based resin is usually about 1,000 to 10,000, preferably 1,500 to 5,000.
  • a film produced from such a polyvinyl alcohol resin is used as a raw film for a polarizing film.
  • the method for forming a film of the polyvinyl alcohol-based resin is not particularly limited, and the film can be formed by a known method.
  • the film thickness of the polyvinyl alcohol-based original film can be set to, for example, about 10 to 150 ⁇ m.
  • Uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing with the dichroic dye, simultaneously with dyeing, or after dyeing.
  • the uniaxial stretching may be performed before the boric acid treatment or during the boric acid treatment. It is also possible to carry out uniaxial stretching in these plural stages.
  • the uniaxial stretching it may be uniaxially stretched between rolls having different peripheral speeds, or may be uniaxially stretched using a heat roll.
  • the uniaxial stretching may be dry stretching in which stretching is performed in the atmosphere, or wet stretching in which a polyvinyl alcohol-based resin film is swollen using a solvent.
  • the draw ratio is usually about 3 to 8 times.
  • the dyeing of the polyvinyl alcohol-based resin film with the dichroic dye is performed by, for example, immersing the polyvinyl alcohol-based resin film in an aqueous solution containing the dichroic dye.
  • dichroic pigment iodine or a dichroic organic dye is used as the dichroic pigment.
  • dichroic organic dye examples include C.I. I.
  • the polyvinyl alcohol-based resin film is preferably immersed in water before dyeing.
  • iodine When iodine is used as the dichroic dye, a method of immersing the polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide and dyeing is usually adopted.
  • the content of iodine in this aqueous solution is usually about 0.01 to 1 part by mass per 100 parts by mass of water.
  • the content of potassium iodide is usually about 0.5 to 20 parts by mass per 100 parts by mass of water.
  • the temperature of the aqueous solution used for dyeing is usually about 20 to 40°C.
  • the immersion time (dyeing time) in this aqueous solution is usually about 20 to 1,800 seconds.
  • a method of immersing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic dye and dyeing is usually employed.
  • the content of the dichroic organic dye in this aqueous solution is usually about 1 ⁇ 10 ⁇ 4 to 10 parts by mass, preferably 1 ⁇ 10 ⁇ 3 to 1 part by mass, and more preferably 100 parts by mass of water. Is 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 parts by mass.
  • This aqueous solution may contain an inorganic salt such as sodium sulfate as a dyeing aid.
  • the temperature of the dichroic dye aqueous solution used for dyeing is usually about 20 to 80°C.
  • the immersion time (dyeing time) in this aqueous solution is usually about 10 to 1,800 seconds.
  • the boric acid treatment after dyeing with the dichroic dye can usually be performed by a method of immersing the dyed polyvinyl alcohol-based resin film in an aqueous boric acid solution.
  • the content of boric acid in this aqueous boric acid solution is usually about 2 to 15 parts by mass, preferably 5 to 12 parts by mass, per 100 parts by mass of water.
  • the aqueous boric acid solution preferably contains potassium iodide, and the content of potassium iodide in this case is usually 0.1 to 100 parts by mass per 100 parts by mass of water.
  • the amount is about 15 parts by mass, preferably 5 to 12 parts by mass.
  • the immersion time in the aqueous boric acid solution is usually about 60 to 1,200 seconds, preferably 150 to 600 seconds, more preferably 200 to 400 seconds.
  • the temperature of the boric acid treatment is usually 50° C. or higher, preferably 50 to 85° C., more preferably 60 to 80° C.
  • the polyvinyl alcohol-based resin film after the boric acid treatment is usually washed with water.
  • the water washing treatment can be performed by, for example, a method of immersing the polyvinyl alcohol-based resin film treated with boric acid in water.
  • the temperature of water in the water washing treatment is usually about 5 to 40°C.
  • the immersion time is usually about 1 to 120 seconds.
  • a polarizer After drying with water, a polarizer is obtained.
  • the drying treatment can be performed using, for example, a hot air dryer or a far infrared heater.
  • the temperature of the drying treatment is usually about 30 to 100°C, preferably 50 to 80°C.
  • the drying treatment time is usually about 60 to 600 seconds, preferably 120 to 600 seconds.
  • the water content of the polarizer is reduced to a practical level.
  • the water content thereof is usually about 5 to 20% by mass, preferably 8 to 15% by mass. When the water content is within the above range, a polarizer having appropriate plasticity and good thermal stability can be obtained.
  • the thickness of the polarizer obtained by uniaxially stretching, dyeing with a dichroic dye, boric acid treatment, washing with water and drying the polyvinyl alcohol resin film is preferably 5 to 40 ⁇ m.
  • Examples of the film coated with a dye having absorption anisotropy include a composition containing a dichroic dye having liquid crystallinity or a film obtained by coating a composition containing a dichroic dye and a polymerizable liquid crystal. Can be mentioned.
  • the film preferably has a protective film on one side or both sides thereof. Examples of the protective film include the same resin films as those exemplified above as the substrate that can be used for producing the liquid crystal cured film.
  • the film coated with a dye having absorption anisotropy is thin, but if it is too thin, the strength will decrease and the processability will tend to be poor.
  • the thickness of the film is usually 20 ⁇ m or less, preferably 5 ⁇ m or less, and more preferably 0.5 to 3 ⁇ m.
  • film coated with the dye having the absorption anisotropy include films described in JP 2012-33249 A and the like.
  • a polarizing film can be obtained by laminating a transparent protective film on at least one surface of the thus obtained polarizer with an adhesive.
  • the transparent protective film the same transparent film as the resin film exemplified above as a substrate that can be used for producing a liquid crystal cured film can be preferably used.
  • the elliptically polarizing plate of the present invention is configured to include the retardation plate of the present invention and a polarizing film.
  • the retardation plate of the present invention and the polarizing film may be provided with an adhesive layer or a pressure-sensitive adhesive layer.
  • the elliptically polarizing plate of the present invention can be obtained by laminating the elliptically polarizing plates.
  • a retardation plate of the present invention including a horizontally aligned liquid crystal cured film and a polarizing film are laminated
  • a slow axis (optical axis) of the horizontally aligned liquid crystal cured film forming the retardation plate. It is preferable to laminate so that the angle between the absorption axis of the polarizing film and the absorption axis of the polarizing film is 45 ⁇ 5°.
  • the elliptically polarizing plate of the present invention may have a conventional general elliptically polarizing plate, or a configuration that a polarizing film and a retardation plate have.
  • a structure for example, it is used for the purpose of protecting the surface of an adhesive layer (sheet) for laminating an elliptically polarizing plate on a display element such as an organic EL, a polarizing film or a retardation plate from scratches and dirt.
  • the protective film etc. which are used are mentioned.
  • a display device is a device having a display element and includes a light-emitting element or a light-emitting device as a light-emitting source.
  • a liquid crystal display device As the display device, a liquid crystal display device, an organic electroluminescence (EL) display device, an inorganic electroluminescence (EL) display device, a touch panel display device, an electron emission display device (for example, field emission display device (FED), surface field emission display device).
  • EL organic electroluminescence
  • EL inorganic electroluminescence
  • FED field emission display device
  • Liquid crystal display devices include any of transmissive liquid crystal display devices, semi-transmissive liquid crystal display devices, reflective liquid crystal display devices, direct-view liquid crystal display devices, and projection liquid crystal display devices.
  • These display devices may be a display device that displays a two-dimensional image or may be a stereoscopic display device that displays a three-dimensional image.
  • the elliptically polarizing plate of the present invention is an organic electroluminescence (EL) display devices and inorganic electroluminescence (EL) display devices can be suitably used, and the retardation plate of the present invention can be suitably used for liquid crystal display devices and touch panel display devices.
  • EL organic electroluminescence
  • EL inorganic electroluminescence
  • the retardation plate of the present invention can be suitably used for liquid crystal display devices and touch panel display devices.
  • Example 1 Preparation of composition for forming horizontal alignment film 5 parts of a photo-alignment material having the following structure (weight average molecular weight: 30,000) and 95 parts of cyclopentanone (solvent) were mixed as components, and the resulting mixture was mixed with 80 parts.
  • the composition for horizontal alignment film formation (1) was obtained by stirring at 0° C. for 1 hour.
  • a 1 mg/50 mL tetrahydrofuran solution of the polymerizable liquid crystal compound (A-1) was prepared, and the solution was put into a measuring cell having an optical path length of 1 cm as a measuring sample, and the ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation UV-2450") and the absorption spectrum was measured.
  • the maximum absorption wavelength ⁇ max in the wavelength range of 300 to 400 nm was 350 nm.
  • the in-plane retardation value of the horizontal liquid crystal cured film is used as an index of initial optical characteristics and evaluated as follows.
  • Re(450)/Re(550) is less than 0.85: Initial optical properties are high.
  • Re(450)/Re(550) is 0.85 or more and less than 0.87: Initial optical properties are good.
  • 450)/Re(550) is 0.87 or more: initial optical characteristics are low
  • the antioxidant content in the liquid crystal cured film was analyzed as follows. To the liquid crystal cured film (50 mg) isolated from the base material, 5 mL of tetrahydrofuran was added as an extraction solvent, and ultrasonic waves were applied for 20 minutes to extract the antioxidant from the liquid crystal cured film. After filtering the extract with a filter, the antioxidant content was quantified by liquid chromatography measurement (Prominance series manufactured by Shimadzu Corporation, mobile phase: acetonitrile, detection wavelength: 254 nm).
  • the content of the antioxidant with respect to 100 parts by mass of the polymer of the polymerizable liquid crystal compound in the liquid crystal cured film was calculated from the obtained quantitative result and the total mass of the liquid crystal cured film used for the analysis. 3.
  • the content of primary antioxidant (Sumirizer GS) in the cured liquid crystal film measured by the above method is 800 ppm (0.8 ⁇ 10 ⁇ 3 parts by mass), and the content of secondary antioxidant (TTP) is 4. It was 7 parts by mass.
  • Comparative Example 1 As shown in Table 1, the same operation as in Example 1 was performed except that the antioxidant was not added and the cumulative light amount at the time of ultraviolet irradiation was changed (total light amount at wavelength 365 nm: 500 mJ/cm 2 ).
  • a comparative polymerizable liquid crystal composition containing a polymerizable liquid crystal compound was prepared to obtain a comparative horizontally aligned liquid crystal cured film 1.
  • the storage stability of the comparative polymerizable liquid crystal composition was evaluated in the same manner as in Example 1, and the in-plane retardation value at the wavelength of 450 nm and the wavelength of 550 nm of the obtained comparative horizontally aligned liquid crystal cured film 1 was evaluated as Re.
  • the relative polymerization rate of each horizontally aligned liquid crystal cured film in the above [evaluation of polymerization rate of liquid crystal cured film] to the comparative horizontally aligned liquid crystal cured film 1 was calculated as follows.
  • Relative polymerization rate (%) of horizontally aligned liquid crystal cured film (Polymerization rate of horizontally aligned liquid crystal cured film/Comparison of horizontally aligned liquid crystal cured film) x 100 ⁇ Evaluation criteria> ⁇ (very good): 103% or more relative polymerization rate of the comparative horizontal alignment liquid crystal cured film 1 ⁇ (good): 101% or more relative polymerization rate of comparative horizontal alignment liquid crystal cured film 1 Less than 103% x (bad): relative polymerization rate is 100% or less with respect to the polymerization rate of the comparative horizontally aligned liquid crystal cured film 1.
  • Example 2 As shown in Table 1, the same operation as in Example 1 was performed except that the polymerizable liquid crystal compound was changed to the polymerizable liquid crystal compound (B-1), and the polymerizable liquid crystal containing the polymerizable liquid crystal compound (B-1) was used. A composition was prepared to obtain a horizontal alignment liquid crystal cured film.
  • the polymerizable liquid crystal compound (B-1) was prepared with reference to JP-A-2016-81035.
  • a 1 mg/50 mL tetrahydrofuran solution of the liquid crystal compound (B) was prepared, and the solution was put into a measurement cell having an optical path length of 1 cm as a measurement sample, and the ultraviolet-visible spectrophotometer (“UV-2450” manufactured by Shimadzu Corporation). ) And the absorption spectrum was measured. When the wavelength at which the maximum absorption was obtained was read from the obtained absorption spectrum, the maximum absorption wavelength ⁇ max in the wavelength range of 300 to 400 nm was 352 nm.
  • Example 1 the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
  • Example 3 As shown in Table 1, the same operation as in Example 1 was performed except that the polymerizable liquid crystal compound was changed to the polymerizable liquid crystal compound (C-1), and the polymerizable liquid crystal containing the polymerizable liquid crystal compound (C-1) was used. A composition was prepared to obtain a liquid crystal cured film.
  • the polymerizable liquid crystal compound C was prepared with reference to International Patent Publication No. 2015/025793.
  • a 1 mg/50 mL tetrahydrofuran solution of the liquid crystal compound (C-1) was prepared, and the solution was put into a measuring cell having an optical path length of 1 cm as a measuring sample, and the ultraviolet-visible spectrophotometer (“UV- manufactured by Shimadzu Corporation” 2450") and the absorption spectrum was measured.
  • UV-visible spectrophotometer (“UV- manufactured by Shimadzu Corporation” 2450"
  • the maximum absorption wavelength ⁇ max in the wavelength range of 300 to 400 nm was 352 nm.
  • Example 1 the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
  • Examples 4 to 7 The primary antioxidant was changed to 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT) (phenolic antioxidant, manufactured by Tokyo Chemical Industry Co., Ltd.) and the addition amount shown in Table 1 was used. Then, a polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) was prepared in the same manner as in Example 1 except that the primary antioxidant and the secondary antioxidant were added respectively. An oriented liquid crystal cured film was obtained.
  • BHT 2,6-bis(1,1-dimethylethyl)-4-methylphenol
  • Example 1 the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
  • Example 8 As shown in Table 1, the secondary antioxidant was used as the primary antioxidant to 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT) (phenolic antioxidant, manufactured by Tokyo Kasei Kogyo).
  • BHT 2,6-bis(1,1-dimethylethyl)-4-methylphenol
  • a polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) was performed in the same manner as in Example 1 except that the inhibitor was changed to Chelex-O (phosphorus antioxidant, manufactured by SC Organic Chemical Co., Ltd.). The product was prepared to obtain a horizontally aligned liquid crystal cured film.
  • BHT 2,6-bis(1,1-dimethylethyl)-4-methylphenol
  • Example 1 the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
  • Example 9 As shown in Table 1, the secondary antioxidant was used as the primary antioxidant to 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT) (phenolic antioxidant, manufactured by Tokyo Kasei Kogyo).
  • BHT 2,6-bis(1,1-dimethylethyl)-4-methylphenol
  • a polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) was prepared in the same manner as in Example 1, except that the antioxidant was changed to DTDPA (sulfur-based antioxidant, manufactured by SC Organic Chemical Co., Ltd.).
  • DTDPA sulfur-based antioxidant, manufactured by SC Organic Chemical Co., Ltd.
  • a horizontal alignment liquid crystal cured film was prepared.
  • Example 1 the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
  • Comparative Example 3 As shown in Table 1, a polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) was prepared by performing the same operation as in Example 1 except that the primary antioxidant was not included, and the horizontal alignment was performed. A liquid crystal cured film was obtained. In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
  • Comparative Example 5 As shown in Table 1, the same operation as in Example 1 was performed except that the polymerizable liquid crystal compound was used as the polymerizable liquid crystal compound (B-1) and neither the primary antioxidant nor the secondary antioxidant was added. A polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (B-1) was prepared to obtain a horizontally aligned liquid crystal cured film. In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
  • Example 10 As shown in Table 1, polymerization was carried out in the same manner as in Example 1 except that the polymerizable liquid crystal compound (A-1) was changed to the polymerizable liquid crystal compound (C-1) and the primary antioxidant was changed to BHT. A polymerizable liquid crystal composition containing the liquid crystal compound (C-1) was prepared to obtain a horizontally aligned liquid crystal cured film.
  • the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
  • Comparative Example 6 As shown in Table 1, the polymerizable liquid crystal compound (C-1) was used as the polymerizable liquid crystal compound (C-1), and the same operation as in Example 1 was conducted except that the primary and secondary antioxidants were not added. A polymerizable liquid crystal composition containing the liquid crystal compound (C-1) was prepared to obtain a horizontally aligned liquid crystal cured film. In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
  • Comparative Example 7 As shown in Table 1, the polymerizable liquid crystal compound was used as the polymerizable liquid crystal compound (C-1), and the primary antioxidant was 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT)( Polymerization containing the polymerizable liquid crystal compound (C-1) was performed in the same manner as in Example 1 except that the phenolic antioxidant was manufactured by Tokyo Kasei Kogyo Co., Ltd. and the secondary antioxidant was not added. Liquid crystal composition was prepared to obtain a horizontally aligned liquid crystal cured film.
  • BHT 2,6-bis(1,1-dimethylethyl)-4-methylphenol
  • Example 1 the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
  • Example 15 Polymerization was performed in the same manner as in Example 4 except that 6.0 parts by mass of Irgacure OXE-01 (manufactured by BASF Japan Ltd.) was used as the photopolymerization initiator instead of Irgacure OXE-03 and Irgacure 369.
  • a polymerizable liquid crystal composition containing the liquid crystal compound (A-1) was prepared to obtain a horizontally aligned liquid crystal cured film.
  • the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
  • Example 16 Polymerization was performed in the same manner as in Example 7, except that 6.0 parts by mass of Irgacure OXE-01 (manufactured by BASF Japan Ltd.) was used as the photopolymerization initiator instead of Irgacure OXE-03 and Irgacure 369.
  • a polymerizable liquid crystal composition containing the liquid crystal compound (A-1) was prepared to obtain a horizontally aligned liquid crystal cured film.
  • the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
  • Example 17 Polymerization was performed in the same manner as in Example 8 except that 6.0 parts by mass of Irgacure OXE-01 (manufactured by BASF Japan Ltd.) was used as the photopolymerization initiator instead of Irgacure OXE-03 and Irgacure 369.
  • a polymerizable liquid crystal composition containing the liquid crystal compound (A-1) was prepared to obtain a horizontally aligned liquid crystal cured film.
  • the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
  • Example 18 Polymerization was performed in the same manner as in Example 9 except that 6.0 parts by mass of Irgacure OXE-01 (manufactured by BASF Japan Ltd.) was used as the photopolymerization initiator instead of Irgacure OXE-03 and Irgacure 369.
  • a polymerizable liquid crystal composition containing the liquid crystal compound (A-1) was prepared to obtain a horizontally aligned liquid crystal cured film.
  • the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
  • Example 19 Polymerization was performed in the same manner as in Example 10 except that 6.0 parts by mass of Irgacure OXE-01 (manufactured by BASF Japan Ltd.) was used as the photopolymerization initiator instead of Irgacure OXE-03 and Irgacure 369.
  • a polymerizable liquid crystal composition containing the liquid crystal compound (C-1) was prepared to obtain a horizontally aligned liquid crystal cured film.
  • the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
  • Comparative Example 11 Polymerization was performed in the same manner as in Comparative Example 1 except that 6.0 parts by mass of Irgacure OXE-01 (manufactured by BASF Japan Ltd.) was used as the photopolymerization initiator instead of Irgacure OXE-03 and Irgacure 369.
  • a polymerizable liquid crystal composition containing the liquid crystal compound (A-1) was prepared to obtain a horizontally aligned liquid crystal cured film.
  • the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
  • Example 11 Preparation of Composition for Forming Vertical Alignment Film 0.5 part of SAN EVER SE-610 (manufactured by Nissan Chemical Industries, Ltd.), which is an oriented polymer, and 72.3 parts of N-methyl-2-pyrrolidone as a solvent, 2 -Butoxyethanol (18.1 parts), ethylcyclohexane (9.1 parts), and 0.01% by mass of DPHA (manufactured by Shin-Nakamura Chemical Co., Ltd.) were mixed to obtain a composition (1) for forming a vertical alignment film.
  • SAN EVER SE-610 manufactured by Nissan Chemical Industries, Ltd.
  • N-methyl-2-pyrrolidone as a solvent
  • 2 -Butoxyethanol 18.1 parts
  • ethylcyclohexane 9.1 parts
  • 0.01% by mass of DPHA manufactured by Shin-Nakamura Chemical Co., Ltd.
  • a liquid crystal cured film was formed by adjusting the integrated light amount at a wavelength of 365 nm: 2000 mJ/cm 2 .
  • the average refractive index at wavelengths ⁇ of 450 nm and 550 nm was measured using a refractometer (manufactured by Atago Co., Ltd., “Multi-wavelength Abbe refractometer DR-M4”).
  • RthC(450) ⁇ 58 nm
  • RthC(550) ⁇ 70 nm
  • RthC(450)/RthC(550) RthC calculated from the obtained film thickness, average refractive index, and ellipsometer measurement results, respectively. It was 0.83.
  • Comparative Example 8 As shown in Table 2, the same operation as in Example 11 was carried out except that no antioxidant was added and the cumulative light amount at the time of ultraviolet irradiation was changed (total light amount at wavelength 365 nm: 500 mJ/cm 2 ).
  • a comparative polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) was prepared to obtain a comparative vertically aligned liquid crystal cured film 1.
  • the storage stability of the comparative polymerizable liquid crystal composition was evaluated by the same method as in Example 1, and the RthC(450) of the comparative vertically aligned liquid crystal cured film 1 obtained was obtained by the same method as in Example 11. , RthC(550), and RthC(450)/RthC(550) values were calculated, haze values were measured, and microscopic observation was performed.
  • the infrared total reflection absorption spectrum of the comparative vertically aligned liquid crystal cured film was measured and the polymerization rate was calculated. Further, the relative polymerization rate of each vertically aligned liquid crystal cured film with respect to the comparative vertically aligned liquid crystal cured film 1 was determined according to the following criteria.
  • Relative polymerization rate (%) of vertically aligned liquid crystal cured film (Polymerization rate of vertically aligned liquid crystal cured film/Comparison of vertically aligned liquid crystal cured film 1) x 100 ⁇ Evaluation criteria> ⁇ (very good): 103% or more relative polymerization rate of the comparative vertical alignment liquid crystal cured film 1 ⁇ (good): 101% or more relative polymerization rate of the comparative vertical alignment liquid crystal cured film 1 Less than 103% ⁇ (bad): relative polymerization rate to the polymerization rate of the comparative vertically aligned liquid crystal cured film 1 is 100% or less.
  • Example 12 As shown in Table 2, except that the primary antioxidant was changed to 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT) (phenolic antioxidant, manufactured by Tokyo Kasei Kogyo). Then, the same operation as in Example 11 was performed to prepare a polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) to obtain a vertically aligned liquid crystal cured film. In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and in the same manner as in Example 11, the RthC(450)/RthC( of the obtained vertically aligned liquid crystal cured film was obtained. 550) value calculation, haze value measurement, and microscopic observation. Further, in the same manner as in Example 1, the infrared total reflection absorption spectrum of the liquid crystal cured film was measured and the polymerization rate was calculated. The results are shown in Table 2.
  • BHT 2,6-bis(1,1-dimethylethyl)-4-methylphenol
  • Example 13 As shown in Table 2, the secondary antioxidant was used as the primary antioxidant with 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT) (phenolic antioxidant, manufactured by Tokyo Kasei Kogyo).
  • BHT 2,6-bis(1,1-dimethylethyl)-4-methylphenol
  • a polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) was performed in the same manner as in Example 11 except that the inhibitor was changed to Chelex-O (phosphorus antioxidant, manufactured by SC Organic Chemical Co., Ltd.). Was prepared to obtain a vertically aligned liquid crystal cured film.
  • Chelex-O phosphorus antioxidant, manufactured by SC Organic Chemical Co., Ltd.
  • Example 2 In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and in the same manner as in Example 11, the RthC(450)/RthC( of the obtained vertically aligned liquid crystal cured film was obtained. 550) value calculation, haze value measurement, and microscopic observation. Further, in the same manner as in Example 1, the infrared total reflection absorption spectrum of the liquid crystal cured film was measured and the polymerization rate was calculated. The results are shown in Table 2.
  • Comparative Example 9 As shown in Table 2, the primary antioxidant was changed to 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT) (phenolic antioxidant, manufactured by Tokyo Chemical Industry Co., Ltd.). The same operation as in Example 11 was carried out except that the following antioxidant was not added, to prepare a polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) to obtain a vertically aligned liquid crystal cured film. .. In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and in the same manner as in Example 11, the RthC(450)/RthC( of the obtained vertically aligned liquid crystal cured film was obtained. 550) value calculation, haze value measurement, and microscopic observation. Further, in the same manner as in Example 1, the infrared total reflection absorption spectrum of the liquid crystal cured film was measured and the polymerization rate was calculated. The results are shown in Table 2.
  • Example 14 As shown in Table 2, the polymerizable liquid crystal compound was used as the polymerizable liquid crystal compound (C-1), and the primary antioxidant was used as 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT)( A phenolic antioxidant, manufactured by Tokyo Kasei Kogyo Co., Ltd.) was used, and the same operation as in Example 11 was carried out to prepare a polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (C-1). A film was obtained. In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and in the same manner as in Example 11, the RthC(450)/RthC( of the obtained vertically aligned liquid crystal cured film was obtained. 550) value calculation, haze value measurement, and microscopic observation. Further, in the same manner as in Example 1, the infrared total reflection absorption spectrum of the liquid crystal cured film was measured and the polymerization rate was calculated. The results are shown in Table 2.
  • Comparative Example 10 As shown in Table 2, the polymerizable liquid crystal compound was used as the polymerizable liquid crystal compound (C-1), and the primary antioxidant was used as 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT)( Polymerization containing the polymerizable liquid crystal compound (C-1) was performed in the same manner as in Example 11 except that the phenolic antioxidant was manufactured by Tokyo Kasei Kogyo Co., Ltd. and the secondary antioxidant was not added. Liquid crystalline composition was prepared to obtain a vertically aligned liquid crystal cured film.
  • BHT 2,6-bis(1,1-dimethylethyl)-4-methylphenol
  • Example 2 In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and in the same manner as in Example 11, the RthC(450)/RthC( of the obtained vertically aligned liquid crystal cured film was obtained. 550) value calculation, haze value measurement, and microscopic observation. Further, in the same manner as in Example 1, the infrared total reflection absorption spectrum of the liquid crystal cured film was measured and the polymerization rate was calculated. The results are shown in Table 2.

Abstract

A polymerizable liquid crystal composition comprising a polymerizable liquid crystal compound, at least one kind of primary antioxidant, at least one kind of secondary antioxidant and a photo-radical polymerization initiator, wherein the polymerizable liquid crystal compound has an ester structure and a (meth)acryloyl group and shows maximum absorption at a wavelength of 300-400 nm.

Description

重合性液晶組成物、位相差板、楕円偏光板および有機EL表示装置Polymerizable liquid crystal composition, retardation plate, elliptically polarizing plate and organic EL display device
 本発明は、重合性液晶組成物、前記重合性液晶組成物の硬化物である液晶硬化膜を含む位相差板、前記位相差板を含む楕円偏光板および有機EL表示装置に関する。 The present invention relates to a polymerizable liquid crystal composition, a retardation plate including a liquid crystal cured film which is a cured product of the polymerizable liquid crystal composition, an elliptically polarizing plate including the retardation plate, and an organic EL display device.
 フラットパネルディスプレイに用いられる位相差板として、逆波長分散性を示す位相差板が知られている(特許文献1)。特に近年では、フラットパネルディスプレイの薄型化が求められており、重合性液晶化合物を配向状態で紫外線照射により硬化させて形成された液晶硬化層からなる位相差板が開発されている(特許文献2)。 As a retardation plate used for a flat panel display, a retardation plate showing reverse wavelength dispersion is known (Patent Document 1). Particularly in recent years, there has been a demand for a thinner flat panel display, and a retardation plate including a liquid crystal cured layer formed by curing a polymerizable liquid crystal compound in an aligned state by irradiation with ultraviolet rays has been developed (Patent Document 2). ).
特開2012-214801号公報JP 2012-214801 A 特開2015-163935号公報JP, 2005-163935, A
 近年、フラットパネルディスプレイは、カーナビゲーション装置やバックモニターなどの車載用の画像表示装置としても使用されるなど、その用途は広がっている。これに伴い、過酷な条件下でも性能変化が生じ難い優れた耐久性を有する位相差板が求められている。このような性能変化の生じ難い位相差板を得るためには、重合性液晶化合物を十分に硬化させることが必要であり、十分な紫外線を照射して重合性液晶化合物を硬化させることが望ましい。 In recent years, flat panel displays are being used for a wider range of applications, including being used as in-vehicle image display devices such as car navigation systems and back monitors. Along with this, there is a demand for a retardation plate having excellent durability that is unlikely to change in performance even under severe conditions. In order to obtain a retardation plate in which such a performance change is unlikely to occur, it is necessary to sufficiently cure the polymerizable liquid crystal compound, and it is desirable to cure the polymerizable liquid crystal compound by irradiating sufficient ultraviolet rays.
 しかしながら、重合性液晶化合物を含む重合性液晶組成物は、一般的に安定性が低く、保管時に重合性液晶化合物のゲル化を生じることがあり、そのようなゲル化を防止するために重合禁止剤を配合すると、重合禁止剤が重合性液晶化合物の硬化を阻害し、得られる位相差板の重合率が低下するという問題がある。また、逆波長分散性を示す重合性液晶化合物は、一般的に紫外線領域に極大吸収を有しており、重合性液晶化合物の重合率を高めるために高強度の紫外線を照射した場合、その光学特性が低下することがあり、得られる位相差板の光学性能は必ずしも十分に満足できないことがある。 However, a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound is generally low in stability and may cause gelation of the polymerizable liquid crystal compound during storage. In order to prevent such gelation, polymerization is prohibited. When the agent is blended, there is a problem that the polymerization inhibitor inhibits the curing of the polymerizable liquid crystal compound and the polymerization rate of the obtained retardation plate is lowered. In addition, a polymerizable liquid crystal compound exhibiting reverse wavelength dispersibility generally has maximum absorption in the ultraviolet region, and when irradiated with high-intensity ultraviolet light to increase the polymerization rate of the polymerizable liquid crystal compound, its optical The characteristics may be deteriorated, and the optical performance of the obtained retardation plate may not always be sufficiently satisfied.
 本発明は、保管時の安定性が高く、かつ、高重合率で重合させることが可能な重合性液晶組成物を提供することを目的とする。 An object of the present invention is to provide a polymerizable liquid crystal composition that has high stability during storage and can be polymerized at a high polymerization rate.
 本発明は、以下の好適な態様を提供するものである。
[1]重合性液晶化合物、少なくとも1種の一次酸化防止剤、少なくとも1種の二次酸化防止剤および光ラジカル重合開始剤を含む重合性液晶組成物であって、前記重合性液晶化合物がエステル構造と(メタ)アクリロイル基とを有し、かつ、波長300~400nmに極大吸収を示す、重合性液晶組成物。
[2]一次酸化防止剤の含有量が、重合性液晶化合物100質量部に対して0.1~5質量部である、前記[1]に記載の重合性液晶組成物。
[3]一次酸化防止剤がフェノール化合物である、前記[1]または[2]に記載の重合性液晶組成物。
[4]一次酸化防止剤の分子量が400g/mol以下である、前記[1]~[3]のいずれかに記載の重合性液晶組成物。
[5]二次酸化防止剤の含有量が、重合性液晶化合物100質量部に対して0.1~15質量部である、前記[1]~[4]のいずれかに記載の重合性液晶組成物。
[6]二次酸化防止剤が亜リン酸エステル化合物である、前記[1]~[5]のいずれかに記載の重合性液晶組成物。
[7]二次酸化防止剤の分子量が200g/mol以上である、前記[1]~[6]のいずれかに記載の重合性液晶組成物。
[8]光ラジカル重合開始剤がオキシム系光重合開始剤である、前記[1]~[7]のいずれかに記載の重合性液晶組成物。
[9]単独重合体の複屈折率が逆波長分散性を示す重合性液晶化合物を含む、前記[1]~[8]のいずれかに記載の重合性液晶組成物。
[10]前記[1]~[9]のいずれかに記載の重合性液晶組成物の硬化物であり、該重合性液晶組成物中の重合性液晶化合物が配向した状態で硬化した液晶硬化膜を含む位相差板。
[11]液晶硬化膜中の一次酸化防止剤の含有量が、重合性液晶化合物の重合体100質量部に対して0.001質量部以下である、前記[10]に記載の位相差板。
[12]液晶硬化膜中の二次酸化防止剤の含有量が、重合性液晶化合物の重合体100質量部に対して0.05~15質量部である、前記[10]または[11]に記載の位相差板。
[13]液晶硬化膜が下記式(I)、(II)および(III):
 Re(450)/Re(550)≦1.00  (I)
 1.00≦Re(650)/Re(550)  (II)
 100nm≦Re(550)≦180nm    (III)
〔式中、Re(λ)は液晶硬化膜の波長λnmにおける面内位相差値を表し、Re=(nx(λ)-ny(λ))×dである(dは液晶硬化膜の厚みを表し、nxは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に平行な方向の波長λnmにおける主屈折率を表し、nyは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に対して平行であり、且つ、前記nxの方向に対して直交する方向の波長λnmにおける屈折率を表す)〕
で表される光学特性を有する、前記[10]~[12]のいずれかに記載の位相差板。
[14]液晶硬化膜が下記式(IV)、(V)および(VI): 
 Rth(450)/Rth(550)≦1.00  (IV)
 1.00≦Rth(650)/Rth(550)  (V)
 -100nm≦Rth(550)≦-40nm    (VI)
〔式中、Rth(λ)は液晶硬化膜の波長λnmにおける厚み方向の位相差値を表し、Rth=((nx(λ)+ny(λ))/2―nz)×dである(dは液晶硬化膜の厚みを表し、nxは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に平行な方向の波長λnmにおける主屈折率を表し、nyは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に対して平行であり、且つ、前記nxの方向に対して直交する方向の波長λnmにおける屈折率を表し、nzは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に対して垂直な方向の波長λnmにおける屈折率を表す)〕で表される光学特性を有する、前記[10]~[12]のいずれかに記載の位相差板。
[15]前記[10]~[14]のいずれかに記載の位相差板の製造方法であって、
 重合性液晶組成物の塗膜を形成し、該塗膜を乾燥して一次酸化防止剤を除去し、かつ該重合性液晶組成物中の重合性液晶化合物を配向させる工程と、
 配向状態を保持したまま光照射により重合性液晶化合物を重合させ、液晶硬化膜を形成する工程
を含む、製造方法。
[16]前記[10]~[14]のいずれかに記載の位相差板と偏光フィルムとを含む楕円偏光板。
[17]前記[16]に記載の楕円偏光板を含む有機EL表示装置。
The present invention provides the following preferred embodiments.
[1] A polymerizable liquid crystal composition comprising a polymerizable liquid crystal compound, at least one primary antioxidant, at least one secondary antioxidant and a photoradical polymerization initiator, wherein the polymerizable liquid crystal compound is an ester. A polymerizable liquid crystal composition having a structure and a (meth)acryloyl group and exhibiting maximum absorption at a wavelength of 300 to 400 nm.
[2] The polymerizable liquid crystal composition according to the above [1], wherein the content of the primary antioxidant is 0.1 to 5 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound.
[3] The polymerizable liquid crystal composition according to the above [1] or [2], wherein the primary antioxidant is a phenol compound.
[4] The polymerizable liquid crystal composition according to any one of the above [1] to [3], wherein the molecular weight of the primary antioxidant is 400 g/mol or less.
[5] The polymerizable liquid crystal according to any one of the above [1] to [4], wherein the content of the secondary antioxidant is 0.1 to 15 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. Composition.
[6] The polymerizable liquid crystal composition according to any one of the above [1] to [5], wherein the secondary antioxidant is a phosphite compound.
[7] The polymerizable liquid crystal composition according to any one of the above [1] to [6], wherein the secondary antioxidant has a molecular weight of 200 g/mol or more.
[8] The polymerizable liquid crystal composition according to any one of the above [1] to [7], wherein the radical photopolymerization initiator is an oxime photopolymerization initiator.
[9] The polymerizable liquid crystal composition according to any one of the above [1] to [8], which contains a polymerizable liquid crystal compound having a birefringence of a homopolymer exhibiting reverse wavelength dispersion.
[10] A cured product of the polymerizable liquid crystal composition according to any one of [1] to [9], which is a cured liquid crystal film in which the polymerizable liquid crystal compound in the polymerizable liquid crystal composition is aligned. Retardation plate including.
[11] The retardation plate according to the above [10], wherein the content of the primary antioxidant in the liquid crystal cured film is 0.001 part by mass or less based on 100 parts by mass of the polymer of the polymerizable liquid crystal compound.
[12] In the above [10] or [11], the content of the secondary antioxidant in the cured liquid crystal film is 0.05 to 15 parts by mass with respect to 100 parts by mass of the polymer of the polymerizable liquid crystal compound. The retardation plate described.
[13] The liquid crystal cured film has the following formulas (I), (II) and (III):
Re(450)/Re(550)≦1.00 (I)
1.00≦Re(650)/Re(550) (II)
100 nm≦Re(550)≦180 nm (III)
[Wherein Re(λ) represents an in-plane retardation value at a wavelength λnm of the liquid crystal cured film, and Re=(nx(λ)−ny(λ))×d (d is the thickness of the liquid crystal cured film). In the refractive index ellipsoid formed by the liquid crystal cured film, nx represents the main refractive index at a wavelength λ nm in the direction parallel to the plane of the liquid crystal cured film, and ny represents the refractive index ellipsoid formed by the liquid crystal cured film. , Represents the refractive index at a wavelength λ nm in the direction parallel to the plane of the liquid crystal cured film and orthogonal to the nx direction)).
The retardation plate according to any one of [10] to [12], which has optical characteristics represented by
[14] The cured liquid crystal film has the following formulas (IV), (V) and (VI):
Rth(450)/Rth(550)≦1.00 (IV)
1.00≦Rth(650)/Rth(550) (V)
-100 nm ≤ Rth(550) ≤ -40 nm (VI)
[In the formula, Rth(λ) represents a retardation value in the thickness direction of the liquid crystal cured film at a wavelength of λ nm, and Rth=((nx(λ)+ny(λ))/2−nz)×d (d is Nx represents the thickness of the liquid crystal cured film, nx represents the main refractive index at a wavelength λnm in the direction parallel to the plane of the liquid crystal cured film in the refractive index ellipsoid formed by the liquid crystal cured film, and ny represents the liquid crystal cured film formed. In the refractive index ellipsoid, the refractive index at a wavelength λ nm in the direction parallel to the plane of the liquid crystal cured film and orthogonal to the direction of nx is represented, and nz is the refraction formed by the liquid crystal cured film. In the index ellipsoid, the refractive index at the wavelength λnm in the direction perpendicular to the plane of the liquid crystal cured film is represented)], and the unit according to any one of the above [10] to [12]. Phase difference plate.
[15] The method for manufacturing a retardation plate according to any one of [10] to [14],
Forming a coating film of the polymerizable liquid crystal composition, drying the coating film to remove the primary antioxidant, and aligning the polymerizable liquid crystal compound in the polymerizable liquid crystal composition,
A method for manufacturing, comprising a step of polymerizing a polymerizable liquid crystal compound by light irradiation while maintaining an alignment state to form a liquid crystal cured film.
[16] An elliptically polarizing plate including the retardation plate according to any one of [10] to [14] and a polarizing film.
[17] An organic EL display device including the elliptically polarizing plate according to the above [16].
 本発明によれば、保管時の安定性が高く、かつ、高重合率で重合させることが可能な重合性液晶組成物を提供することができる。 According to the present invention, it is possible to provide a polymerizable liquid crystal composition having high stability during storage and capable of being polymerized at a high polymerization rate.
 以下、本発明の実施の形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. The scope of the present invention is not limited to the embodiments described here, and various modifications can be made without departing from the spirit of the present invention.
 <重合性液晶組成物>
 本発明の重合性液晶組成物は、重合性液晶化合物、少なくとも1種の一次酸化防止剤、少なくとも1種の二次酸化防止剤および光ラジカル重合開始剤を含む。本発明の重合性液晶組成物は、一次酸化防止剤と二次酸化防止剤とを組み合わせて含むことにより、重合性液晶組成物として長期保管した際の重合性液晶化合物の劣化を抑制し、安定性を向上させることができる。さらに、上記重合性液晶組成物は、高強度の紫外線等による損傷を抑えながら重合性液晶化合物を十分に硬化させることが可能であるため、該重合性液晶組成物から光学特性に優れる液晶硬化膜を得ることができる。ゆえに、過酷な環境下においても性能変化の生じ難い液晶硬化膜を備えた位相差板を得ることができると考えられる。
<Polymerizable liquid crystal composition>
The polymerizable liquid crystal composition of the present invention contains a polymerizable liquid crystal compound, at least one primary antioxidant, at least one secondary antioxidant, and a photoradical polymerization initiator. The polymerizable liquid crystal composition of the present invention contains a combination of a primary antioxidant and a secondary antioxidant, thereby suppressing deterioration of the polymerizable liquid crystal compound when stored for a long period of time as a polymerizable liquid crystal composition, and stable. It is possible to improve the sex. Furthermore, since the polymerizable liquid crystal composition can sufficiently cure the polymerizable liquid crystal compound while suppressing damage due to high-intensity ultraviolet rays, etc., the polymerizable liquid crystal composition has a liquid crystal cured film excellent in optical properties. Can be obtained. Therefore, it is considered that it is possible to obtain a retardation plate including a liquid crystal cured film that is unlikely to change in performance even under a harsh environment.
 本発明の重合性液晶組成物は、エステル構造と(メタ)アクリロイル基とを有し、かつ、波長300~400nmに極大吸収を示す重合性液晶化合物(以下、「重合性液晶化合物(A)」ともいう)を含む。
 分子構造中にエステル構造を有する重合性液晶化合物は、紫外線等の光が暴露されることにより該エステル構造部分で分解されて劣化を生じやすい。このため、例えば、硬化時に高強度の紫外線照射をすることにより、該重合性液晶化合物から形成される液晶硬化膜の光学特性は低下しやすい傾向にある。本発明の重合性液晶組成物は重合性液晶化合物の光劣化抑制効果に優れるため、光劣化を生じやすいエステル構造を有する重合性液晶化合物を用いる場合に本発明の効果を特に顕著に発揮し得る。
The polymerizable liquid crystal composition of the present invention comprises a polymerizable liquid crystal compound having an ester structure and a (meth)acryloyl group and exhibiting maximum absorption at a wavelength of 300 to 400 nm (hereinafter referred to as “polymerizable liquid crystal compound (A)”). (Also referred to as).
A polymerizable liquid crystal compound having an ester structure in its molecular structure is likely to be decomposed and deteriorated at the ester structure portion when exposed to light such as ultraviolet rays. For this reason, for example, by irradiating with high-intensity ultraviolet light during curing, the optical characteristics of the liquid crystal cured film formed from the polymerizable liquid crystal compound tends to deteriorate. Since the polymerizable liquid crystal composition of the present invention is excellent in the effect of suppressing photodegradation of the polymerizable liquid crystal compound, the effect of the present invention can be particularly remarkably exhibited when a polymerizable liquid crystal compound having an ester structure that easily causes photodegradation is used. ..
 一方、光重合開始剤を含む重合性液晶組成物においては、長期保管時に重合性液晶化合物の重合反応やゲル化が進行することがあるが、波長300~400nmに極大吸収を示す重合性液晶化合物を含むことにより、保管中に紫外光が曝露されても、光重合開始剤からの反応活性種の発生および該反応活性種による重合性液晶化合物の重合反応およびゲル化の進行を有効に抑制できる。したがって、光ラジカル重合開始剤を含む本発明の重合性液晶組成物においては、波長300~400nmに極大吸収を示す重合性液晶化合物を含むことにより、重合性液晶組成物の長期安定性の点で有利となり、得られる液晶硬化膜の配向性および膜厚の均一性を向上できる。なお、重合性液晶化合物の極大吸収波長は、溶媒中で紫外可視分光光度計を用いて測定できる。該溶媒は重合性液晶化合物を溶解し得る溶媒であり、例えばクロロホルム等が挙げられる。 On the other hand, in a polymerizable liquid crystal composition containing a photopolymerization initiator, a polymerization reaction or gelation of the polymerizable liquid crystal compound may proceed during long-term storage, but the polymerizable liquid crystal compound showing maximum absorption at a wavelength of 300 to 400 nm. By containing, even when exposed to ultraviolet light during storage, it is possible to effectively suppress the generation of reaction active species from the photopolymerization initiator and the progress of the polymerization reaction and gelation of the polymerizable liquid crystal compound by the reaction active species. .. Therefore, in the polymerizable liquid crystal composition of the present invention containing a photo-radical polymerization initiator, the polymerizable liquid crystal compound exhibiting the maximum absorption at a wavelength of 300 to 400 nm is contained, whereby the long-term stability of the polymerizable liquid crystal composition is improved. This is advantageous, and the orientation and film thickness uniformity of the resulting liquid crystal cured film can be improved. The maximum absorption wavelength of the polymerizable liquid crystal compound can be measured in a solvent using an ultraviolet-visible spectrophotometer. The solvent is a solvent capable of dissolving the polymerizable liquid crystal compound, and examples thereof include chloroform.
 本発明において重合性液晶化合物(A)は、光重合性基を有する液晶化合物を意味し、エステル構造と(メタ)アクリロイル基とを有し、かつ、波長300~400nmに極大吸収を示す重合性液晶化合物であれば特に限定されるものではなく、例えば位相差板の分野において従来公知の重合性液晶化合物を用いることができる。 In the present invention, the polymerizable liquid crystal compound (A) means a liquid crystal compound having a photopolymerizable group, a polymerizable liquid crystal compound having an ester structure and a (meth)acryloyl group, and having a maximum absorption at a wavelength of 300 to 400 nm. There is no particular limitation as long as it is a liquid crystal compound, and for example, a polymerizable liquid crystal compound known in the art in the field of retardation plates can be used.
 本発明において、光重合性基とは、重合性基であって、光重合開始剤から発生した反応活性種、例えば活性ラジカルや酸などによって重合反応に関与し得る基のことをいい、例えばビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイル基、メタクリロイル基、オキシラニル基、オキセタニル基が挙げられる。重合性液晶化合物(A)が1つの光重合性基を有する液晶化合物である場合には、該光重合性基は(メタ)アクリロイル基である。重合性液晶化合物(A)が2つ以上の光重合性基を有する場合、そのうちの少なくとも1つは(メタ)アクリロイル基であり、重合性液晶化合物(A)に含まれる全ての光重合性基が(メタ)アクリロイル基であることが好ましい。なお、本明細書において(メタ)アクリロイルとは、アクリロイル基またはメタクリロイル基を意味する。 In the present invention, the photopolymerizable group is a polymerizable group and refers to a reactive active species generated from a photopolymerization initiator, for example, a group capable of participating in a polymerization reaction by an active radical or an acid, such as vinyl. Group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyl group, methacryloyl group, oxiranyl group and oxetanyl group. When the polymerizable liquid crystal compound (A) is a liquid crystal compound having one photopolymerizable group, the photopolymerizable group is a (meth)acryloyl group. When the polymerizable liquid crystal compound (A) has two or more photopolymerizable groups, at least one of them is a (meth)acryloyl group, and all the photopolymerizable groups contained in the polymerizable liquid crystal compound (A). Is preferably a (meth)acryloyl group. In addition, in this specification, (meth)acryloyl means an acryloyl group or a methacryloyl group.
 本発明において、重合性液晶化合物(A)が示す液晶性はサーモトロピック性液晶であってもよいし、リオトロピック性液晶であってもよいが、緻密な膜厚制御が可能な点でサーモトロピック性液晶が好ましい。また、サーモトロピック性液晶における相秩序構造としてはネマチック液晶でもスメクチック液晶でもよい。重合性液晶化合物(A)として、1種のみを用いてもよく、二種以上を組み合わせて用いてもよい。 In the present invention, the liquid crystallinity exhibited by the polymerizable liquid crystal compound (A) may be a thermotropic liquid crystal or a lyotropic liquid crystal, but the thermotropic property is that the film thickness can be precisely controlled. Liquid crystals are preferred. The phase ordered structure in the thermotropic liquid crystal may be nematic liquid crystal or smectic liquid crystal. As the polymerizable liquid crystal compound (A), only one kind may be used, or two or more kinds may be used in combination.
 重合性液晶化合物(A)としては、例えば、下記(ア)~(エ)の特徴を有する化合物が挙げられる。
(ア)ネマチック相またはスメクチック相を形成し得る化合物である。
(イ)該重合性液晶化合物の長軸方向(a)上にπ電子を有する。
(ウ)長軸方向(a)に対して交差する方向〔交差方向(b)〕上にπ電子を有する。
(エ)長軸方向(a)に存在するπ電子の合計をN(πa)、長軸方向に存在する分子量の合計をN(Aa)として下記式(i)で定義される重合性液晶化合物の長軸方向(a)のπ電子密度:
 D(πa)=N(πa)/N(Aa)  (i)
と、交差方向(b)に存在するπ電子の合計をN(πb)、交差方向(b)に存在する分子量の合計をN(Ab)として下記式(ii)で定義される重合性液晶化合物の交差方向(b)のπ電子密度:
 D(πb)=N(πb)/N(Ab)  (ii)
とが、式(iii)
 0≦〔D(πa)/D(πb)〕<1   (iii)
の関係にある〔すなわち、交差方向(b)のπ電子密度が、長軸方向(a)のπ電子密度よりも大きい〕。また、上記記載のように長軸およびそれに対して交差方向上にπ電子を有する重合性液晶化合物は、一般にT字構造となりやすい。
Examples of the polymerizable liquid crystal compound (A) include compounds having the following characteristics (a) to (d).
(A) A compound capable of forming a nematic phase or a smectic phase.
(A) Having π electrons in the major axis direction (a) of the polymerizable liquid crystal compound.
(C) π electrons are present in a direction [intersection direction (b)] intersecting with the major axis direction (a).
(D) A polymerizable liquid crystal compound defined by the following formula (i), where N(πa) is the total of π electrons existing in the major axis direction (a) and N(Aa) is the total of molecular weights present in the major axis direction. Π electron density in the major axis direction (a) of:
D(πa)=N(πa)/N(Aa) (i)
And a total of π electrons existing in the cross direction (b) is N(πb), and a total of molecular weights existing in the cross direction (b) is N(Ab), and the polymerizable liquid crystal compound is defined by the following formula (ii). Π electron density in the cross direction (b) of:
D(πb)=N(πb)/N(Ab) (ii)
And are expressions (iii)
0≦[D(πa)/D(πb)]<1 (iii)
(That is, the π electron density in the cross direction (b) is higher than the π electron density in the major axis direction (a)). Further, as described above, a polymerizable liquid crystal compound having π electrons in the major axis and in a direction intersecting with the major axis is generally likely to have a T-shaped structure.
 上記(ア)~(エ)の特徴において、長軸方向(a)およびπ電子数Nは以下のように定義される。
・長軸方向(a)は、例えば棒状構造を有する化合物であれば、その棒状の長軸方向である。
・長軸方向(a)上に存在するπ電子数N(πa)には、重合反応により消失するπ電子は含まない。
・長軸方向(a)上に存在するπ電子数N(πa)には、長軸上のπ電子およびこれと共役するπ電子の合計数であり、例えば長軸方向(a)上に存在する環であって、ヒュッケル則を満たす環に存在するπ電子の数が含まれる。
・交差方向(b)に存在するπ電子数N(πb)には、重合反応により消失するπ電子は含まない。
 上記を満たす重合性液晶化合物は、長軸方向にメソゲン構造を有している。このメソゲン構造によって、液晶相(ネマチック相、スメクチック相)を発現する。
In the above features (a) to (d), the major axis direction (a) and the π electron number N are defined as follows.
The major axis direction (a) is, for example, a rod-shaped major axis direction in the case of a compound having a rod-shaped structure.
The number of π electrons N (πa) existing in the major axis direction (a) does not include π electrons that disappear due to the polymerization reaction.
-The number of π electrons existing in the major axis direction (a) is the total number of π electrons on the major axis and π electrons conjugated with this, and exists in the major axis direction (a), for example. The number of π electrons existing in a ring that satisfies Huckel's rule is included.
The number of π electrons N (πb) existing in the cross direction (b) does not include π electrons that disappear due to the polymerization reaction.
The polymerizable liquid crystal compound satisfying the above has a mesogenic structure in the major axis direction. A liquid crystal phase (nematic phase, smectic phase) is developed by this mesogenic structure.
 上記(ア)~(エ)を満たす重合性液晶化合物は、基材または配向膜上に塗布し、相転移温度以上に加熱することにより、ネマチック相やスメクチック相を形成することが可能である。この重合性液晶化合物が配向して形成されたネマチック相またはスメクチック相では通常、重合性液晶化合物の長軸方向が互いに平行になるように配向しており、この長軸方向がネマチック相の配向方向となる。このような重合性液晶化合物を膜状とし、ネマチック相またはスメクチック相の状態で重合させると、長軸方向(a)に配向した状態で重合した重合体からなる重合体膜を形成することができる。この重合体膜は、長軸方向(a)上のπ電子と交差方向(b)上のπ電子により紫外線を吸収する。ここで、交差方向(b)上のπ電子により吸収される紫外線の吸収極大波長をλbmaxとする。λbmaxは通常300nm~400nmである。π電子の密度は、上記式(iii)を満足していて、交差方向(b)のπ電子密度が長軸方向(a)のπ電子密度よりも大きいので、交差方向(b)に振動面を有する直線偏光紫外線(波長はλbmax)の吸収が、長軸方向(a)に振動面を有する直線偏光紫外線(波長はλbmax)の吸収よりも大きな重合体膜となる。その比(直線偏光紫外線の交差方向(b)の吸光度/長軸方向(a)の吸光度の比)は、例えば1.0超、好ましくは1.2以上、通常30以下であり、例えば10以下である。 The polymerizable liquid crystal compound satisfying the above (a) to (d) can be applied on the substrate or the alignment film and heated to the phase transition temperature or higher to form a nematic phase or a smectic phase. In the nematic phase or smectic phase formed by aligning the polymerizable liquid crystal compound, the polymerizable liquid crystal compounds are usually aligned such that the major axis directions thereof are parallel to each other, and the major axis direction is the alignment direction of the nematic phase. Becomes When such a polymerizable liquid crystal compound is formed into a film and polymerized in a state of a nematic phase or a smectic phase, a polymer film composed of a polymer polymerized in a state of being aligned in the major axis direction (a) can be formed. .. This polymer film absorbs ultraviolet rays by π electrons in the major axis direction (a) and π electrons in the cross direction (b). Here, the maximum absorption wavelength of ultraviolet rays absorbed by π electrons in the crossing direction (b) is λbmax. λbmax is usually 300 nm to 400 nm. The density of π electrons satisfies the above formula (iii), and the π electron density in the crossing direction (b) is higher than the π electron density in the major axis direction (a). The absorption of the linearly polarized ultraviolet light having a wavelength of λbmax is larger than that of the linearly polarized ultraviolet light having a vibration plane in the major axis direction (a) (the wavelength is λbmax). The ratio (the ratio of the absorbance in the crossing direction (b) of the linearly polarized ultraviolet light/the absorbance in the major axis direction (a)) is, for example, more than 1.0, preferably 1.2 or more and usually 30 or less, for example 10 or less. Is.
 上記特徴を有する重合性液晶化合物は、一般に、その配向状態の単独重合体の複屈折率が逆波長分散性を示すものであることが多い。光学特性により優れる液晶硬化膜を得やすい観点から、本発明の重合性液晶組成物に含まれる重合性化合物(A)は、その単独重合体が逆波長分散性を示すものであることが好ましい。 In general, the polymerizable liquid crystal compound having the above-mentioned characteristics is often one in which the birefringence of the homopolymer in the aligned state exhibits reverse wavelength dispersion. From the viewpoint of easily obtaining a liquid crystal cured film having more excellent optical properties, it is preferable that the polymerizable compound (A) contained in the polymerizable liquid crystal composition of the present invention is a homopolymer thereof having reverse wavelength dispersion.
 そのような重合性液晶化合物(A)として、具体的には例えば、下記式(A1):
Figure JPOXMLDOC01-appb-C000001
で表される化合物が挙げられる。
As the polymerizable liquid crystal compound (A), specifically, for example, the following formula (A1):
Figure JPOXMLDOC01-appb-C000001
The compound represented by
 式(A1)中、Arは置換基を有していてもよい芳香族基を有する二価の基を表す。ここでいう芳香族基とは、該環構造が有するπ電子数がヒュッケル則に従い[4n+2]個であるものをさし、例えば後述する(Ar-1)~(Ar-23)で例示されるようなAr基を、二価の連結基を介して2個以上有していてもよい。ここでnは整数を表す。-N=や-S-等のヘテロ原子を含んで環構造を形成している場合、これらヘテロ原子上の非共有結合電子対を含めてヒュッケル則を満たし、芳香族性を有する場合も含む。該芳香族基中には窒素原子、酸素原子、硫黄原子のうち少なくとも1つ以上が含まれることが好ましい。二価の基Arに含まれる芳香族基は1つであってもよいし、2つ以上であってもよい。芳香族基が1つである場合、二価の基Arは置換基を有していてもよい二価の芳香族基であってもよい。二価の基Arに含まれる芳香族基が2つ以上である場合、2つ以上の芳香族基は互いに単結合、-CO-O-、-O-などの二価の結合基で結合していてもよい。
 GおよびGは、それぞれ独立に、二価の芳香族基または二価の脂環式炭化水素基を表す。ここで、該二価の芳香族基または二価の脂環式炭化水素基に含まれる水素原子は、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシ基、シアノ基またはニトロ基に置換されていてもよく、該二価の芳香族基または二価の脂環式炭化水素基を構成する炭素原子が、酸素原子、硫黄原子または窒素原子に置換されていてもよい。
 LおよびLは、それぞれ独立に、エステル構造を有する二価の連結基である。
 BおよびBはそれぞれ独立に、単結合または二価の連結基である。
 k、lは、それぞれ独立に0~3の整数を表し、1≦k+lの関係を満たす。ここで、2≦k+lである場合、BおよびB、GおよびGは、それぞれ互いに同一であってもよく、異なっていてもよい。
 EおよびEは、それぞれ独立に、炭素数1~17のアルカンジイル基を表し、ここで、炭素数4~12のアルカンジイル基がより好ましい。また、アルカンジイル基に含まれる水素原子は、ハロゲン原子で置換されていてもよく、該アルカンジイル基に含まれる-CH-は、-O-、-S-、-SiH-、-C(=O)-で置換されていてもよい。
 PおよびPは、それぞれ独立に、光重合性基または水素原子を表し、少なくとも1つは(メタ)アクリロイル基である。
In formula (A1), Ar represents a divalent group having an aromatic group which may have a substituent. The term “aromatic group” as used herein refers to an aromatic group having a number of π electrons of [4n+2] according to Huckel's rule, and is exemplified by (Ar-1) to (Ar-23) described later. You may have two or more such Ar groups through the bivalent coupling group. Here, n represents an integer. In the case where a ring structure is formed by containing a hetero atom such as -N= or -S-, the case where the Hückel rule is satisfied including the non-covalent bond electron pair on these hetero atoms and the aromatic structure is also included. It is preferable that the aromatic group contains at least one of a nitrogen atom, an oxygen atom and a sulfur atom. The divalent group Ar may contain one aromatic group or two or more aromatic groups. When there is one aromatic group, the divalent group Ar may be a divalent aromatic group which may have a substituent. When the divalent group Ar contains two or more aromatic groups, the two or more aromatic groups are bonded to each other by a single bond or a divalent bonding group such as —CO—O— or —O—. May be.
G 1 and G 2 each independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group. Here, the hydrogen atom contained in the divalent aromatic group or the divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, or a carbon atom. The carbon atom which may be substituted with an alkoxy group, a cyano group or a nitro group of the formulas 1 to 4 and which constitutes the divalent aromatic group or divalent alicyclic hydrocarbon group is an oxygen atom or a sulfur atom. Alternatively, it may be substituted with a nitrogen atom.
L 1 and L 2 are each independently a divalent linking group having an ester structure.
B 1 and B 2 are each independently a single bond or a divalent linking group.
k and l each independently represent an integer of 0 to 3 and satisfy the relationship of 1≦k+l. Here, when 2≦k+1, B 1 and B 2 , and G 1 and G 2 may be the same as or different from each other.
E 1 and E 2 each independently represent an alkanediyl group having 1 to 17 carbon atoms, and an alkanediyl group having 4 to 12 carbon atoms is more preferable. Further, the hydrogen atom contained in the alkanediyl group may be substituted with a halogen atom, and —CH 2 — contained in the alkanediyl group is —O—, —S—, —SiH 2 —, —C. It may be substituted with (=O)-.
P 1 and P 2 each independently represent a photopolymerizable group or a hydrogen atom, and at least one is a (meth)acryloyl group.
 GおよびGは、それぞれ独立に、好ましくは、ハロゲン原子および炭素数1~4のアルキル基からなる群から選ばれる少なくとも1つの置換基で置換されていてもよい1,4-フェニレンジイル基、ハロゲン原子および炭素数1~4のアルキル基からなる群から選ばれる少なくとも1つの置換基で置換されていてもよい1,4-シクロヘキサンジイル基であり、より好ましくはメチル基で置換された1,4-フェニレンジイル基、無置換の1,4-フェニレンジイル基、または無置換の1,4-trans-シクロヘキサンジイル基であり、特に好ましくは無置換の1,4-フェニレンジイル基、または無置換の1,4-trans-シクロへキサンジイル基である。
 また、複数存在するGおよびGのうち少なくとも1つは二価の脂環式炭化水素基であることが好ましく、また、LまたはLに結合するGおよびGのうち少なくとも1つは二価の脂環式炭化水素基であることがより好ましい。
G 1 and G 2 are each independently preferably a 1,4-phenylenediyl group optionally substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms. A 1,4-cyclohexanediyl group which may be substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms, more preferably 1 substituted with a methyl group. , 4-phenylenediyl group, an unsubstituted 1,4-phenylenediyl group, or an unsubstituted 1,4-trans-cyclohexanediyl group, particularly preferably an unsubstituted 1,4-phenylenediyl group or an unsubstituted It is a substituted 1,4-trans-cyclohexanediyl group.
Further, at least one of a plurality of G 1 and G 2 present is preferably a divalent alicyclic hydrocarbon group, and at least 1 of G 1 and G 2 bonded to L 1 or L 2 More preferably, it is a divalent alicyclic hydrocarbon group.
 LおよびLは、それぞれ独立に、好ましくは-Ra1COORa2-(Ra1およびRa2はそれぞれ独立に単結合または炭素数1~4のアルキレン基を表す)であり、より好ましくは-COORa2-1-(Ra2-1は単結合、-CH-、-CHCH-のいずれかを表す)であり、さらに好ましくは-COO-または-COOCHCH-である。 L 1 and L 2 are each independently preferably —R a1 COOR a2 — (R a1 and R a2 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms), and more preferably — COOR a2-1 - a (R a2-1 is a single bond, -CH 2 -, - - CH 2 CH 2 of representing any), more preferably -COO- or -COOCH 2 CH 2 - is.
 BおよびBは、それぞれ独立に、好ましくは、単結合、炭素数1~4のアルキレン基、-O-、-S-、-Ra3ORa4-、-Ra5COORa6-、-Ra7OCORa8-、または-Ra9OC=OORa10-である。ここで、Ra3~Ra10はそれぞれ独立に単結合、または炭素数1~4のアルキレン基を表す。BおよびBはそれぞれ独立に、より好ましくは単結合、-ORa4-1-、-CH-、-CHCH-、-COORa6-1-、または-OCORa8-1-である。ここで、Ra4-1、Ra6-1、Ra8-1はそれぞれ独立に単結合、-CH-、-CHCH-のいずれかを表す。BおよびBはそれぞれ独立に、さらに好ましくは単結合、-O-、-CHCH-、-COO-、-COOCHCH-、-OCO-または-OCOCHCH-である。 B 1 and B 2 are preferably each independently a single bond, an alkylene group having 1 to 4 carbon atoms, —O—, —S—, —R a3 OR a4 —, —R a5 COOR a6 —, —R. a7 OCOR a8 −, or —R a9 OC═OOR a10 −. Here, R a3 to R a10 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms. B 1 and B 2 are each independently, more preferably a single bond, —OR a4-1 —, —CH 2 —, —CH 2 CH 2 —, —COOR a6-1 —, or —OCOR a8-1 —. is there. Here, R a4-1 , R a6-1 and R a8-1 each independently represent a single bond, —CH 2 — or —CH 2 CH 2 —. B 1 and B 2 are each independently more preferably a single bond, -O -, - CH 2 CH 2 -, - COO -, - COOCH 2 CH 2 -, - OCO- or -OCOCH 2 CH 2 - is ..
 kおよびlは、逆波長分散性発現の観点から2≦k+l≦6の範囲が好ましく、k+l=4であることが好ましく、k=2かつl=2であることがより好ましい。k=2かつl=2であると対称構造となるため好ましい。 From the viewpoint of manifesting reverse wavelength dispersion, k and l are preferably in the range of 2≦k+l≦6, preferably k+l=4, and more preferably k=2 and l=2. It is preferable that k=2 and l=2 because a symmetrical structure is obtained.
 PまたはPで表される光重合性基としては、エポキシ基、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイル基、メタクリロイル基、オキシラニル基、およびオキセタニル基等が挙げられる。PまたはPのうち、少なくとも1つはアクリロイル基またはメタクリロイル基であり、PおよびPはいずれもアクリロイル基またはメタクリロイル基が好ましく、アクリロイル基がより好ましい。 Examples of the photopolymerizable group represented by P 1 or P 2 include epoxy group, vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyl group, methacryloyl group, oxiranyl group, And oxetanyl group and the like. Of P 1 or P 2, at least one acryloyl group or a methacryloyl group, P 1 and P 2 are both an acryloyl group or a methacryloyl group is preferable, an acryloyl group is more preferable.
 Arは置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい芳香族複素環、および電子吸引性基から選ばれる少なくとも1つを有することが好ましい。当該芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環等が挙げられ、ベンゼン環、ナフタレン環が好ましい。当該芳香族複素環としては、フラン環、ベンゾフラン環、ピロール環、インドール環、チオフェン環、ベンゾチオフェン環、ピリジン環、ピラジン環、ピリミジン環、トリアゾール環、トリアジン環、ピロリン環、イミダゾール環、ピラゾール環、チアゾール環、ベンゾチアゾール環、チエノチアゾール環、オキサゾール環、ベンゾオキサゾール環、およびフェナンスロリン環等が挙げられる。なかでも、チアゾール環、ベンゾチアゾール環、またはベンゾフラン環を有することが好ましく、ベンゾチアゾール基を有することがさらに好ましい。また、Arに窒素原子が含まれる場合、当該窒素原子はπ電子を有することが好ましい。 Ar preferably has at least one selected from an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocycle which may have a substituent, and an electron-withdrawing group. Examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring and an anthracene ring, and a benzene ring and a naphthalene ring are preferable. The aromatic heterocycle includes a furan ring, a benzofuran ring, a pyrrole ring, an indole ring, a thiophene ring, a benzothiophene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazole ring, a triazine ring, a pyrroline ring, an imidazole ring and a pyrazole ring. , A thiazole ring, a benzothiazole ring, a thienothiazole ring, an oxazole ring, a benzoxazole ring, and a phenanthroline ring. Among them, a thiazole ring, a benzothiazole ring, or a benzofuran ring is preferable, and a benzothiazole group is more preferable. Further, when Ar contains a nitrogen atom, the nitrogen atom preferably has π electrons.
 式(A1)中、Arで表される二価の芳香族基に含まれるπ電子の合計数Nπは8以上が好ましく、より好ましくは10以上であり、さらに好ましくは14以上であり、特に好ましくは16以上である。また、好ましくは30以下であり、より好ましくは26以下であり、さらに好ましくは24以下である。 In formula (A1), the total number N π of π electrons contained in the divalent aromatic group represented by Ar is preferably 8 or more, more preferably 10 or more, further preferably 14 or more, and particularly It is preferably 16 or more. Further, it is preferably 30 or less, more preferably 26 or less, and further preferably 24 or less.
 Arで表される芳香族基としては、例えば以下の基が挙げられる。 Examples of the aromatic group represented by Ar include the following groups.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(Ar-1)~式(Ar-23)中、*印は連結部を表し、Z、ZおよびZは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、シアノ基、ニトロ基、炭素数1~12のアルキルスルフィニル基、炭素数1~12のアルキルスルホニル基、カルボキシル基、炭素数1~12のフルオロアルキル基、炭素数1~12のアルコキシ基、炭素数1~12のアルキルチオ基、炭素数1~12のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~12のN-アルキルスルファモイル基または炭素数2~12のN,N-ジアルキルスルファモイル基を表す。また、Z、ZおよびZは、重合性基を含んでいてもよい。 In formulas (Ar-1) to (Ar-23), * indicates a connecting part, and Z 0 , Z 1 and Z 2 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 12 carbon atoms. Group, cyano group, nitro group, alkylsulfinyl group having 1 to 12 carbon atoms, alkylsulfonyl group having 1 to 12 carbon atoms, carboxyl group, fluoroalkyl group having 1 to 12 carbon atoms, alkoxy group having 1 to 12 carbon atoms, Alkylthio group having 1 to 12 carbon atoms, N-alkylamino group having 1 to 12 carbon atoms, N,N-dialkylamino group having 2 to 12 carbon atoms, N-alkylsulfamoyl group having 1 to 12 carbon atoms or carbon It represents an N,N-dialkylsulfamoyl group of the number 2 to 12. Further, Z 0 , Z 1 and Z 2 may include a polymerizable group.
 QおよびQは、それぞれ独立に、-CR1’2’-、-S-、-NH-、-NR1’-、-CO-または-O-を表し、R1’およびR2’は、それぞれ独立に、水素原子または炭素数1~4のアルキル基を表す。 Q 1 and Q 2 each independently represent —CR 1′ R 2′ —, —S—, —NH—, —NR 1′ —, —CO— or —O—, and R 1′ and R 2 ' Independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 JおよびJは、それぞれ独立に、炭素原子、または窒素原子を表す。 J 1 and J 2 each independently represent a carbon atom or a nitrogen atom.
 Y、YおよびYは、それぞれ独立に、置換されていてもよい芳香族炭化水素基または芳香族複素環基を表す。 Y 1 , Y 2 and Y 3 each independently represent an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group.
 WおよびWは、それぞれ独立に、水素原子、シアノ基、メチル基またはハロゲン原子を表し、mは0~6の整数を表す。 W 1 and W 2 each independently represent a hydrogen atom, a cyano group, a methyl group or a halogen atom, and m represents an integer of 0 to 6.
 Y、YおよびYにおける芳香族炭化水素基としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ビフェニル基等の炭素数6~20の芳香族炭化水素基が挙げられ、フェニル基、ナフチル基が好ましく、フェニル基がより好ましい。芳香族複素環基としては、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基等の窒素原子、酸素原子、硫黄原子等のヘテロ原子を少なくとも1つ含む炭素数4~20の芳香族複素環基が挙げられ、フリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基が好ましい。 Examples of the aromatic hydrocarbon group for Y 1 , Y 2 and Y 3 include aromatic hydrocarbon groups having 6 to 20 carbon atoms such as phenyl group, naphthyl group, anthryl group, phenanthryl group and biphenyl group, and phenyl group. , A naphthyl group is preferable, and a phenyl group is more preferable. The aromatic heterocyclic group includes a furyl group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group, a benzothiazolyl group and the like, a nitrogen atom, an oxygen atom, a sulfur atom and the like, which has at least one hetero atom and has 4 to 20 carbon atoms. Examples of the aromatic heterocyclic group include furyl group, thienyl group, pyridinyl group, thiazolyl group and benzothiazolyl group.
 Y、YおよびYは、それぞれ独立に、置換されていてもよい多環系芳香族炭化水素基または多環系芳香族複素環基であってもよい。多環系芳香族炭化水素基は、縮合多環系芳香族炭化水素基、または芳香環集合に由来する基をいう。多環系芳香族複素環基は、縮合多環系芳香族複素環基、または芳香環集合に由来する基をいう。 Y 1 , Y 2 and Y 3 may each independently be an optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group. The polycyclic aromatic hydrocarbon group means a condensed polycyclic aromatic hydrocarbon group or a group derived from an aromatic ring assembly. The polycyclic aromatic heterocyclic group means a condensed polycyclic aromatic heterocyclic group or a group derived from an aromatic ring assembly.
 Z、ZおよびZは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、シアノ基、ニトロ基、炭素数1~12のアルコキシ基であることが好ましく、Zは、水素原子、炭素数1~12のアルキル基、シアノ基がさらに好ましく、ZおよびZは、水素原子、フッ素原子、塩素原子、メチル基、シアノ基がさらに好ましい。また、Z、ZおよびZは重合性基を含んでいてもよい。 Z 0 , Z 1 and Z 2 are preferably each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, a cyano group, a nitro group or an alkoxy group having 1 to 12 carbon atoms, and Z 0 is more preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or a cyano group, and Z 1 and Z 2 are further preferably a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group or a cyano group. Further, Z 0 , Z 1 and Z 2 may include a polymerizable group.
 QおよびQは、-NH-、-S-、-NR1’-、-O-が好ましく、R1’は水素原子が好ましい。中でも-S-、-O-、-NH-が特に好ましい。 Q 1 and Q 2 are preferably —NH—, —S—, —NR 1′ — and —O—, and R 1′ is preferably a hydrogen atom. Of these, —S—, —O—, and —NH— are particularly preferable.
 式(Ar-1)~(Ar-23)の中でも、式(Ar-6)および式(Ar-7)が分子の安定性の観点から好ましい。 Among formulas (Ar-1) to (Ar-23), formula (Ar-6) and formula (Ar-7) are preferable from the viewpoint of molecular stability.
 式(Ar-16)~(Ar-23)において、Yは、これが結合する窒素原子およびZと共に、芳香族複素環基を形成していてもよい。芳香族複素環基としては、Arが有していてもよい芳香族複素環として前記したものが挙げられるが、例えば、ピロール環、イミダゾール環、ピロリン環、ピリジン環、ピラジン環、ピリミジン環、インドール環、キノリン環、イソキノリン環、プリン環、ピロリジン環等が挙げられる。この芳香族複素環基は、置換基を有していてもよい。また、Yは、これが結合する窒素原子およびZと共に、前述した置換されていてもよい多環系芳香族炭化水素基または多環系芳香族複素環基であってもよい。例えば、ベンゾフラン環、ベンゾチアゾール環、ベンゾオキサゾール環等が挙げられる。 In formulas (Ar-16) to (Ar-23), Y 1 may form an aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 . Examples of the aromatic heterocyclic group include those described above as the aromatic heterocyclic ring which Ar may have, and examples thereof include a pyrrole ring, an imidazole ring, a pyrroline ring, a pyridine ring, a pyrazine ring, a pyrimidine ring and an indole. Ring, quinoline ring, isoquinoline ring, purine ring, pyrrolidine ring and the like. This aromatic heterocyclic group may have a substituent. Y 1 may be the above-mentioned optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 . Examples thereof include a benzofuran ring, a benzothiazole ring, a benzoxazole ring and the like.
 本発明の重合性液晶組成物は、本発明の効果に影響を及ぼさない限りにおいて、重合性液晶化合物(A)以外の重合性液晶化合物を含んでいてもよい。そのような重合性液晶化合物としては、例えば、特開2010-31223号公報、特開2010-270108号公報、特開2011-6360号公報および特開2011-207765号公報に記載されるような重合性液晶化合物、正波長分散性を示す重合性液晶化合物などが挙げられる。 The polymerizable liquid crystal composition of the present invention may contain a polymerizable liquid crystal compound other than the polymerizable liquid crystal compound (A) as long as it does not affect the effects of the present invention. Examples of such a polymerizable liquid crystal compound include polymerization as described in JP 2010-31223 A, JP 2010-270108 A, JP 2011-6360 A and JP 2011-207765 A. Liquid crystal compounds, polymerizable liquid crystal compounds exhibiting positive wavelength dispersion, and the like.
 重合性液晶組成物中の重合性液晶化合物の含有量は、重合性液晶組成物の固形分100質量部に対して、例えば70~99.5質量部であり、好ましくは80~99質量部であり、より好ましくは85~98質量部であり、さらに好ましくは90~95質量部である。重合性液晶化合物の含有量が上記範囲内であれば、得られる液晶硬化膜の配向性の観点から有利である。なお、本明細書において、重合性液晶組成物の固形分とは、重合性液晶組成物から有機溶媒等の揮発性成分を除いた全ての成分を意味する。 The content of the polymerizable liquid crystal compound in the polymerizable liquid crystal composition is, for example, 70 to 99.5 parts by mass, preferably 80 to 99 parts by mass, based on 100 parts by mass of the solid content of the polymerizable liquid crystal composition. %, more preferably 85 to 98 parts by mass, still more preferably 90 to 95 parts by mass. When the content of the polymerizable liquid crystal compound is within the above range, it is advantageous from the viewpoint of the orientation of the resulting liquid crystal cured film. In addition, in the present specification, the solid content of the polymerizable liquid crystal composition means all components excluding volatile components such as an organic solvent from the polymerizable liquid crystal composition.
 本発明の重合性液晶組成物は一次酸化防止剤を含む。一次酸化防止剤を含むことにより、重合性液晶組成物に含まれる重合性液晶化合物のゲル化が抑制され、重合性液晶組成物の保管安定性を高めることができる。一次酸化防止剤としては、発生したラジカルを捕捉する作用を有するフェノール系酸化防止剤、アミン系酸化防止剤等が挙げられる。一次酸化防止剤として、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 The polymerizable liquid crystal composition of the present invention contains a primary antioxidant. By containing the primary antioxidant, gelation of the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition is suppressed, and the storage stability of the polymerizable liquid crystal composition can be enhanced. Examples of primary antioxidants include phenolic antioxidants and amine antioxidants that have a function of trapping generated radicals. As the primary antioxidant, only one kind may be used, or two or more kinds may be used in combination.
 フェノール系酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、2,6-ジシクロヘキシル-4-メチルフェノール、2,6-ジ-tert-アミル-4-メチルフェノール、2,6-ジ-tert-オクチル-4-n-プロピルフェノール、2,6-ジシクロヘキシル-4-n-オクチルフェノール、2-イソプロピル-4-メチル-6-tert-ブチルフェノール、2-tert-ブチル-2-エチル-6-tert-オクチルフェノール、2-イソブチル-4-エチル-6-tert-ヘキシルフェノール、2-シクロヘキシル-4-n-ブチル-6-イソプロピルフェノール、dl-α-トコフェロール、tert-ブチルヒドロキノン、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-チオビス(4-メチル-6-tert-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス[6-(1-メチルシクロヘキシル)-p-クレゾール]、2,2’-エチリデンビス(4,6-ジ-tert-ブチルフェノール)、2,2’-ブチリデンビス(2-tert-ブチル-4-メチルフェノール)、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、トリエチレングリコールビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナミド)、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホネートジエチルエステル、トリス(2,6-ジメチル-3-ヒドロキシ-4-tert-ブチルベンジル)イソシアヌレート、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、トリス[(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル]イソシアヌレート、トリス(4-tert-ブチル-2,6-ジメチル-3-ヒドロキシベンジル)イソシアヌレート、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)テレフタレート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、3,9-ビス[1,1-ジメチル-2-{β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、2,2-ビス[4-(2-(3,5-ジ-tert-ブチル-4-ヒドロキシヒドロシンナモイルオキシ))エトキシフェニル]プロパン、β-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリルエステル等が挙げられる。 Examples of phenolic antioxidants include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, and 2,6-dicyclohexyl-4-methylphenol. 2,6-di-tert-amyl-4-methylphenol, 2,6-di-tert-octyl-4-n-propylphenol, 2,6-dicyclohexyl-4-n-octylphenol, 2-isopropyl-4 -Methyl-6-tert-butylphenol, 2-tert-butyl-2-ethyl-6-tert-octylphenol, 2-isobutyl-4-ethyl-6-tert-hexylphenol, 2-cyclohexyl-4-n-butyl- 6-isopropylphenol, dl-α-tocopherol, tert-butylhydroquinone, 2,2'-methylenebis(4-methyl-6-tert-butylphenol), 4,4'-butylidenebis(3-methyl-6-tert-butylphenol) ), 4,4′-thiobis(3-methyl-6-tert-butylphenol), 2,2′-thiobis(4-methyl-6-tert-butylphenol), 4,4′-methylenebis(2,6-di) -Tert-butylphenol), 2,2'-methylenebis[6-(1-methylcyclohexyl)-p-cresol], 2,2'-ethylidenebis(4,6-di-tert-butylphenol), 2,2' -Butylidene bis(2-tert-butyl-4-methylphenol), 2-tert-butyl-6-(3-tert-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenyl acrylate, 2-[1 -(2-Hydroxy-3,5-di-tert-pentylphenyl)ethyl]-4,6-di-tert-pentylphenyl acrylate, 1,1,3-tris(2-methyl-4-hydroxy-5- tert-butylphenyl)butane, triethylene glycol bis[3-(3-tert-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol bis[3-(3,5-di- tert-Butyl-4-hydroxyphenyl)propionate], 2,2-thiodiethylenebis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], N,N′-hexamethylenebis( 3,5-di-tert-butyl-4-hydroxy-hydrocinnamide), 3,5-di-te rt-Butyl-4-hydroxybenzylphosphonate diethyl ester, tris(2,6-dimethyl-3-hydroxy-4-tert-butylbenzyl)isocyanurate, tris(3,5-di-tert-butyl-4-hydroxybenzyl) ) Isocyanurate, tris[(3,5-di-tert-butyl-4-hydroxyphenyl)propionyloxyethyl]isocyanurate, tris(4-tert-butyl-2,6-dimethyl-3-hydroxybenzyl)isocyanurate , 2,4-bis(n-octylthio)-6-(4-hydroxy-3,5-di-tert-butylanilino)-1,3,5-triazine, tetrakis[methylene-3-(3,5-di -Tert-butyl-4-hydroxyphenyl)propionate]methane, 2,2'-methylenebis(4-methyl-6-tert-butylphenol)terephthalate, 1,3,5-trimethyl-2,4,6-tris(3 ,5-Di-tert-butyl-4-hydroxybenzyl)benzene, 3,9-bis[1,1-dimethyl-2-{β-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyl Oxy}ethyl]-2,4,8,10-tetraoxaspiro[5,5]undecane, 2,2-bis[4-(2-(3,5-di-tert-butyl-4-hydroxyhydrocinna Moyloxy))ethoxyphenyl]propane, β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid stearyl ester and the like.
 フェノール系酸化防止剤としては、市販品を使用してもよい。市販されているフェノール系酸化防止剤としては、例えば、スミライザー(登録商標)BHT(2,6-ジ-t-ブチル-4-メチルフェノール)、スミライザーGM(2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート)、スミライザーGS(F)(2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート)、スミライザーGA-80(3,9-ビス[2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5・5]ウンデカン)、スミライザーMDP-S(2,2’-メチレンビス(6-tert-ブチル-4-メチルフェノール))、スミライザーBBM-S(4,4’-ブチリデンビス(6-tert-ブチル-3-メチルフェノール))、スミライザーWX-R(4,4’-チオビス(6-tert-ブチル-3-メチルフェノール))、スミライザーL(S)(以上、全て住友化学(株)製)、イルガノックス(Irganox)(登録商標)1010(テトラキス[メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン)、イルガノックス1035(2,2-チオ[ジエチルビス-3(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート])、イルガノックス1076(β-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリルエステル)、イルガノックス1098(N,N’-(1,6-ヘキサンジイル)ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド])、イルガノックス1135(3-(4-ヒドロキシ-3,5-ジイソプロピルフェニル)プロピオン酸オクチル)、イルガノックス1330(1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン)、イルガノックス1726(2,4-ビス(ドデシルチオメチル)-6-メチルフェノール)、イルガノックス1425WL、イルガノックス1520L(2,4-ビス(オクチルチオメチル)-6-メチルフェノール)、イルガノックス245(3,6-ジオキサオクタン-1,8-ジオールビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロパノアート])、イルガノックス259(1,6-ヘキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート])、イルガノックス3114(トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート)、イルガノックス565(6-(4-ヒドロキシ-3,5-ジ-tert-ブチルアニリノ)-2,4-ビス(オクチルチオ)-1,3,5-トリアジン)、イルガノックス295、イルガノックス3125(トリス[(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル]イソシアヌレート)(以上、全てBASFジャパン(株)製)、シアノックス1790(トリス(2,6-ジメチル-3-ヒドロキシ-4-t-ブチルベンジル)イソシアヌレート)(Cyanox 1790、サイテック製)、ビタミンE(dl-α-トコフェロール)(エーザイ製)等が挙げられる。フェノール系酸化防止剤は、単独で使用してもよいし、2種以上を併用してもよい。 Commercially available products may be used as the phenolic antioxidant. Examples of commercially available phenolic antioxidants include Sumilizer (registered trademark) BHT (2,6-di-t-butyl-4-methylphenol) and Sumilizer GM (2-tert-butyl-6-(3 -Tert-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenyl acrylate), Sumilizer GS(F)(2-[1-(2-hydroxy-3,5-di-tert-pentylphenyl)ethyl ]-4,6-Di-tert-pentylphenyl acrylate), Sumilizer GA-80 (3,9-bis[2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]] -1,1-Dimethylethyl]-2,4,8,10-tetraoxaspiro[5.5]undecane), Sumilizer MDP-S (2,2'-methylenebis(6-tert-butyl-4-methylphenol) )), Sumilizer BBM-S (4,4′-butylidene bis(6-tert-butyl-3-methylphenol)), Sumilizer WX-R (4,4′-thiobis(6-tert-butyl-3-methylphenol) )), Sumilizer L(S) (all manufactured by Sumitomo Chemical Co., Ltd.), Irganox (registered trademark) 1010 (tetrakis[methylene-3-(3′,5′-di-tert-butyl-) 4'-hydroxyphenyl)propionate]methane), Irganox 1035 (2,2-thio[diethylbis-3(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]), Irganox 1076 (β- (3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid stearyl ester), Irganox 1098 (N,N′-(1,6-hexanediyl)bis[3-(3,5-di- tert-butyl-4-hydroxyphenyl)propionamide]), Irganox 1135 (3-(4-hydroxy-3,5-diisopropylphenyl)octyl propionate), Irganox 1330 (1,3,5-trimethyl-2) , 4,6-Tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene), Irganox 1726 (2,4-bis(dodecylthiomethyl)-6-methylphenol), Irganox 1425WL, Irganox 1520L (2,4-bis(octylthiomethyl)-6-methylphenol), Irganox 245 (3,6-dioxaoctane-1,8-diolbis[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoate]), Irganox 259 (1,6-hexanediolbis[3 -(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]), Irganox 3114 (tris(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate), Irganox 565 ( 6-(4-hydroxy-3,5-di-tert-butylanilino)-2,4-bis(octylthio)-1,3,5-triazine), Irganox 295, Irganox 3125 (Tris[(3,5 -Di-t-butyl-4-hydroxyphenyl)propionyloxyethyl]isocyanurate) (all manufactured by BASF Japan Ltd.), Cyanox 1790 (tris(2,6-dimethyl-3-hydroxy-4-t-). Butylbenzyl) isocyanurate) (Cyanox 1790, manufactured by Cytec), vitamin E (dl-α-tocopherol) (manufactured by Eisai) and the like. The phenolic antioxidants may be used alone or in combination of two or more.
 アミン系酸化防止剤としては、例えば、N,N'-ジ-sec-ブチル-p-フェニレンジアミン、N,N'-ジ-イソプロピル-p-フェニレンジアミン、N,N'-ビス(1,4-ジメチルペンチル)-p-フェニレンジアミン、N,N'-ビス(1-エチル-3-メチルペンチル)-p-フェニレンジアミン、N,N'-ビス(1-メチルヘプチル)-p-フェニレンジアミン、N,N'-ジシクロヘキシル-p-フェニレンジアミン、N,N'-ジフェニル-p-フェニレンジアミン、N,N'-ビス(2-ナフチル)-p-フェニレンジアミン、N-イソプロピル-N'-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N'-フェニル-p-フェニレンジアミン、N-(1-メチルヘプチル)-N'-フェニル-p-フェニレンジアミン、N-シクロヘキシル-N'-フェニル-p-フェニレンジアミン、4-(p-トルエンスルファモイル)ジフェニルアミン、N,N'-ジメチル-N,N'-ジ-第二ブチル-p-フェニレンジアミン、ジフェニルアミン、N-アリルジフェニルアミン、アルキル化ジフェニルアミン等が挙げられる。 Examples of amine-based antioxidants include N,N′-di-sec-butyl-p-phenylenediamine, N,N′-di-isopropyl-p-phenylenediamine, N,N′-bis(1,4) -Dimethylpentyl)-p-phenylenediamine, N,N'-bis(1-ethyl-3-methylpentyl)-p-phenylenediamine, N,N'-bis(1-methylheptyl)-p-phenylenediamine, N,N'-dicyclohexyl-p-phenylenediamine, N,N'-diphenyl-p-phenylenediamine, N,N'-bis(2-naphthyl)-p-phenylenediamine, N-isopropyl-N'-phenyl- p-phenylenediamine, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, N-(1-methylheptyl)-N'-phenyl-p-phenylenediamine, N-cyclohexyl-N '-Phenyl-p-phenylenediamine, 4-(p-toluenesulfamoyl)diphenylamine, N,N'-dimethyl-N,N'-di-tert-butyl-p-phenylenediamine, diphenylamine, N-allyldiphenylamine , Alkylated diphenylamine and the like.
 アミン系酸化防止剤としては、市販品を使用してもよい。市販されているアミン系酸化防止剤としては、例えば、スミライザーBPA(N,N'-ジ-sec-ブチル-p-フェニレンジアミン)、スミライザーBPA-M1、スミライザー4ML(p-フェニレンジアミン誘導体)、スミライザー9A(アルカリ化ジフィニルアミン)等が挙げられる。
アミン系酸化防止剤は、単独で使用してもよいし、2種以上を併用してもよい。
A commercially available product may be used as the amine antioxidant. Examples of commercially available amine-based antioxidants include Sumilizer BPA (N,N′-di-sec-butyl-p-phenylenediamine), Sumilizer BPA-M1, Sumilizer 4ML (p-phenylenediamine derivative), Sumilizer 9A (alkalinized difinylamine) and the like.
The amine antioxidant may be used alone or in combination of two or more kinds.
 重合性液晶組成物のゲル化を効率的に抑制し、高い保管安定性を得る観点から、本発明の重合性液晶組成物は、一次酸化防止剤としてフェノール化合物を含むことが好ましい。 From the viewpoint of effectively suppressing gelation of the polymerizable liquid crystal composition and obtaining high storage stability, the polymerizable liquid crystal composition of the present invention preferably contains a phenol compound as a primary antioxidant.
 一次酸化防止剤の分子量は、好ましくは400g/mol以下であり、より好ましくは350g/mol以下、さらに好ましくは300g/mol以下、特に好ましくは250g/mol以下である。一次酸化防止剤の分子量が上記上限以下であると、重合性液晶組成物においてラジカル捕捉機能を十分に発揮し、重合性液晶組成物を長期保管した際の重合性液晶化合物のゲル化を抑制することができるとともに、重合性液晶組成物から液晶硬化膜を作製する際には、例えば乾燥工程等で該一次酸化防止剤は気化しやすく、重合性液晶化合物の重合に対する影響を抑えて高い重合率を実現することができる。一次酸化防止剤の分子量の下限値は特に限定されるものではなく、例えば90g/mol以上であってよい。 The molecular weight of the primary antioxidant is preferably 400 g/mol or less, more preferably 350 g/mol or less, further preferably 300 g/mol or less, and particularly preferably 250 g/mol or less. When the molecular weight of the primary antioxidant is not more than the above upper limit, the radical scavenging function is sufficiently exhibited in the polymerizable liquid crystal composition, and gelation of the polymerizable liquid crystal compound when the polymerizable liquid crystal composition is stored for a long time is suppressed. In addition, when producing a liquid crystal cured film from a polymerizable liquid crystal composition, the primary antioxidant is easily vaporized in a drying step or the like, and the polymerization rate of the polymerizable liquid crystal compound is suppressed by suppressing the influence on the polymerization. Can be realized. The lower limit of the molecular weight of the primary antioxidant is not particularly limited, and may be 90 g/mol or more, for example.
 本発明の重合性液晶組成物における一次酸化防止剤の含有量は、重合性液晶化合物100質量部に対して、好ましくは0.1~5質量部であり、より好ましくは0.5質量部以上、また、より好ましくは3質量部以下である。一次酸化防止剤の含有量が上記下限値以上であると重合性液晶組成物においてラジカル捕捉剤としての機能を十分に果たすことができ、上記上限値以下であると重合性液晶化合物の重合に対する影響を抑えて高い重合率を実現することができる。 The content of the primary antioxidant in the polymerizable liquid crystal composition of the present invention is preferably 0.1 to 5 parts by mass, more preferably 0.5 parts by mass or more, based on 100 parts by mass of the polymerizable liquid crystal compound. , And more preferably 3 parts by mass or less. When the content of the primary antioxidant is at least the above lower limit, the polymerizable liquid crystal composition can sufficiently function as a radical scavenger, and when the content is at most the above upper limit, the influence on the polymerization of the polymerizable liquid crystal compound is exerted. Can be suppressed and a high polymerization rate can be realized.
 本発明の重合性液晶組成物は二次酸化防止剤を含む。二次酸化防止剤を含むことにより、重合性液晶組成物から液晶硬化膜を形成するために紫外線等を照射する際の重合性液晶化合物への損傷を抑えることができ、光学特性に優れる液晶硬化膜を得ることができる。
また、重合性液晶化合物を硬化させる際、重合性液晶化合物の損傷を抑えながら、より高強度の紫外線照射が可能となるため、重合性液晶化合物を十分に硬化させることができる。ゆえに、上記重合性液晶組成物から、高温環境下などの過酷な環境下においても光学性能に変化の生じ難い高い耐久性を有する液晶硬化膜を作製することができると考えられる。
 二次酸化防止剤としては、ラジカルから生じる過酸化物を分解する作用を有するリン系酸化防止剤およびイオウ系酸化防止剤等が挙げられる。二次酸化防止剤として、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
The polymerizable liquid crystal composition of the present invention contains a secondary antioxidant. By containing a secondary antioxidant, it is possible to suppress damage to the polymerizable liquid crystal compound when the polymerizable liquid crystal composition is irradiated with ultraviolet rays or the like to form a liquid crystal cured film, and thus the liquid crystal is cured with excellent optical properties. A membrane can be obtained.
Further, when the polymerizable liquid crystal compound is cured, it is possible to irradiate ultraviolet rays with higher intensity while suppressing damage to the polymerizable liquid crystal compound, and thus the polymerizable liquid crystal compound can be sufficiently cured. Therefore, it is considered that the polymerizable liquid crystal composition can be used to prepare a liquid crystal cured film having high durability in which change in optical performance hardly occurs even in a severe environment such as a high temperature environment.
Examples of secondary antioxidants include phosphorus-based antioxidants and sulfur-based antioxidants that have the function of decomposing peroxides generated from radicals. As the secondary antioxidant, only one kind may be used, or two or more kinds may be used in combination.
 リン系酸化防止剤としては、例えば、トリオクチルホスファイト、トリラウリルホスファイト、トリデシルホスファイト、(オクチル)ジフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリフェニルホスファイト、トリス(ブトキシエチル)ホスファイト、トリス(ノニルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、テトラ(トリデシル)-1,1,3-トリス(2-メチル-5-tert-ブチル-4-ヒドロキシフェニル)ブタンジホスファイト、テトラ(C12~C15混合アルキル)-4,4’-イソプロピリデンジフェニルジホスファイト、テトラ(トリデシル)-4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)ジホスファイト、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)ホスファイト、トリス(モノ・ジ混合ノニルフェニル)ホスファイト、水素化-4,4’-イソプロピリデンジフェノールポリホスファイト、ビス(オクチルフェニル)ビス[4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)]-1,6-ヘキサンジオールジホスファイト、フェニル(4,4’-イソプロピリデンジフェノール)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリス[4,4’-イソプロピリデンビス(2-tert-ブチルフェノール)]ホスファイト、ジ(イソデシル)フェニルホスファイト、4,4’-イソプロピリデンビス(2-tert-ブチルフェノール)ビス(ノニルフェニル)ホスファイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、ビス(2,4-ジ-tert-ブチル-6-メチルフェニル)エチルフォスファイト、2-[{2,4,8,10-テトラ-tert-ブチルジベンズ[d,f][1.3.2]-ジオキサホスフェピン-6-イル}オキシ]-N,N-ビス〔2-[{2,4,8,10-テトラ-tert-ブチルジベンズ[d,f][1.3.2]-ジオキサホスフェピン-6-イル}オキシ]エチル〕エタンアミン、6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンズ[d,f][1.3.2]-ジオキサホスフェピン等が挙げられる。 Examples of phosphorus-based antioxidants include trioctyl phosphite, trilauryl phosphite, tridecyl phosphite, (octyl)diphenyl phosphite, tris(2,4-di-tert-butylphenyl)phosphite, triphenyl Phosphite, tris(butoxyethyl)phosphite, tris(nonylphenyl)phosphite, distearyl pentaerythritol diphosphite, tetra(tridecyl)-1,1,3-tris(2-methyl-5-tert-butyl-) 4-hydroxyphenyl)butanediphosphite, tetra(C12-C15 mixed alkyl)-4,4'-isopropylidenediphenyldiphosphite, tetra(tridecyl)-4,4'-butylidenebis(3-methyl-6-tert) -Butylphenol) diphosphite, tris(3,5-di-tert-butyl-4-hydroxyphenyl)phosphite, tris(mono/di mixed nonylphenyl)phosphite, hydrogenated-4,4'-isopropylidenediphenol poly Phosphite, bis(octylphenyl)bis[4,4'-butylidenebis(3-methyl-6-tert-butylphenol)]-1,6-hexanediol diphosphite, phenyl(4,4'-isopropylidenediphenol) ) Pentaerythritol diphosphite, distearyl pentaerythritol diphosphite, tris[4,4'-isopropylidene bis(2-tert-butylphenol)] phosphite, di(isodecyl)phenyl phosphite, 4,4'-isopropyi Ridene bis(2-tert-butylphenol)bis(nonylphenyl)phosphite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, bis(2,4-di-tert-butyl) -6-Methylphenyl)ethyl phosphite, 2-[{2,4,8,10-tetra-tert-butyldibenz[d,f][1.3.2]-dioxaphosphepin-6-yl} Oxy]-N,N-bis[2-[{2,4,8,10-tetra-tert-butyldibenz[d,f][1.3.2]-dioxaphosphepin-6-yl}oxy ] Ethyl]ethanamine, 6-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra-tert-butyldibenz[d,f][1. 3.2]-dioxaphosphepine Can be mentioned.
 リン系酸化防止剤としては、市販品を使用してもよい。市販されているリン系酸化防止剤としては、例えば、スミライザーGP(6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチル-ジベンゾ[d,f][1,3,2]ジオキサホスフェピン)(住友化学(株)製)、イルガフォス(Irgafos)(登録商標)168(トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト)、イルガフォス12(2-[[2,4,8,10-テトラキス(1,1-ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサホスフェピン6-イル]オキシ]-N,N-ビス[2-[[2,4,8,10-テトラキス(1,1ジメチルエチル)ジベンゾ[d,f][1,3,2,]ジオキサホスフェピン-6-イル]オキシ]-エチル]エタナミン)、イルガフォス38(以上、全てBASFジャパン(株)製)、アデカスタブTTP(トリフェニルホスファイト)、アデカスタブ329K、アデカスタブPEP36(サイクリックネオペンタンテトライルビス(2,6-ジ-t-ブチル-4-メチルフェニル)ホスファイト)、アデカスタブPEP-8(ジステアリルペンタエリスリトールジフォスファイト)(以上、全てADEKA製)、Sandstab P-EPQ(クラリアント製)、ウェストン618、ウェストン619G、ウルトラノックス626(以上、全てGE製)等が挙げられる。リン系酸化防止剤は、単独で使用してもよいし、2種以上を併用してもよい。 A commercially available product may be used as the phosphorus antioxidant. Examples of commercially available phosphorus antioxidants include Sumilizer GP (6-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra -Tert-butyl-dibenzo[d,f][1,3,2]dioxaphosphepine) (manufactured by Sumitomo Chemical Co., Ltd.), Irgafos (registered trademark) 168 (tris(2,4-di -Tert-butylphenyl)phosphite), Irgafos 12 (2-[[2,4,8,10-tetrakis(1,1-dimethylethyl)dibenzo[d,f][1,3,2]dioxaphos) Fepin 6-yl]oxy]-N,N-bis[2-[[2,4,8,10-tetrakis(1,1dimethylethyl)dibenzo[d,f][1,3,2]di] Oxaphosfepin-6-yl]oxy]-ethyl]ethanamine), Irgafos 38 (all manufactured by BASF Japan Ltd.), Adekastab TTP (triphenylphosphite), Adekastab 329K, Adekastab PEP36 (cyclic neopentane) Tetrayl bis(2,6-di-t-butyl-4-methylphenyl) phosphite), ADEKA STAB PEP-8 (distearyl pentaerythritol diphosphite) (all from ADEKA), Sandstab P-EPQ (Clariant) Manufactured by GE), Weston 618, Weston 619G, Ultra Knox 626 (all manufactured by GE) and the like. The phosphorus-based antioxidants may be used alone or in combination of two or more.
 イオウ系酸化防止剤としては、例えば、ジラウリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート等のジアルキルチオジプロピオネート;ブチルチオプロピオン酸の多価アルコールエステル、オクチルチオプロピオン酸の多価アルコールエステル、ラウリルチオプロピオン酸の多価アルコールエステル、ステアリルチオプロピオン酸の多価アルコールエステル(前記の多価アルコールとしては、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、トリスヒドロキシエチルイソシアヌレート等が挙げられる)や、ペンタエリスリルテトラキス-3-ラウリルチオプロピオネート等のアルキルチオプロピオン酸の多価アルコールエステルが挙げられる。 Examples of sulfur-based antioxidants include dialkylthiodipropionates such as dilaurylthiodipropionate, dimyristylthiodipropionate and distearylthiodipropionate; polyhydric alcohol esters of butylthiopropionic acid, octylthiopropionate. Propionic acid polyhydric alcohol ester, lauryl thiopropionic acid polyhydric alcohol ester, stearyl thiopropionic acid polyhydric alcohol ester (as the polyhydric alcohol, for example, glycerin, trimethylolethane, trimethylolpropane, pentaerythritol , Trishydroxyethyl isocyanurate, etc.) and polyhydric alcohol esters of alkylthiopropionic acid such as pentaerythryltetrakis-3-laurylthiopropionate.
 イオウ系酸化防止剤としては、市販品を使用してもよい。市販されているイオウ系酸化防止剤としては、例えば、スミライザーTPL-R(ジラウリル-3,3’-チオジプロピオナート)、スミライザーTPM(ジミリスチル-3,3’-チオジプロピオナート)、スミライザーTPS(ジステアリル-3,3’-チオジプロピオネート)、スミライザーTP-D(ペンタエリスリチルテトラキス(3-ラウリルチオプロピオナート)、スミライザーMB(2-メルカプトベンズイミダゾール)(以上、全て住友化学(株)製)、DTDPA(ジチオプロピオン酸)(SC有機化学社製)等が挙げられる。イオウ系酸化防止剤は、単独で使用してもよいし、2種以上を併用してもよい。 A commercially available product may be used as the sulfur antioxidant. Examples of commercially available sulfur antioxidants include Sumilizer TPL-R (dilauryl-3,3′-thiodipropionate), Sumilizer TPM (dimyristyl-3,3′-thiodipropionate), Sumilizer TPS. (Distearyl-3,3'-thiodipropionate), Sumilizer TP-D (pentaerythrityl tetrakis (3-lauryl thiopropionate), Sumilizer MB (2-mercaptobenzimidazole) (above, all Sumitomo Chemical ( Co., Ltd.), DTDPA (dithiopropionic acid) (manufactured by SC Organic Chemical Co., Ltd.), etc. The sulfur antioxidants may be used alone or in combination of two or more kinds.
 光照射時の液晶劣化を効率的に抑制する観点から、本発明の重合性液晶組成物は、二次酸化防止剤として亜リン酸エステル化合物を含むことが好ましい。 The polymerizable liquid crystal composition of the present invention preferably contains a phosphite compound as a secondary antioxidant from the viewpoint of effectively suppressing deterioration of the liquid crystal upon light irradiation.
 二次酸化防止剤の分子量は、好ましくは200g/mol以上であり、より好ましくは250g/mol以上、さらに好ましくは280g/mol以上である。二次酸化防止剤の分子量が上記下限以上であると、重合性液晶組成物から液晶硬化膜を形成する過程で二次酸化防止剤が消失し難く、紫外線等を照射する際の重合性液晶化合物への損傷を抑えることができ、光学特性に優れる液晶硬化膜を得ることができる。また、より高強度の紫外線照射が可能となり、これにより重合性液晶化合物を十分に硬化させることができる。このため、高温環境下などの過酷な環境下においても光学性能に変化の生じ難い高い耐久性を有する液晶硬化膜を作製することができると考えられる。一方、二次酸化防止剤の分子量が大き過ぎると、二次酸化防止剤による重合性液晶化合物の配向欠陥が生じやすくなるため、二次酸化防止剤の分子量は、好ましくは1500g/mol以下、より好ましくは1000g/mol以下である。 The molecular weight of the secondary antioxidant is preferably 200 g/mol or more, more preferably 250 g/mol or more, even more preferably 280 g/mol or more. When the molecular weight of the secondary antioxidant is at least the above lower limit, the secondary antioxidant is less likely to disappear in the process of forming a liquid crystal cured film from the polymerizable liquid crystal composition, and the polymerizable liquid crystal compound when irradiated with ultraviolet rays or the like. It is possible to suppress damage to the liquid crystal and obtain a liquid crystal cured film having excellent optical characteristics. Further, it becomes possible to irradiate the ultraviolet ray with higher intensity, and thereby the polymerizable liquid crystal compound can be sufficiently cured. Therefore, it is considered possible to produce a liquid crystal cured film having high durability in which the optical performance is unlikely to change even under a severe environment such as a high temperature environment. On the other hand, when the molecular weight of the secondary antioxidant is too large, alignment defects of the polymerizable liquid crystal compound due to the secondary antioxidant are likely to occur. Therefore, the molecular weight of the secondary antioxidant is preferably 1500 g/mol or less, It is preferably 1000 g/mol or less.
 本発明の重合性液晶組成物における二次酸化防止剤の分子量は、それぞれ好ましくは上記上限下限の範囲内で、一次酸化防止剤の分子量より大きいことが好ましい。二次酸化防止剤の分子量が一次酸化防止剤の分子量より大きいと、高い保管安定性を実現し得る一方で、重合率の低下を抑制しながら、高い耐久性を有する液晶硬化膜を得ることができる。 The molecular weight of the secondary antioxidant in the polymerizable liquid crystal composition of the present invention is preferably larger than the molecular weight of the primary antioxidant, preferably within the above upper and lower limits. When the molecular weight of the secondary antioxidant is larger than that of the primary antioxidant, high storage stability can be achieved, while a liquid crystal cured film having high durability can be obtained while suppressing a decrease in the polymerization rate. it can.
 本発明の重合性液晶組成物における二次酸化防止剤の含有量は、重合性液晶化合物100質量部に対して、好ましくは0.1~15質量部であり、より好ましくは0.5質量部以上、さらに好ましくは1質量部以上、特に好ましくは2質量部以上、また、より好ましくは14質量部以下、さらに好ましくは12質量部以下である。二次酸化防止剤の含有量が上記下限値以上であるとラジカルから生じる過酸化物の分解剤としての機能を十分に果たすことができ、上記上限値以下であると重合性液晶化合物の配向に影響を与えにくく、配向欠陥の少ない液晶硬化膜を得ることができる。 The content of the secondary antioxidant in the polymerizable liquid crystal composition of the present invention is preferably 0.1 to 15 parts by mass, more preferably 0.5 part by mass, based on 100 parts by mass of the polymerizable liquid crystal compound. The amount is more preferably 1 part by mass or more, particularly preferably 2 parts by mass or more, more preferably 14 parts by mass or less, and further preferably 12 parts by mass or less. When the content of the secondary antioxidant is at least the above lower limit value, the function as a decomposer of the peroxide generated from radicals can be sufficiently fulfilled, and when it is at most the above upper limit value, the polymerizable liquid crystal compound is aligned. It is possible to obtain a liquid crystal cured film that hardly affects and has few alignment defects.
 本発明の重合性液晶組成物における二次酸化防止剤の含有量は、一次酸化防止剤の含有量より多いことが好ましい。二次酸化防止剤の含有量が一次酸化防止剤の含有量より多いと、重合性液晶組成物中の一次酸化防止剤の他成分との分子間相互作用に影響を及ぼし、乾燥工程で一次酸化防止剤が気化しやすくなることがある。例えば、二次酸化防止剤と一次酸化防止剤の含有量(質量比 二次酸化防止剤:一次酸化防止剤)は、好ましくは2:1~150:1、より好ましくは5:1~100:1である。 The content of the secondary antioxidant in the polymerizable liquid crystal composition of the present invention is preferably larger than the content of the primary antioxidant. When the content of the secondary antioxidant is higher than that of the primary antioxidant, the intermolecular interaction with other components of the primary antioxidant in the polymerizable liquid crystal composition is affected, and the primary oxidation occurs in the drying process. The inhibitor may be easily vaporized. For example, the content of the secondary antioxidant and the primary antioxidant (mass ratio secondary antioxidant:primary antioxidant) is preferably 2:1 to 150:1, more preferably 5:1 to 100: It is 1.
 本発明の重合性液晶組成物は、光ラジカル重合開始剤を含む。光ラジカル重合開始剤としては、例えば、ベンゾイン化合物、ベンゾフェノン化合物、ベンジルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、オキシム化合物、トリアジン化合物、ヨードニウム塩およびスルホニウム塩が挙げられる。光ラジカル重合開始剤として、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 The polymerizable liquid crystal composition of the present invention contains a photo radical polymerization initiator. Examples of the photoradical polymerization initiator include benzoin compounds, benzophenone compounds, benzyl ketal compounds, α-hydroxyketone compounds, α-aminoketone compounds, oxime compounds, triazine compounds, iodonium salts and sulfonium salts. As the photo-radical polymerization initiator, only one kind may be used, or two or more kinds may be used in combination.
 光ラジカル重合開始剤として市販品を用いてもよい。そのような市販品として、具体的には、イルガキュア(Irgacure、登録商標)907、イルガキュア184、イルガキュア651、イルガキュア819、イルガキュア250、イルガキュア369、イルガキュア379、イルガキュア127、イルガキュア2959、イルガキュア754、イルガキュア379EG(以上、BASFジャパン株式会社製)、セイクオールBZ、セイクオールZ、セイクオールBEE(以上、精工化学株式会社製)、カヤキュアー(kayacure)BP100(日本化薬株式会社製)、カヤキュアーUVI-6992(ダウ社製)、アデカオプトマーSP-152、アデカオプトマーSP-170、アデカオプトマーN-1717、アデカオプトマーN-1919、アデカアークルズNCI-831、アデカアークルズNCI-930(以上、株式会社ADEKA製)、TAZ-A、TAZ-PP(以上、日本シイベルヘグナー社製)およびTAZ-104(三和ケミカル社製)が挙げられる。 A commercially available product may be used as the photoradical polymerization initiator. As such commercial products, specifically, Irgacure (registered trademark) 907, Irgacure 184, Irgacure 651, Irgacure 819, Irgacure 250, Irgacure 369, Irgacure 379, Irgacure 127, Irgacure 2959, Irgacure 754, Irgacure 379EG. (Above, manufactured by BASF Japan Ltd.), SEQUOL BZ, SEQUOL Z, SEQUOL BEE (above, manufactured by Seiko Chemical Co., Ltd.), kayacure BP100 (manufactured by Nippon Kayaku Co., Ltd.), Kayacure UVI-6992 (manufactured by Dow). ), Adeka Optimer SP-152, Adeka Optimer SP-170, Adeka Optimer N-1717, Adeka Optimer N-1919, Adeka Arcules NCI-831, Adeka Arcules NCI-930 (above, manufactured by ADEKA Corporation) ), TAZ-A, TAZ-PP (above, manufactured by Nihon Siber Hegner) and TAZ-104 (manufactured by Sanwa Chemical Co., Ltd.).
 光ラジカル重合開始剤は、光源から発せられるエネルギーを十分に活用でき、生産性に優れるため、極大吸収波長が300nm~400nmであると好ましく、300nm~380nmであるとより好ましく、中でも、α-アセトフェノン系重合開始剤、オキシム系光重合開始剤が好ましい。 The photoradical polymerization initiator is capable of fully utilizing the energy emitted from the light source and is excellent in productivity. Therefore, the maximum absorption wavelength thereof is preferably 300 nm to 400 nm, more preferably 300 nm to 380 nm, and particularly α-acetophenone. A system polymerization initiator and an oxime system photopolymerization initiator are preferred.
 α-アセトフェノン化合物としては、2-メチル-2-モルホリノ-1-(4-メチルスルファニルフェニル)プロパン-1-オン、2-ジメチルアミノ-1-(4-モルホリノフェニル)-2-ベンジルブタン-1-オンおよび2-ジメチルアミノ-1-(4-モルホリノフェニル)-2-(4-メチルフェニルメチル)ブタン-1-オン等が挙げられ、より好ましくは2-メチル-2-モルホリノ-1-(4-メチルスルファニルフェニル)プロパン-1-オンおよび2-ジメチルアミノ-1-(4-モルホリノフェニル)-2-ベンジルブタン-1-オンが挙げられる。α-アセトフェノン化合物の市販品としては、イルガキュア369、379EG、907(以上、BASFジャパン(株)製)およびセイクオールBEE(精工化学社製)等が挙げられる。 Examples of the α-acetophenone compound include 2-methyl-2-morpholino-1-(4-methylsulfanylphenyl)propan-1-one and 2-dimethylamino-1-(4-morpholinophenyl)-2-benzylbutane-1. -One and 2-dimethylamino-1-(4-morpholinophenyl)-2-(4-methylphenylmethyl)butan-1-one and the like, and more preferably 2-methyl-2-morpholino-1-( 4-Methylsulfanylphenyl)propan-1-one and 2-dimethylamino-1-(4-morpholinophenyl)-2-benzylbutan-1-one. Examples of commercially available α-acetophenone compounds include Irgacure 369, 379EG, 907 (all manufactured by BASF Japan Ltd.) and Sequol BEE (manufactured by Seiko Chemical Co., Ltd.).
 オキシム系光重合開始剤は、光が照射されることによってフェニルラジカルやメチルラジカル等のラジカルを生成させる。このラジカルにより重合性液晶化合物の重合が好適に進行するが、中でもメチルラジカルを発生させるオキシム系光重合開始剤は重合反応の開始効率が高い点で好ましい。また、重合反応をより効率的に進行させるという観点から、波長350nm以上の紫外線を効率的に利用可能な光重合開始剤を使用することが好ましい。波長350nm以上の紫外線を効率的に利用可能な光ラジカル重合開始剤としては、オキシム構造を含むトリアジン化合物やカルバゾール化合物が好ましく、感度の観点からはオキシムエステル構造を含むカルバゾール化合物がより好ましい。また、光学特性が良好な液晶硬化膜を得やすくなる点で、チオエーテル構造を有するオキシムエステル化合物も好ましい。オキシム構造を含むカルバゾール化合物としては、1,2-オクタンジオン、1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等が挙げられる。オキシムエステル系光重合開始剤の市販品としては、イルガキュアOXE-01、イルガキュアOXE-02、イルガキュアOXE-03(以上、BASFジャパン株式会社製)、アデカオプトマーN-1919、アデカアークルズNCI-831(以上、株式会社ADEKA製)等が挙げられる。 Oxime-based photopolymerization initiators generate radicals such as phenyl radicals and methyl radicals when irradiated with light. Polymerization of the polymerizable liquid crystal compound suitably proceeds with this radical, but among them, an oxime-based photopolymerization initiator that generates a methyl radical is preferable because the initiation efficiency of the polymerization reaction is high. Further, from the viewpoint of more efficiently proceeding the polymerization reaction, it is preferable to use a photopolymerization initiator capable of efficiently utilizing ultraviolet rays having a wavelength of 350 nm or more. As the photoradical polymerization initiator that can efficiently use ultraviolet rays having a wavelength of 350 nm or more, a triazine compound or a carbazole compound having an oxime structure is preferable, and a carbazole compound having an oxime ester structure is more preferable from the viewpoint of sensitivity. In addition, an oxime ester compound having a thioether structure is also preferable in that a liquid crystal cured film having good optical characteristics can be easily obtained. The carbazole compound containing an oxime structure includes 1,2-octanedione, 1-[4-(phenylthio)-2-(O-benzoyloxime)], ethanone, 1-[9-ethyl-6-(2-methyl Examples thereof include benzoyl)-9H-carbazol-3-yl]-1-(O-acetyloxime). Commercially available oxime ester-based photopolymerization initiators include Irgacure OXE-01, Irgacure OXE-02, Irgacure OXE-03 (above, manufactured by BASF Japan Ltd.), Adeka Optimer N-1919, and Adeka Arcules NCI-831. (Above, manufactured by ADEKA Co., Ltd.) and the like.
 光ラジカル重合開始剤の含有量は、重合性液晶化合物100質量部に対して、通常、0.1~30質量部であり、好ましくは1~20質量部であり、より好ましくは1~15質量部である。上記範囲内であれば、重合性基の反応が十分に進行し、かつ、重合性液晶化合物の配向を乱し難い。
 本発明の重合性液晶組成物において、光ラジカル重合開始剤が2種以上含まれる場合、光ラジカル重合開始剤の合計含有量は上記範囲内であることが好ましい。
The content of the photoradical polymerization initiator is usually 0.1 to 30 parts by mass, preferably 1 to 20 parts by mass, and more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. It is a department. Within the above range, the reaction of the polymerizable group sufficiently proceeds, and it is difficult to disturb the alignment of the polymerizable liquid crystal compound.
When the polymerizable liquid crystal composition of the invention contains two or more photo radical polymerization initiators, the total content of the photo radical polymerization initiators is preferably within the above range.
 本発明の重合性液晶組成物は、オキシム系光重合開始剤を少なくとも1種含むことが好ましく、チオエーテル構造を有するオキシムエステル化合物を含むことがより好ましい。
本発明の重合性液晶組成物は、光ラジカル重合開始剤を2種以上含む場合、オキシム系光重合開始剤とα-アセトフェノン系重合開始剤とを含有することが好ましい。α-アセトフェノン系重合開始剤としては、アルキルフェノン系重合開始剤が好ましく、α-アミノアルキルフェノン系重合開始剤がより好ましい。
The polymerizable liquid crystal composition of the present invention preferably contains at least one oxime photopolymerization initiator, and more preferably contains an oxime ester compound having a thioether structure.
When the polymerizable liquid crystal composition of the invention contains two or more photo-radical polymerization initiators, it preferably contains an oxime-based photopolymerization initiator and an α-acetophenone-based polymerization initiator. As the α-acetophenone-based polymerization initiator, an alkylphenone-based polymerization initiator is preferable, and an α-aminoalkylphenone-based polymerization initiator is more preferable.
 本発明の重合性液晶組成物は、重合性液晶化合物、一次酸化防止剤、二次酸化防止剤および光ラジカル重合開始剤に加えて、溶媒、レベリング剤、光増感剤などの添加剤をさらに含んでいてもよい。これらの成分は、それぞれ、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 The polymerizable liquid crystal composition of the present invention further comprises a polymerizable liquid crystal compound, a primary antioxidant, a secondary antioxidant and a photoradical polymerization initiator, as well as a solvent, a leveling agent, a photosensitizer and other additives. May be included. Each of these components may be used alone or in combination of two or more.
 重合性液晶組成物は、通常、溶媒に溶解した状態で基材等に塗布されるため、溶媒を含むことが好ましい。溶媒としては、重合性液晶化合物を溶解し得る溶媒が好ましく、また、重合性液晶化合物の重合反応に不活性な溶媒であることが好ましい。溶媒としては、例えば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1-メトキシ-2-プロパノール、2-ブトキシエタノールおよびプロピレングリコールモノメチルエーテル等のアルコール溶媒;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテートおよび乳酸エチル等のエステル溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノンおよびメチルイソブチルケトン等のケトン溶媒;ペンタン、ヘキサンおよびヘプタン等の脂肪族炭化水素溶媒;エチルシクロヘキサン等の脂環式炭化水素溶媒;トルエンおよびキシレン等の芳香族炭化水素溶媒;アセトニトリル等のニトリル溶媒;テトラヒドロフランおよびジメトキシエタン等のエーテル溶媒;クロロホルムおよびクロロベンゼン等の塩素含有溶媒;ジメチルアセトアミド、ジメチルホルミアミド、N-メチル-2-ピロリドン(NMP)、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶媒等が挙げられる。これらの溶媒は、単独または二種以上組み合わせて使用できる。これらの中でも、アルコール溶媒、エステル溶媒、ケトン溶媒、塩素含有溶媒、アミド系溶媒および芳香族炭化水素溶媒が好ましい。 Since the polymerizable liquid crystal composition is usually applied to a substrate or the like in a state of being dissolved in a solvent, it is preferable to include the solvent. As the solvent, a solvent capable of dissolving the polymerizable liquid crystal compound is preferable, and a solvent inert to the polymerization reaction of the polymerizable liquid crystal compound is preferable. Examples of the solvent include water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, 2-butoxyethanol, propylene glycol monomethyl ether, and the like. Solvents; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone, propylene glycol methyl ether acetate and ethyl lactate; acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone Ketone solvent; Aliphatic hydrocarbon solvent such as pentane, hexane and heptane; Alicyclic hydrocarbon solvent such as ethylcyclohexane; Aromatic hydrocarbon solvent such as toluene and xylene; Nitrile solvent such as acetonitrile; Tetrahydrofuran and dimethoxyethane etc. Ether solvents; chlorine-containing solvents such as chloroform and chlorobenzene; amide solvents such as dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone (NMP), and 1,3-dimethyl-2-imidazolidinone. To be These solvents can be used alone or in combination of two or more. Among these, alcohol solvents, ester solvents, ketone solvents, chlorine-containing solvents, amide solvents and aromatic hydrocarbon solvents are preferable.
 重合性液晶組成物中の溶媒の含有量は、重合性液晶組成物100質量部に対して、好ましくは50~98質量部、より好ましくは70~95重量部である。従って、重合性液晶組成物100質量部に占める固形分は、2~50質量部が好ましい。固形分が50質量部以下であると、重合性液晶組成物の粘度が低くなることから、膜の厚みが略均一になり、ムラが生じ難くなる傾向がある。上記固形分は、製造しようとする液晶硬化膜の厚みを考慮して適宜定めることができる。 The content of the solvent in the polymerizable liquid crystal composition is preferably 50 to 98 parts by weight, more preferably 70 to 95 parts by weight, based on 100 parts by weight of the polymerizable liquid crystal composition. Therefore, the solid content in 100 parts by mass of the polymerizable liquid crystal composition is preferably 2 to 50 parts by mass. When the solid content is 50 parts by mass or less, the viscosity of the polymerizable liquid crystal composition becomes low, so that the thickness of the film becomes substantially uniform and unevenness tends not to occur easily. The solid content can be appropriately determined in consideration of the thickness of the liquid crystal cured film to be produced.
 レベリング剤とは、重合性液晶組成物の流動性を調整し、組成物を塗布して得られる塗膜をより平坦にする機能を有する添加剤であり、例えば、シリコーン系、ポリアクリレート系およびパーフルオロアルキル系のレベリング剤が挙げられる。レベリング剤として市販品を用いてもよく、具体的には、DC3PA、SH7PA、DC11PA、SH28PA、SH29PA、SH30PA、ST80PA、ST86PA、SH8400、SH8700、FZ2123(以上、全て東レ・ダウコーニング(株)製)、KP321、KP323、KP324、KP326、KP340、KP341、X22-161A、KF6001(以上、全て信越化学工業(株)製)、TSF400、TSF401、TSF410、TSF4300、TSF4440、TSF4445、TSF-4446、TSF4452、TSF4460(以上、全てモメンティブ パフォーマンス マテリアルズ ジャパン合同会社製)、フロリナート(fluorinert)(登録商標)FC-72、同FC-40、同FC-43、同FC-3283(以上、全て住友スリーエム(株)製)、メガファック(登録商標)R-08、同R-30、同R-90、同F-410、同F-411、同F-443、同F-445、同F-470、同F-477、同F-479、同F-482、同F-483、同F-556(以上、いずれもDIC(株)製)、エフトップ(商品名)EF301、同EF303、同EF351、同EF352(以上、全て三菱マテリアル電子化成(株)製)、サーフロン(登録商標)S-381、同S-382、同S-383、同S-393、同SC-101、同SC-105、KH-40、SA-100(以上、全てAGCセイミケミカル(株)製)、商品名E1830、同E5844((株)ダイキンファインケミカル研究所製)、BM-1000、BM-1100、BYK-352、BYK-353およびBYK-361N(いずれも商品名:BM Chemie社製)等が挙げられる。レベリング剤は単独または2種以上を組み合わせて使用できる。 The leveling agent is an additive having a function of adjusting the fluidity of the polymerizable liquid crystal composition and making the coating film obtained by applying the composition more flat. Fluoroalkyl-based leveling agents may be mentioned. A commercially available product may be used as the leveling agent, and specifically, DC3PA, SH7PA, DC11PA, SH28PA, SH29PA, SH30PA, ST80PA, ST86PA, SH8400, SH8700, FZ2123 (all manufactured by Toray Dow Corning Co., Ltd.) , KP321, KP323, KP324, KP326, KP340, KP341, X22-161A, KF6001 (all manufactured by Shin-Etsu Chemical Co., Ltd.), TSF400, TSF401, TSF410, TSF4300, TSF4440, TSF4445, TSF-4446, TSF4452, TSF4452, TSF4452. (These are all manufactured by Momentive Performance Materials Japan LLC), Fluorinert (registered trademark) FC-72, FC-40, FC-43, FC-3283 (all manufactured by Sumitomo 3M Limited) ), Megafac (registered trademark) R-08, same R-30, same R-90, same F-410, same F-411, same F-443, same F-445, same F-470, same F- 477, F-479, F-482, F-483, F-556 (all manufactured by DIC Corporation), Ftop (trade name) EF301, EF303, EF351, EF352 ( As above, Mitsubishi Materials Denshi Kasei Co., Ltd., Surflon (registered trademark) S-381, S-382, S-383, S-393, SC-101, SC-105, KH-40 , SA-100 (all manufactured by AGC Seimi Chemical Co., Ltd.), trade name E1830, E5844 (manufactured by Daikin Fine Chemical Laboratories, Inc.), BM-1000, BM-1100, BYK-352, BYK-353, and BYK-361N (both are trade names: BM Chemie). The leveling agents can be used alone or in combination of two or more.
 レベリング剤の含有量は、重合性液晶化合物100質量部に対して、0.01~5質量部が好ましく、0.05~3質量部がさらに好ましい。レベリング剤の含有量が、上記範囲内であると、重合性液晶化合物を配向させることが容易であり、かつ得られる液晶硬化膜がより平滑となる傾向にあるため好ましい。 The content of the leveling agent is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. When the content of the leveling agent is within the above range, it is easy to align the polymerizable liquid crystal compound, and the obtained liquid crystal cured film tends to be smoother, which is preferable.
 また、光増感剤を用いることにより、光ラジカル重合開始剤を高感度化することができる。光増感剤としては、例えば、キサントン、チオキサントン等のキサントン類;アントラセンおよびアルキルエーテル等の置換基を有するアントラセン類;フェノチアジン;ルブレンが挙げられる。光増感剤は単独または2種以上を組み合わせて使用できる。光増感剤の含有量は、重合性液晶化合物100質量部に対して、通常0.01~10質量部であり、好ましくは0.05~5質量部であり、さらに好ましくは0.1~3質量部である。 Also, by using a photosensitizer, the photoradical polymerization initiator can be made highly sensitive. Examples of the photosensitizer include xanthones such as xanthone and thioxanthone; anthracenes having a substituent such as anthracene and alkyl ether; phenothiazine; rubrene. The photosensitizer can be used alone or in combination of two or more kinds. The content of the photosensitizer is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. 3 parts by mass.
 本発明の重合性液晶組成物は、重合性液晶化合物、一次酸化防止剤、二次酸化防止剤および光ラジカル重合開始剤と、必要に応じて溶媒や添加剤などの重合性液晶化合物、酸化防止剤および光ラジカル重合開始剤以外の成分とを所定温度で撹拌等することにより得ることができる。 The polymerizable liquid crystal composition of the present invention comprises a polymerizable liquid crystal compound, a primary antioxidant, a secondary antioxidant and a radical photopolymerization initiator, and optionally a polymerizable liquid crystal compound such as a solvent or an additive, an antioxidant. It can be obtained by stirring the agent and components other than the photo-radical polymerization initiator at a predetermined temperature.
 <位相差板>
 本発明の重合性液晶組成物は、重合性液晶化合物の損傷を抑えながら、高強度の紫外線等により高度に重合させることが可能であるため、優れた光学特性を有するとともに、高温環境下などの過酷な環境下においても光学性能変化を生じ難い高い耐久性を示す液晶硬化膜を作製するのに好適に使用することができ、これにより得られる液晶硬化膜は位相差板などの光学用途に好適である。したがって、本発明は、本発明の重合性液晶組成物の硬化物であり、該重合性液晶組成物中の重合性液晶化合物が配向した状態で硬化した液晶硬化膜を含む位相差板を対象とする。
<Phase plate>
The polymerizable liquid crystal composition of the present invention is capable of being highly polymerized by high-intensity ultraviolet light or the like while suppressing damage to the polymerizable liquid crystal compound, and thus has excellent optical properties and is capable of being used under high temperature environments. It can be suitably used to prepare a liquid crystal cured film that exhibits high durability that is unlikely to cause changes in optical performance even in a harsh environment. The resulting liquid crystal cured film is suitable for optical applications such as retardation plates. Is. Therefore, the present invention is a cured product of the polymerizable liquid crystal composition of the present invention, and is intended for a retardation plate including a liquid crystal cured film cured in a state in which the polymerizable liquid crystal compound in the polymerizable liquid crystal composition is aligned. To do.
 本発明において、位相差板を構成する液晶硬化膜中に含まれる一次酸化防止剤の含有量は、重合性液晶化合物の重合体100質量部に対して0.001質量部以下であることが好ましく、0.8×10-3質量部以下であることがより好ましく、0.5×10-3質量部以下であることがさらに好ましく、通常0.1×10-3質量部以上である。 In the present invention, the content of the primary antioxidant contained in the liquid crystal cured film forming the retardation plate is preferably 0.001 part by mass or less based on 100 parts by mass of the polymer of the polymerizable liquid crystal compound. It is more preferably 0.8×10 −3 parts by mass or less, further preferably 0.5×10 −3 parts by mass or less, and usually 0.1×10 −3 parts by mass or more.
 また、位相差板を構成する液晶硬化膜中に含まれる二次酸化防止剤の含有量は、重合性液晶化合物の重合体100質量部に対して0.05~15質量部であることが好ましく、0.1~15質量部であることがより好ましく、1~10質量部であることがさらに好ましい。 The content of the secondary antioxidant contained in the liquid crystal cured film forming the retardation plate is preferably 0.05 to 15 parts by mass with respect to 100 parts by mass of the polymer of the polymerizable liquid crystal compound. , 0.1 to 15 parts by mass, more preferably 1 to 10 parts by mass.
 本発明の一態様において、本発明の位相差板は、本発明の重合性液晶組成物の硬化物であり、下記式(I)、(II)および(III)で表される光学特性を有する液晶硬化膜を含む。該液晶硬化膜は、通常、重合性液晶化合物が該液晶硬化膜平面に対して水平方向に配向した状態で硬化してなる硬化物(以下、「水平配向液晶硬化膜」ともいう)である。
 Re(450)/Re(550)≦1.00  (I)
 1.00≦Re(650)/Re(550)  (II)
 100nm≦Re(550)≦180nm    (III)
〔式中、Re(λ)は液晶硬化膜の波長λnmにおける面内位相差値を表し、Re=(nx(λ)-ny(λ))×dである(dは液晶硬化膜の厚みを表し、nxは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に平行な方向の波長λnmにおける主屈折率を表し、nyは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に対して平行であり、且つ、前記nxの方向に対して直交する方向の波長λnmにおける屈折率を表す)。〕
In one embodiment of the present invention, the retardation plate of the present invention is a cured product of the polymerizable liquid crystal composition of the present invention and has optical characteristics represented by the following formulas (I), (II) and (III). Includes a liquid crystal cured film. The liquid crystal cured film is usually a cured product obtained by curing a polymerizable liquid crystal compound in a state of being aligned in the horizontal direction with respect to the plane of the liquid crystal cured film (hereinafter, also referred to as “horizontal alignment liquid crystal cured film”).
Re(450)/Re(550)≦1.00 (I)
1.00≦Re(650)/Re(550) (II)
100 nm≦Re(550)≦180 nm (III)
[Wherein Re(λ) represents an in-plane retardation value at a wavelength λnm of the liquid crystal cured film, and Re=(nx(λ)−ny(λ))×d (d is the thickness of the liquid crystal cured film). In the refractive index ellipsoid formed by the liquid crystal cured film, nx represents the main refractive index at a wavelength λ nm in the direction parallel to the plane of the liquid crystal cured film, and ny represents the refractive index ellipsoid formed by the liquid crystal cured film. , And the refractive index at a wavelength λ nm in a direction parallel to the plane of the liquid crystal cured film and orthogonal to the nx direction). ]
 水平配向液晶硬化膜が式(I)および(II)を満たす場合、当該水平配向液晶硬化膜は、短波長での面内位相差値が長波長での面内位相差値よりも小さくなる、いわゆる逆波長分散性を示す。逆波長分散性が向上し、位相差板の光学特性がより向上することから、Re(450)/Re(550)は、好ましくは0.70以上、より好ましくは0.78以上であり、また、好ましくは0.92以下、より好ましくは0.90以下、さらに好ましくは0.87以下、特に好ましくは0.86以下、より特に好ましくは0.85以下である。また、Re(650)/Re(550)は、好ましくは1.0以上、より好ましくは1.01以上であり、さらに好ましくは1.02以上である。 When the horizontal alignment liquid crystal cured film satisfies the formulas (I) and (II), the horizontal alignment liquid crystal cured film has an in-plane retardation value at a short wavelength smaller than an in-plane retardation value at a long wavelength. It exhibits so-called reverse wavelength dispersion. Re(450)/Re(550) is preferably 0.70 or more, more preferably 0.78 or more, since the reverse wavelength dispersibility is improved and the optical characteristics of the retardation plate are further improved. It is preferably 0.92 or less, more preferably 0.90 or less, still more preferably 0.87 or less, particularly preferably 0.86 or less, and particularly preferably 0.85 or less. Further, Re(650)/Re(550) is preferably 1.0 or more, more preferably 1.01 or more, and further preferably 1.02 or more.
 上記面内位相差値は、水平配向液晶硬化膜の厚みdによって調整することができる。面内位相差値は、上記式Re(λ)=(nx(λ)-ny(λ))×dによって決定されることから、所望の面内位相差値(Re(λ):波長λ(nm)における水平配向液晶硬化膜の面内位相差値)を得るには、3次元屈折率と膜厚dとを調整すればよい。 The above-mentioned in-plane retardation value can be adjusted by the thickness d of the horizontally aligned liquid crystal cured film. Since the in-plane retardation value is determined by the above formula Re(λ)=(nx(λ)−ny(λ))×d, the desired in-plane retardation value (Re(λ): wavelength λ( In order to obtain the in-plane retardation value of the horizontally aligned liquid crystal cured film), the three-dimensional refractive index and the film thickness d may be adjusted.
 また、水平配向液晶硬化膜が式(III)を満たす場合、該水平配向液晶硬化膜を含む位相差板を備える楕円偏光板を有機EL表示装置に適用した場合の正面反射色相の向上効果(着色を抑制させる効果)に優れる。面内位相差値のより好ましい範囲は、120nm≦Re(550)≦170nmであり、さらに好ましい範囲は130nm≦Re(550)≦150nmである。 Further, in the case where the horizontally aligned liquid crystal cured film satisfies the formula (III), the effect of improving the front reflection hue (coloring when an elliptically polarizing plate having a retardation plate including the horizontally aligned liquid crystal cured film is applied to an organic EL display device (coloring) The effect of suppressing) is excellent. A more preferable range of the in-plane retardation value is 120 nm≦Re(550)≦170 nm, and a further preferable range is 130 nm≦Re(550)≦150 nm.
 本発明の一態様において、本発明の位相差板は、本発明の重合性液晶組成物の硬化物であり、下記式(IV)、(V)および(VI)で表される光学特性を有する液晶硬化膜を含む。該液晶硬化膜は、通常、重合性液晶化合物が該液晶硬化膜平面に対して垂直方向に配向した状態で硬化してなる硬化物(以下、「垂直配向液晶硬化膜」ともいう)である。
 Rth(450)/Rth(550)≦1.00  (IV)
 1.00≦Rth(650)/Rth(550)  (V)
 -100nm≦Rth(550)≦-40nm    (VI)
〔式中、Rth(λ)は液晶硬化膜の波長λnmにおける厚み方向の位相差値を表し、Rth=((nx(λ)+ny(λ))/2―nz)×dである(dは液晶硬化膜の厚みを表し、nxは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に平行な方向の波長λnmにおける主屈折率を表し、nyは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に対して平行であり、且つ、前記nxの方向に対して直交する方向の波長λnmにおける屈折率を表し、nzは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に対して垂直な方向の波長λnmにおける屈折率を表す)。
In one embodiment of the present invention, the retardation plate of the present invention is a cured product of the polymerizable liquid crystal composition of the present invention and has optical characteristics represented by the following formulas (IV), (V) and (VI). Includes a liquid crystal cured film. The liquid crystal cured film is usually a cured product (hereinafter, also referred to as “vertically aligned liquid crystal cured film”) obtained by curing a polymerizable liquid crystal compound in a state of being aligned in a direction perpendicular to the plane of the liquid crystal cured film.
Rth(450)/Rth(550)≦1.00 (IV)
1.00≦Rth(650)/Rth(550) (V)
-100 nm ≤ Rth(550) ≤ -40 nm (VI)
[In the formula, Rth(λ) represents a retardation value in the thickness direction of the liquid crystal cured film at a wavelength of λ nm, and Rth=((nx(λ)+ny(λ))/2−nz)×d (d is Nx represents the thickness of the liquid crystal cured film, nx represents the main refractive index at a wavelength λnm in the direction parallel to the plane of the liquid crystal cured film in the refractive index ellipsoid formed by the liquid crystal cured film, and ny represents the liquid crystal cured film formed. In the refractive index ellipsoid, the refractive index at a wavelength λ nm in the direction parallel to the plane of the liquid crystal cured film and orthogonal to the direction of nx is represented, and nz is the refraction formed by the liquid crystal cured film. In the index ellipsoid, represents the refractive index at a wavelength λ nm in the direction perpendicular to the plane of the liquid crystal cured film).
]
 垂直配向液晶硬化膜が式(IV)および(V)を満たす場合、当該垂直配向液晶硬化膜を含む位相差板を備える楕円偏光板において、短波長側で楕円率の低下を抑制することができ、斜方反射色相を向上させることができる。垂直配向液晶硬化膜におけるRth(450)/Rth(550)の値は、好ましくは0.70以上、より好ましくは0.78以上であり、また、好ましくは0.92以下、より好ましくは0.90以下、さらに好ましくは0.87以下、特に好ましくは0.86以下、より特に好ましくは0.85以下である。また、Rth(650)/Rth(550)は、好ましくは1.0以上、より好ましくは1.01以上であり、さらに好ましくは1.02以上である。 When the vertically aligned liquid crystal cured film satisfies the formulas (IV) and (V), it is possible to suppress the reduction of the ellipticity on the short wavelength side in the elliptically polarizing plate including the retardation plate including the vertically aligned liquid crystal cured film. It is possible to improve the oblique reflection hue. The value of Rth(450)/Rth(550) in the vertically aligned liquid crystal cured film is preferably 0.70 or more, more preferably 0.78 or more, and preferably 0.92 or less, more preferably 0. It is 90 or less, more preferably 0.87 or less, particularly preferably 0.86 or less, more preferably 0.85 or less. Further, Rth(650)/Rth(550) is preferably 1.0 or more, more preferably 1.01 or more, and further preferably 1.02 or more.
 また、垂直配向液晶硬化膜が式(VI)を満たす場合、該垂直配向液晶硬化膜を含む位相差板を備える楕円偏光板を有機EL表示装置に適用した場合の斜方反射色相を向上させることができる。垂直配向液晶硬化膜の膜厚方向の位相差値Rth(550)は、より好ましくは-90nm以上、さらに好ましくは-80nm以上であり、また、より好ましくは-50nm以下である。 In addition, when the vertically aligned liquid crystal cured film satisfies the formula (VI), it is possible to improve the oblique reflection hue when an elliptically polarizing plate having a retardation plate including the vertically aligned liquid crystal cured film is applied to an organic EL display device. You can The retardation value Rth(550) in the film thickness direction of the vertically aligned liquid crystal cured film is more preferably −90 nm or more, further preferably −80 nm or more, and more preferably −50 nm or less.
 本発明の位相差板は、例えば、
 本発明の重合性液晶組成物の塗膜を形成し、該塗膜を乾燥して一次酸化防止剤を除去し、かつ、該重合性液晶組成物中の重合性液晶化合物を配向させる工程、および、
 配向状態を保持したまま光照射により重合性液晶化合物を重合させ、液晶硬化膜を形成する工程
を含む方法により製造することができる。
The retardation plate of the present invention is, for example,
A step of forming a coating film of the polymerizable liquid crystal composition of the present invention, drying the coating film to remove the primary antioxidant, and aligning the polymerizable liquid crystal compound in the polymerizable liquid crystal composition; and ,
It can be produced by a method including a step of polymerizing a polymerizable liquid crystal compound by light irradiation while maintaining the alignment state to form a liquid crystal cured film.
 重合性液晶組成物の塗膜は、基材上または後述する配向膜上などに重合性液晶組成物を塗布することにより形成することができる。
 基材としては、例えば、ガラス基材やフィルム基材等が挙げられるが、加工性の観点から樹脂フィルム基材が好ましい。フィルム基材を構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン、およびノルボルネン系ポリマーのようなポリオレフィン;環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロース、およびセルロースアセテートプロピオネートのようなセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィドおよびポリフェニレンオキシドのようなプラスチックが挙げられる。このような樹脂を、溶媒キャスト法、溶融押出法等の公知の手段により製膜して基材とすることができる。基材表面には、アクリル樹脂、メタクリル樹脂、エポキシ樹脂、オキセタン樹脂、ウレタン樹脂、メラミン樹脂等から形成される保護層を有していてもよく、シリコーン処理のような離型処理、コロナ処理、プラズマ処理等の表面処理が施されていてもよい。
The coating film of the polymerizable liquid crystal composition can be formed by applying the polymerizable liquid crystal composition on a substrate or an alignment film described later.
Examples of the base material include a glass base material and a film base material, and a resin film base material is preferable from the viewpoint of processability. Examples of the resin that constitutes the film substrate include polyolefins such as polyethylene, polypropylene, and norbornene-based polymers; cyclic olefin-based resins; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid ester; polyacrylic acid ester; triacetyl cellulose, Cellulose esters such as diacetyl cellulose and cellulose acetate propionate; polyethylene naphthalate; polycarbonates; polysulfones; polyether sulfones; polyether ketones; plastics such as polyphenylene sulfide and polyphenylene oxide. Such a resin can be formed into a film as a substrate by a known means such as a solvent casting method or a melt extrusion method. The surface of the base material may have a protective layer formed of an acrylic resin, a methacrylic resin, an epoxy resin, an oxetane resin, a urethane resin, a melamine resin, or the like, a release treatment such as a silicone treatment, a corona treatment, Surface treatment such as plasma treatment may be applied.
 基材として市販の製品を用いてもよい。市販のセルロースエステル基材としては、例えば、フジタックフィルムのような富士写真フィルム株式会社製のセルロースエステル基材;「KC8UX2M」、「KC8UY」、および「KC4UY」のようなコニカミノルタオプト株式会社製のセルロースエステル基材などが挙げられる。市販の環状オレフィン系樹脂としては、たとえば、「Topas(登録商標)」のようなTicona社(独)製の環状オレフィン系樹脂;「アートン(登録商標)」のようなJSR株式会社製の環状オレフィン系樹脂;「ゼオノア(ZEONOR)(登録商標)」、および「ゼオネックス(ZEONEX)(登録商標)」のような日本ゼオン株式会社製の環状オレフィン系樹脂;「アペル」(登録商標)のような三井化学株式会社製の環状オレフィン系樹脂が挙げられる。市販されている環状オレフィン系樹脂基材を用いることもできる。市販の環状オレフィン系樹脂基材としては、「エスシーナ(登録商標)」および「SCA40(登録商標)」のような積水化学工業株式会社製の環状オレフィン系樹脂基材;「ゼオノアフィルム(登録商標)」のようなオプテス株式会社製の環状オレフィン系樹脂基材;「アートンフィルム(登録商標)」のようなJSR株式会社製の環状オレフィン系樹脂基材が挙げられる。 Commercially available products may be used as the base material. As a commercially available cellulose ester base material, for example, a cellulose ester base material manufactured by Fuji Photo Film Co., Ltd. such as Fujitac Film; manufactured by Konica Minolta Opto Co., Ltd. such as “KC8UX2M”, “KC8UY”, and “KC4UY” Cellulose ester base materials and the like. Examples of commercially available cyclic olefin-based resins include cyclic olefin-based resins manufactured by Ticona (Germany) such as "Topas (registered trademark)"; cyclic olefins manufactured by JSR Corporation such as "Arton (registered trademark)". -Based resins; cyclic olefin resins manufactured by Nippon Zeon Co., Ltd. such as "ZEONOR (registered trademark)" and "ZEONEX (registered trademark)"; Mitsui such as "Apel" (registered trademark) A cyclic olefin resin manufactured by Kagaku Co., Ltd. may be mentioned. A commercially available cyclic olefin resin base material can also be used. Examples of commercially available cyclic olefin resin base materials include cyclic olefin resin base materials manufactured by Sekisui Chemical Co., Ltd. such as "ESCINA (registered trademark)" and "SCA40 (registered trademark)"; "Zeonor film (registered trademark)" A cycloolefin resin base material manufactured by Optes Co., Ltd.; and a cyclic olefin resin base material manufactured by JSR Co., such as “Arton Film (registered trademark)”.
 積層体の薄型化、基材の剥離容易性、基材のハンドリング性等の観点から、基材の厚みは、通常、5~300μmであり、好ましくは10~150μmである。 The thickness of the substrate is usually 5 to 300 μm, and preferably 10 to 150 μm, from the viewpoints of thinning the laminate, easiness of peeling of the substrate, handleability of the substrate, and the like.
 重合性液晶組成物を基材等に塗布する方法としては、スピンコーティング法、エクストルージョン法、グラビアコーティング法、ダイコーティング法、バーコーティング法、アプリケータ法などの塗布法、フレキソ法などの印刷法等の公知の方法が挙げられる。 As a method for applying the polymerizable liquid crystal composition to a substrate or the like, a spin coating method, an extrusion method, a gravure coating method, a die coating method, a bar coating method, a coating method such as an applicator method, and a printing method such as a flexo method. And other known methods.
 次いで、溶媒を乾燥等により除去することにより、乾燥塗膜が形成される。乾燥方法としては、自然乾燥法、通風乾燥法、加熱乾燥および減圧乾燥法等が挙げられる。この際、重合性液晶組成物から得られた塗膜を加熱することにより、塗膜から溶媒を乾燥除去させるとともに一次酸化防止剤を除去し、かつ、重合性液晶化合物を塗膜平面に対して所望の方向(例えば、水平または垂直方向)に配向させることができる。塗膜の加熱温度は、用いる重合性液晶化合物および塗膜を形成する基材等の材質などを考慮して、適宜決定し得るが、一次酸化防止剤を揮発させ得る温度以上であり、かつ、重合性液晶化合物を液晶相状態へ相転移させるために、通常、液晶相転移温度以上の温度であることが必要である。
重合性液晶組成物に含まれる溶媒および一次酸化防止剤を除去しながら、重合性液晶化合物を所望の配向状態とするため、例えば、前記重合性液晶組成物に含まれる重合性液晶化合物の液晶相転移温度(スメクチック相転移温度またはネマチック相転移温度)程度以上の温度まで加熱することができる。
 なお、液晶相転移温度は、例えば、温度調節ステージを備えた偏光顕微鏡や、示差走査熱量計(DSC)、熱重量示差熱分析装置(TG-DTA)等を用いて測定することができる。また、重合性液晶化合物として2種以上を組み合わせて用いる場合、上記相転移温度は、重合性液晶組成物を構成する全重合性液晶化合物を重合性液晶組成物における組成と同じ比率で混合した重合性液晶化合物の混合物を用いて、1種の重合性液晶化合物を用いる場合と同様にして測定される温度を意味する。また、一般に前記重合性液晶組成物中における重合性液晶化合物の液晶相転移温度は、重合性液晶化合物単体としての液晶相転移温度よりも下がる場合もあることが知られている。
Then, the solvent is removed by drying or the like to form a dry coating film. Examples of the drying method include a natural drying method, a ventilation drying method, a heat drying method and a reduced pressure drying method. At this time, by heating the coating film obtained from the polymerizable liquid crystal composition, the solvent is removed from the coating film by drying and the primary antioxidant is removed, and the polymerizable liquid crystal compound is applied to the coating film plane. It can be oriented in any desired direction (eg horizontal or vertical). The heating temperature of the coating film can be appropriately determined in consideration of the polymerizable liquid crystal compound to be used and the material such as the base material forming the coating film, but it is at least a temperature at which the primary antioxidant can be volatilized, and In order to cause the polymerizable liquid crystal compound to undergo a phase transition to a liquid crystal phase state, it is usually necessary that the temperature is not lower than the liquid crystal phase transition temperature.
In order to bring the polymerizable liquid crystal compound into a desired alignment state while removing the solvent and the primary antioxidant contained in the polymerizable liquid crystal composition, for example, a liquid crystal phase of the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition is used. It can be heated to a temperature of about the transition temperature (smectic phase transition temperature or nematic phase transition temperature) or higher.
The liquid crystal phase transition temperature can be measured using, for example, a polarization microscope equipped with a temperature adjustment stage, a differential scanning calorimeter (DSC), a thermogravimetric differential thermal analyzer (TG-DTA), or the like. Further, when two or more polymerizable liquid crystal compounds are used in combination, the above-mentioned phase transition temperature is the polymerization in which all polymerizable liquid crystal compounds constituting the polymerizable liquid crystal composition are mixed in the same ratio as the composition in the polymerizable liquid crystal composition. Means a temperature measured in the same manner as in the case of using one kind of polymerizable liquid crystal compound using a mixture of the polymerizable liquid crystal compounds. Further, it is generally known that the liquid crystal phase transition temperature of the polymerizable liquid crystal compound in the polymerizable liquid crystal composition may be lower than the liquid crystal phase transition temperature of the polymerizable liquid crystal compound itself.
 加熱時間は、加熱温度、用いる重合性液晶化合物の種類、溶媒の種類やその沸点およびその量等に応じて適宜決定し得るが、通常、15秒~10分であり、好ましくは0.5~5分である。 The heating time can be appropriately determined depending on the heating temperature, the type of polymerizable liquid crystal compound used, the type of solvent and the boiling point and amount thereof, etc., but is usually 15 seconds to 10 minutes, preferably 0.5 to 10 minutes. 5 minutes.
 塗膜からの溶媒の除去は、重合性液晶化合物の液晶相転移温度以上への加熱と同時に行ってもよいし、別途で行ってもよいが、生産性向上の観点から同時に行うことが好ましい。重合性液晶化合物の液晶相転移温度以上への加熱を行う前に、重合性液晶組成物から得られた塗膜中に含まれる重合性液晶化合物が重合しない条件で塗膜中の溶媒を適度に除去させるための予備乾燥工程を設けてもよい。かかる予備乾燥工程における乾燥方法としては、自然乾燥法、通風乾燥法、加熱乾燥および減圧乾燥法等が挙げられ、該乾燥工程における乾燥温度(加熱温度)は、用いる重合性液晶化合物の種類、溶媒の種類やその沸点およびその量等に応じて適宜決定し得る。 The removal of the solvent from the coating film may be carried out at the same time as heating the liquid crystal phase transition temperature of the polymerizable liquid crystal compound or higher, or may be carried out separately, but it is preferably carried out simultaneously from the viewpoint of improving productivity. Before heating to above the liquid crystal phase transition temperature of the polymerizable liquid crystal compound, the solvent in the coating film is moderately added under the condition that the polymerizable liquid crystal compound contained in the coating film obtained from the polymerizable liquid crystal composition does not polymerize. A preliminary drying step for removing may be provided. Examples of the drying method in the preliminary drying step include a natural drying method, a ventilation drying method, a heating drying method and a reduced pressure drying method. The drying temperature (heating temperature) in the drying step is the kind of the polymerizable liquid crystal compound used, the solvent. It can be appropriately determined according to the type, the boiling point and the amount thereof.
 次いで、得られた乾燥塗膜において、重合性液晶化合物の配向状態を保持したまま、光照射により重合性液晶化合物を重合させることにより、所望の配向状態で存在する重合性液晶化合物の重合体である液晶硬化膜が形成される。本発明の重合性液晶組成物は、重合性液晶化合物に対する損傷を抑えながら、高強度の紫外線等の光照射により高度に重合させることが可能であるため、重合方法としては、通常、光重合法が用いられる。光重合において、乾燥塗膜に照射する光としては、当該乾燥塗膜に含まれる光ラジカル重合開始剤の種類、重合性液晶化合物の種類(特に、該重合性液晶化合物が有する重合性基の種類)およびその量に応じて適宜選択される。その具体例としては、可視光、紫外光、赤外光、X線、α線、β線およびγ線からなる群より選択される1種以上の光や活性電子線が挙げられる。中でも、重合反応の進行を制御し易い点や、光重合装置として当分野で広範に用いられているものが使用できるという点で、紫外光が好ましく、紫外光によって、光重合可能なように、重合性液晶組成物に含有される重合性液晶化合物や光ラジカル重合開始剤の種類を選択しておくことが好ましい。また、重合時に、適切な冷却手段により乾燥塗膜を冷却しながら光照射することで、重合温度を制御することもできる。このような冷却手段の採用により、より低温で重合性液晶化合物の重合を実施すれば、基材が比較的耐熱性が低いものを用いたとしても、適切に液晶硬化膜を形成できる。また、光照射時の熱による不具合(基材の熱による変形等)が発生しない範囲で重合温度を高くすることにより重合反応を促進することも可能である。光重合の際、マスキングや現像を行うなどによって、パターニングされた硬化膜を得ることもできる。 Then, in the obtained dry coating film, while maintaining the alignment state of the polymerizable liquid crystal compound, by polymerizing the polymerizable liquid crystal compound by light irradiation, a polymer of the polymerizable liquid crystal compound existing in a desired alignment state. A liquid crystal cured film is formed. Since the polymerizable liquid crystal composition of the present invention can be highly polymerized by irradiation with light such as high-intensity ultraviolet light while suppressing damage to the polymerizable liquid crystal compound, the polymerization method is usually a photopolymerization method. Is used. In the photopolymerization, as the light to be applied to the dry coating film, the type of the photoradical polymerization initiator contained in the dry coating film, the type of the polymerizable liquid crystal compound (particularly, the type of the polymerizable group contained in the polymerizable liquid crystal compound) ) And its amount. Specific examples thereof include one or more kinds of light selected from the group consisting of visible light, ultraviolet light, infrared light, X-rays, α rays, β rays and γ rays and active electron rays. Among them, ultraviolet light is preferable in that it is easy to control the progress of the polymerization reaction, and that those widely used in the art as a photopolymerization device can be used, and by ultraviolet light, photopolymerization is possible. It is preferable to select the type of the polymerizable liquid crystal compound or the photoradical polymerization initiator contained in the polymerizable liquid crystal composition. Further, during the polymerization, the polymerization temperature can be controlled by irradiating with light while cooling the dried coating film by an appropriate cooling means. By adopting such a cooling means, if the polymerizable liquid crystal compound is polymerized at a lower temperature, the liquid crystal cured film can be appropriately formed even if the base material has a relatively low heat resistance. It is also possible to accelerate the polymerization reaction by raising the polymerization temperature in a range where defects due to heat during light irradiation (deformation due to heat of the substrate, etc.) do not occur. It is also possible to obtain a patterned cured film by performing masking or development during photopolymerization.
 前記活性エネルギー線の光源としては、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380~440nmを発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が挙げられる。 The light source of the active energy rays, for example, low-pressure mercury lamp, medium-pressure mercury lamp, high-pressure mercury lamp, ultra-high pressure mercury lamp, xenon lamp, halogen lamp, carbon arc lamp, tungsten lamp, gallium lamp, excimer laser, wavelength range Examples thereof include an LED light source emitting 380 to 440 nm, a chemical lamp, a black light lamp, a microwave excited mercury lamp, and a metal halide lamp.
 紫外線照射強度は、通常、10~3,000mW/cmである。紫外線照射強度は、好ましくは光重合開始剤の活性化に有効な波長領域における強度である。光を照射する時間は、通常0.1秒~10分であり、好ましくは0.1秒~5分、より好ましくは0.1秒~3分、さらに好ましくは0.1秒~1分である。このような紫外線照射強度で1回または複数回照射すると、その積算光量は、10~3,000mJ/cm、好ましくは50~2,000mJ/cm、より好ましくは100~1,000mJ/cmである。 The ultraviolet irradiation intensity is usually 10 to 3,000 mW/cm 2 . The ultraviolet irradiation intensity is preferably an intensity in a wavelength region effective for activating the photopolymerization initiator. The irradiation time with light is usually 0.1 seconds to 10 minutes, preferably 0.1 seconds to 5 minutes, more preferably 0.1 seconds to 3 minutes, and further preferably 0.1 seconds to 1 minute. is there. When it is irradiated once or plural times with such an ultraviolet irradiation intensity, the integrated light amount thereof is 10 to 3,000 mJ/cm 2 , preferably 50 to 2,000 mJ/cm 2 , and more preferably 100 to 1,000 mJ/cm 2. It is 2 .
 液晶硬化膜の厚みは、適用される表示装置に応じて適宜選択でき、好ましくは0.2~3μm、より好ましくは0.2~2μmである。 The thickness of the liquid crystal cured film can be appropriately selected according to the applied display device, and is preferably 0.2 to 3 μm, more preferably 0.2 to 2 μm.
 重合性液晶組成物の塗膜は配向膜上に形成されてもよい。配向膜は、重合性液晶化合物を所望の方向に液晶配向させる、配向規制力を有するものである。この中でも、重合性液晶化合物を水平方向に配向させる配向規制力を有する配向膜を水平配向膜、垂直方向に配向させる配向規制力を有する配向膜を垂直配向膜と呼ぶことがある。配向規制力は、配向膜の種類、表面状態やラビング条件等によって任意に調整することが可能であり、配向膜が光配向性ポリマーから形成されている場合は、偏光照射条件等によって任意に調整することが可能である。 The coating film of the polymerizable liquid crystal composition may be formed on the alignment film. The alignment film has an alignment regulating force for aligning the polymerizable liquid crystal compound in a desired direction. Among these, an alignment film having an alignment controlling force for horizontally aligning the polymerizable liquid crystal compound may be called a horizontal alignment film, and an alignment film having an alignment controlling force for vertically aligning the liquid crystal compound may be called a vertical alignment film. The alignment control force can be arbitrarily adjusted depending on the type of the alignment film, the surface condition, the rubbing conditions, etc., and when the alignment film is made of a photoalignable polymer, it can be adjusted arbitrarily by the polarized light irradiation conditions, etc. It is possible to
 配向膜としては、重合性液晶組成物の塗布等により溶解しない溶媒耐性を有し、また、溶媒の除去や後述する重合性液晶化合物の配向のための加熱処理における耐熱性を有するものが好ましい。配向膜としては、配向性ポリマーを含む配向膜、光配向膜および表面に凹凸パターンや複数の溝を有するグルブ配向膜、配向方向に延伸してある延伸フィルム等が挙げられ、配向角の精度および品質の観点から光配向膜が好ましい。 It is preferable that the alignment film has solvent resistance such that it is not dissolved by coating the polymerizable liquid crystal composition and the like, and has heat resistance in the heat treatment for removing the solvent and aligning the polymerizable liquid crystal compound described later. Examples of the alignment film include an alignment film containing an alignment polymer, a photo-alignment film and a glob alignment film having an uneven pattern and a plurality of grooves on the surface, a stretched film stretched in the alignment direction, and the like. From the viewpoint of quality, a photo-alignment film is preferable.
 配向性ポリマーとしては、例えば、分子内にアミド結合を有するポリアミドやゼラチン類、分子内にイミド結合を有するポリイミドおよびその加水分解物であるポリアミック酸、ポリビニルアルコール、アルキル変性ポリビニルアルコール、ポリアクリルアミド、ポリオキサゾール、ポリエチレンイミン、ポリスチレン、ポリビニルピロリドン、ポリアクリル酸およびポリアクリル酸エステル類が挙げられる。中でも、ポリビニルアルコールが好ましい。配向性ポリマーは単独または2種以上を組み合わせて使用できる。 Examples of the oriented polymer include polyamides and gelatins having an amide bond in the molecule, polyimides having an imide bond in the molecule and polyamic acid which is a hydrolyzate thereof, polyvinyl alcohol, alkyl modified polyvinyl alcohol, polyacrylamide, polyacrylamide. Examples include oxazole, polyethyleneimine, polystyrene, polyvinylpyrrolidone, polyacrylic acid and polyacrylic acid esters. Of these, polyvinyl alcohol is preferable. The oriented polymer may be used alone or in combination of two or more kinds.
 配向性ポリマーを含む配向膜は、通常、配向性ポリマーが溶媒に溶解した組成物(以下、「配向性ポリマー組成物」ということがある)を基材に塗布し、溶媒を除去する、または、配向性ポリマー組成物を基材に塗布し、溶媒を除去し、ラビングする(ラビング法)ことで得られる。溶媒としては、重合性液晶組成物に用い得る溶媒として先に例示した溶媒と同様のものが挙げられる。 The alignment film containing the alignment polymer is usually obtained by applying a composition in which the alignment polymer is dissolved in a solvent (hereinafter, sometimes referred to as “alignment polymer composition”) to a substrate to remove the solvent, or It is obtained by applying the oriented polymer composition to a substrate, removing the solvent, and rubbing (rubbing method). Examples of the solvent include the same solvents as those exemplified above as the solvent that can be used for the polymerizable liquid crystal composition.
 配向性ポリマー組成物中の配向性ポリマーの濃度は、配向性ポリマー材料が、溶媒に完溶できる範囲であればよいが、溶液に対して固形分換算で0.1~20%が好ましく、0.1~10%程度がさらに好ましい。 The concentration of the oriented polymer in the oriented polymer composition may be in the range where the oriented polymer material can be completely dissolved in the solvent, but is preferably 0.1 to 20% in terms of solid content in the solution, and 0 It is more preferably about 1 to 10%.
 配向性ポリマー組成物として、市販の配向膜材料をそのまま使用してもよい。市販の配向膜材料としては、サンエバー(登録商標、日産化学工業(株)製)、オプトマー(登録商標、JSR(株)製)などが挙げられる。 A commercially available alignment film material may be used as it is as the alignment polymer composition. Examples of commercially available alignment film materials include Sanever (registered trademark, manufactured by Nissan Chemical Industries, Ltd.) and Optomer (registered trademark, manufactured by JSR Corporation).
 配向性ポリマー組成物を基材に塗布する方法としては、重合性液晶組成物を基材へ塗布する方法として例示したものと同様のものが挙げられる。 As the method of applying the oriented polymer composition to the substrate, the same methods as those exemplified as the method of applying the polymerizable liquid crystal composition to the substrate can be mentioned.
 配向性ポリマー組成物に含まれる溶媒を除去する方法としては、自然乾燥法、通風乾燥法、加熱乾燥および減圧乾燥法等が挙げられる。 Examples of the method for removing the solvent contained in the oriented polymer composition include a natural drying method, a ventilation drying method, a heat drying method, and a reduced pressure drying method.
 配向膜に配向規制力を付与するために、必要に応じてラビング処理を行うことができる(ラビング法)。ラビング法により配向規制力を付与する方法としては、ラビング布が巻きつけられ、回転しているラビングロールに、配向性ポリマー組成物を基材に塗布しアニールすることで基材表面に形成された配向性ポリマーの膜を接触させる方法が挙げられる。ラビング処理を行う時に、マスキングを行えば、配向の方向が異なる複数の領域(パターン)を配向膜に形成することもできる。 Rubbing treatment can be performed as necessary to give the alignment control force to the alignment film (rubbing method). As a method of imparting an orientation regulating force by a rubbing method, a rubbing cloth is wrapped around a rubbing roll which is rotated, and the orientational polymer composition is applied to the substrate and annealed to form the substrate surface. Examples include a method of bringing a film of an oriented polymer into contact. If masking is performed during the rubbing treatment, a plurality of regions (patterns) having different alignment directions can be formed in the alignment film.
 光配向膜は、通常、光反応性基を有するポリマーまたはモノマーと溶媒とを含む組成物(以下、「光配向膜形成用組成物」ともいう)を基材に塗布し、溶媒を除去後に偏光(好ましくは、偏光UV)を照射することで得られる。光配向膜は、照射する偏光の偏光方向を選択することにより、配向規制力の方向を任意に制御することができる点でも有利である。 The photo-alignment film is usually prepared by applying a composition containing a polymer or monomer having a photoreactive group and a solvent (hereinafter, also referred to as “composition for forming photo-alignment film”) to a substrate and polarizing the film after removing the solvent. (Preferably polarized UV). The photo-alignment film is also advantageous in that the direction of the alignment regulating force can be arbitrarily controlled by selecting the polarization direction of the polarized light to be irradiated.
 光反応性基とは、光照射することにより液晶配向能を生じる基をいう。具体的には、光照射により生じる分子の配向誘起または異性化反応、二量化反応、光架橋反応もしくは光分解反応等の液晶配向能の起源となる光反応に関与する基が挙げられる。中でも、二量化反応または光架橋反応に関与する基が、配向性に優れる点で好ましい。光反応性基として、不飽和結合、特に二重結合を有する基が好ましく、炭素-炭素二重結合(C=C結合)、炭素-窒素二重結合(C=N結合)、窒素-窒素二重結合(N=N結合)および炭素-酸素二重結合(C=O結合)からなる群より選ばれる少なくとも1つを有する基が特に好ましい。 ▽ Photoreactive group refers to a group that produces liquid crystal alignment ability when irradiated with light. Specific examples thereof include a group involved in a photoreaction which is a source of liquid crystal alignment ability such as an orientation induction or isomerization reaction of molecules generated by light irradiation, a dimerization reaction, a photocrosslinking reaction or a photodecomposition reaction. Of these, a group involved in a dimerization reaction or a photocrosslinking reaction is preferable in terms of excellent orientation. As the photoreactive group, a group having an unsaturated bond, particularly a double bond is preferable, and a carbon-carbon double bond (C=C bond), a carbon-nitrogen double bond (C=N bond), a nitrogen-nitrogen double bond is preferable. A group having at least one selected from the group consisting of a heavy bond (N=N bond) and a carbon-oxygen double bond (C=O bond) is particularly preferable.
 C=C結合を有する光反応性基としては、ビニル基、ポリエン基、スチルベン基、スチルバゾール基、スチルバゾリウム基、カルコン基およびシンナモイル基等が挙げられる。
C=N結合を有する光反応性基としては、芳香族シッフ塩基、芳香族ヒドラゾンなどの構造を有する基が挙げられる。N=N結合を有する光反応性基としては、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基、ホルマザン基、および、アゾキシベンゼン構造を有する基等が挙げられる。C=O結合を有する光反応性基としては、ベンゾフェノン基、クマリン基、アントラキノン基およびマレイミド基等が挙げられる。これらの基は、アルキル基、アルコキシ基、アリール基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基などの置換基を有していてもよい。
Examples of the photoreactive group having a C=C bond include a vinyl group, a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a chalcone group and a cinnamoyl group.
Examples of the photoreactive group having a C=N bond include groups having a structure such as aromatic Schiff base and aromatic hydrazone. Examples of the photoreactive group having an N=N bond include an azobenzene group, an azonaphthalene group, an aromatic heterocyclic azo group, a bisazo group, a formazan group, and a group having an azoxybenzene structure. Examples of the photoreactive group having a C=O bond include a benzophenone group, a coumarin group, an anthraquinone group and a maleimide group. These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group and a halogenated alkyl group.
 中でも、光二量化反応に関与する光反応性基が好ましく、光配向に必要な偏光照射量が比較的少なく、かつ、熱安定性や経時安定性に優れる光配向膜が得られやすいという点で、シンナモイル基およびカルコン基が好ましい。光反応性基を有するポリマーとしては、当該ポリマー側鎖の末端部が桂皮酸構造となるようなシンナモイル基を有するものが特に好ましい。 Among them, a photoreactive group involved in the photodimerization reaction is preferable, the irradiation amount of polarized light required for photoalignment is relatively small, and in that a photoalignment film excellent in thermal stability and stability over time is easily obtained, Cinnamoyl and chalcone groups are preferred. As the polymer having a photoreactive group, a polymer having a cinnamoyl group such that the end portion of the polymer side chain has a cinnamic acid structure is particularly preferable.
 光配向膜形成用組成物を基材上に塗布することにより、基材上に光配向誘起層を形成することができる。該組成物に含まれる溶媒としては、重合性液晶組成物に用い得る溶媒として先に例示した溶媒と同様のものが挙げられ、光反応性基を有するポリマーあるいはモノマーの溶解性に応じて適宜選択することができる。 The photo-alignment inducing layer can be formed on the substrate by applying the composition for forming a photo-alignment film onto the substrate. Examples of the solvent contained in the composition include the same solvents as those exemplified above as the solvent that can be used in the polymerizable liquid crystal composition, and are appropriately selected depending on the solubility of the photoreactive group-containing polymer or monomer. can do.
 光配向膜形成用組成物中の光反応性基を有するポリマーまたはモノマーの含有量は、ポリマーまたはモノマーの種類や目的とする光配向膜の厚みによって適宜調節できるが、光配向膜形成用組成物の質量に対して、少なくとも0.2質量%とすることが好ましく、0.3~10質量%の範囲がより好ましい。光配向膜の特性が著しく損なわれない範囲で、光配向膜形成用組成物は、ポリビニルアルコールやポリイミドなどの高分子材料や光増感剤を含んでいてもよい。 The content of the polymer or monomer having a photoreactive group in the composition for forming a photo-alignment film can be appropriately adjusted depending on the kind of the polymer or the monomer and the thickness of the desired photo-alignment film. It is preferably at least 0.2% by mass, and more preferably in the range of 0.3 to 10% by mass. The composition for forming a photo-alignment film may contain a polymer material such as polyvinyl alcohol or polyimide, or a photosensitizer as long as the characteristics of the photo-alignment film are not significantly impaired.
 光配向膜形成用組成物を基材に塗布する方法としては、配向性ポリマー組成物を基材に塗布する方法と同様の方法が挙げられる。塗布された光配向膜形成用組成物から、溶媒を除去する方法としては例えば、自然乾燥法、通風乾燥法、加熱乾燥および減圧乾燥法等が挙げられる。 As a method of applying the composition for forming a photo-alignment film to a base material, the same method as the method of applying the oriented polymer composition to the base material can be mentioned. Examples of the method for removing the solvent from the applied composition for forming a photo-alignment film include a natural drying method, a ventilation drying method, a heat drying method and a reduced pressure drying method.
 偏光を照射するには、基材上に塗布された光配向膜形成用組成物から、溶媒を除去したものに直接、偏光UVを照射する形式でも、基材側から偏光を照射し、偏光を透過させて照射する形式でもよい。また、当該偏光は、実質的に平行光であると特に好ましい。照射する偏光の波長は、光反応性基を有するポリマーまたはモノマーの光反応性基が、光エネルギーを吸収し得る波長領域のものがよい。具体的には、波長250~400nmの範囲のUV(紫外線)が特に好ましい。当該偏光照射に用いる光源としては、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、KrF、ArFなどの紫外光レーザーなどが挙げられ、高圧水銀ランプ、超高圧水銀ランプおよびメタルハライドランプがより好ましい。これらの中でも、高圧水銀ランプ、超高圧水銀ランプおよびメタルハライドランプが、波長313nmの紫外線の発光強度が大きいため好ましい。前記光源からの光を、適当な偏光子を通過して照射することにより、偏光UVを照射することができる。かかる偏光子としては、偏光フィルターやグラントムソン、グランテーラーなどの偏光プリズムやワイヤーグリッドタイプの偏光子を用いることができる。 In order to irradiate polarized light, even in the form of directly irradiating polarized UV on a composition obtained by removing the solvent from the composition for forming a photo-alignment film applied on the substrate, the polarized light is irradiated from the substrate side. It may be in a form of transmitting and irradiating. Further, it is particularly preferable that the polarized light is substantially parallel light. The wavelength of the polarized light to be irradiated is preferably in the wavelength range in which the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy. Specifically, UV (ultraviolet) having a wavelength range of 250 to 400 nm is particularly preferable. Examples of the light source used for the irradiation of polarized light include xenon lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, and ultraviolet lasers such as KrF and ArF. High-pressure mercury lamps, ultra-high-pressure mercury lamps and metal halide lamps are more preferable. preferable. Among these, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, and a metal halide lamp are preferable because they have high emission intensity of ultraviolet rays having a wavelength of 313 nm. Polarized UV can be irradiated by irradiating the light from the light source through an appropriate polarizer. As such a polarizer, a polarizing filter, a polarizing prism such as Glan-Thompson or Glan-Taylor, or a wire grid type polarizer can be used.
 なお、ラビングまたは偏光照射を行う時に、マスキングを行えば、液晶配向の方向が異なる複数の領域(パターン)を形成することもできる。 Note that if rubbing or polarized light irradiation is performed, masking can be performed to form a plurality of regions (patterns) having different liquid crystal alignment directions.
 グルブ(groove)配向膜は、膜表面に凹凸パターンまたは複数のグルブ(溝)を有する膜である。等間隔に並んだ複数の直線状のグルブを有する膜に重合性液晶化合物を塗布した場合、その溝に沿った方向に液晶分子が配向する。 The groove alignment film is a film having an uneven pattern or a plurality of grooves (grooves) on the film surface. When a polymerizable liquid crystal compound is applied to a film having a plurality of linear globbings arranged at equal intervals, liquid crystal molecules are aligned in the direction along the groove.
 グルブ配向膜を得る方法としては、感光性ポリイミド膜表面にパターン形状のスリットを有する露光用マスクを介して露光後、現像およびリンス処理を行って凹凸パターンを形成する方法、表面に溝を有する板状の原盤に、硬化前のUV硬化樹脂の層を形成し、形成された樹脂層を基材へ移してから硬化する方法、および、基材に形成した硬化前のUV硬化樹脂の膜に、複数の溝を有するロール状の原盤を押し当てて凹凸を形成し、その後硬化する方法等が挙げられる。 As a method for obtaining a glube alignment film, after exposure through an exposure mask having a patterned slit on the surface of a photosensitive polyimide film, a method of forming an uneven pattern by developing and rinsing, a plate having a groove on the surface A method for forming a layer of UV curable resin before curing on a sheet-shaped master, transferring the formed resin layer to a substrate, and then curing, and a film of the UV curable resin before curing formed on the substrate, Examples include a method in which a roll-shaped master having a plurality of grooves is pressed to form irregularities and then cured.
 さらに、重合性液晶化合物を液晶硬化膜平面に対して垂直方向に配向させる配向規制力を示す材料としては、上述した配向性ポリマー等の他にパーフルオロアルキル等のフッ素系ポリマーおよびシラン化合物並びにそれらの縮合反応により得られるポリシロキサン化合物などを用いてもよい。 Further, as the material exhibiting the alignment regulating force for aligning the polymerizable liquid crystal compound in the direction perpendicular to the liquid crystal cured film plane, in addition to the above-mentioned alignment polymer, a fluorine-based polymer such as perfluoroalkyl and a silane compound and those You may use the polysiloxane compound obtained by the condensation reaction of.
 配向膜を形成する材料としてシラン化合物を使用する場合には、表面張力を低下させやすく、配向膜に隣接する層との密着性を高めやすい観点から、構成元素にSi元素とC元素とを含む化合物が好ましく、シラン化合物を好適に使用することができる。シラン化合物としてはシラン含有イオン性化合物等が使用可能であり、このようなシラン化合物を使用することにより垂直配向規制力を高めることができる。シラン化合物としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよく、その他の材料と混合して使用してもよい。シラン化合物が非イオン性シラン化合物である場合には、垂直配向規制力を高めやすい観点から分子末端にアルキル基を有するシラン化合物が好ましく、炭素数3~30のアルキル基を有するシラン化合物がより好ましい。 When a silane compound is used as a material for forming the alignment film, the constituent elements include a Si element and a C element from the viewpoints of easily lowering the surface tension and easily increasing the adhesiveness with a layer adjacent to the alignment film. Compounds are preferable, and silane compounds can be preferably used. A silane-containing ionic compound or the like can be used as the silane compound, and the use of such a silane compound can enhance the vertical alignment control force. As the silane compound, one type may be used alone, two or more types may be used in combination, and may be used as a mixture with other materials. When the silane compound is a nonionic silane compound, a silane compound having an alkyl group at the molecular end is preferable, and a silane compound having an alkyl group having 3 to 30 carbon atoms is more preferable, from the viewpoint of easily increasing the vertical alignment control force. ..
 配向膜(配向性ポリマーを含む配向膜または光配向膜)の厚みは、通常10~10000nmの範囲であり、好ましくは10~1000nmの範囲であり、より好ましくは10~500nm以下であり、さらに好ましくは10~300nm、特に好ましい50~250nmの範囲である。 The thickness of the alignment film (the alignment film containing an alignment polymer or the photo-alignment film) is usually in the range of 10 to 10000 nm, preferably 10 to 1000 nm, more preferably 10 to 500 nm or less, and further preferably Is in the range of 10 to 300 nm, particularly preferably in the range of 50 to 250 nm.
 本発明は、本発明の位相差板と偏光フィルムとを含む楕円偏光板を包含する。
 偏光フィルムは、偏光機能を有するフィルムであり、吸収異方性を有する色素を吸着させた延伸フィルムや吸収異方性を有する色素を塗布したフィルムを偏光子として含むフィルム等が挙げられる。吸収異方性を有する色素としては、例えば、二色性色素が挙げられる。
The present invention includes an elliptically polarizing plate including the retardation plate of the present invention and a polarizing film.
The polarizing film is a film having a polarizing function, and examples thereof include a stretched film having adsorbed a dye having absorption anisotropy and a film including a film coated with a dye having absorption anisotropy as a polarizer. Examples of the dye having absorption anisotropy include dichroic dyes.
 吸収異方性を有する色素を吸着させた延伸フィルムを偏光子として含むフィルムは通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、およびホウ酸水溶液による処理後に水洗する工程を経て製造された偏光子の少なくとも一方の面に接着剤を介して透明保護フィルムで挟み込むことで作製される。 A film containing a stretched film adsorbing a dye having absorption anisotropy as a polarizer is usually a step of uniaxially stretching a polyvinyl alcohol-based resin film, by dyeing the polyvinyl alcohol-based resin film with a dichroic dye, At least a polarizer produced through a step of adsorbing a dichroic dye, a step of treating a polyvinyl alcohol-based resin film on which a dichroic pigment is adsorbed with a boric acid aqueous solution, and a step of washing with water after the treatment with the boric acid aqueous solution. It is produced by sandwiching one surface with a transparent protective film via an adhesive.
 ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することによって得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルとそれに共重合可能な他の単量体との共重合体が用いられる。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などが挙げられる。 Polyvinyl alcohol resin is obtained by saponifying polyvinyl acetate resin. As the polyvinyl acetate-based resin, in addition to polyvinyl acetate which is a homopolymer of vinyl acetate, a copolymer of vinyl acetate and another monomer copolymerizable therewith is used. Examples of the other monomer copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
 ポリビニルアルコール系樹脂のケン化度は、通常85~100モル%程度であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールも使用することができる。ポリビニルアルコール系樹脂の重合度は、通常1,000~10,000程度であり、好ましくは1,500~5,000の範囲である。 The saponification degree of the polyvinyl alcohol resin is usually about 85 to 100 mol %, preferably 98 mol% or more. The polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used. The degree of polymerization of the polyvinyl alcohol-based resin is usually about 1,000 to 10,000, preferably 1,500 to 5,000.
 このようなポリビニルアルコール系樹脂を製膜したものが、偏光フィルムの原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものでなく、公知の方法で製膜することができる。ポリビニルアルコール系原反フィルムの膜厚は、例えば、10~150μm程度とすることができる。 A film produced from such a polyvinyl alcohol resin is used as a raw film for a polarizing film. The method for forming a film of the polyvinyl alcohol-based resin is not particularly limited, and the film can be formed by a known method. The film thickness of the polyvinyl alcohol-based original film can be set to, for example, about 10 to 150 μm.
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素による染色の前、染色と同時、または染色の後で行うことができる。一軸延伸を染色の後で行う場合、この一軸延伸は、ホウ酸処理の前に行ってもよいし、ホウ酸処理中に行ってもよい。また、これらの複数の段階で一軸延伸を行うことも可能である。一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また一軸延伸は、大気中で延伸を行う乾式延伸であってもよいし、溶媒を用い、ポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行う湿式延伸であってもよい。延伸倍率は、通常3~8倍程度である。 Uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing with the dichroic dye, simultaneously with dyeing, or after dyeing. When the uniaxial stretching is performed after dyeing, the uniaxial stretching may be performed before the boric acid treatment or during the boric acid treatment. It is also possible to carry out uniaxial stretching in these plural stages. In the uniaxial stretching, it may be uniaxially stretched between rolls having different peripheral speeds, or may be uniaxially stretched using a heat roll. The uniaxial stretching may be dry stretching in which stretching is performed in the atmosphere, or wet stretching in which a polyvinyl alcohol-based resin film is swollen using a solvent. The draw ratio is usually about 3 to 8 times.
 ポリビニルアルコール系樹脂フィルムの二色性色素による染色は、例えば、二色性色素を含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬する方法によって行われる。 The dyeing of the polyvinyl alcohol-based resin film with the dichroic dye is performed by, for example, immersing the polyvinyl alcohol-based resin film in an aqueous solution containing the dichroic dye.
 二色性色素として、具体的には、ヨウ素や二色性の有機染料が用いられる。二色性の有機染料としては、C.I.DIRECT RED 39などのジスアゾ化合物からなる二色性直接染料および、トリスアゾ、テトラキスアゾなどの化合物からなる二色性直接染料等が挙げられる。ポリビニルアルコール系樹脂フィルムは、染色処理前に、水への浸漬処理を施しておくことが好ましい。 Specifically, iodine or a dichroic organic dye is used as the dichroic pigment. Examples of the dichroic organic dye include C.I. I. Examples include dichroic direct dyes composed of disazo compounds such as DIRECT 39 and dichroic direct dyes composed of compounds such as trisazo and tetrakisazo. The polyvinyl alcohol-based resin film is preferably immersed in water before dyeing.
 二色性色素としてヨウ素を用いる場合は通常、ヨウ素およびヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。
この水溶液におけるヨウ素の含有量は、水100質量部あたり、通常、0.01~1質量部程度である。またヨウ化カリウムの含有量は、水100質量部あたり、通常、0.5~20質量部程度である。染色に用いる水溶液の温度は、通常20~40℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常20~1,800秒程度である。
When iodine is used as the dichroic dye, a method of immersing the polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide and dyeing is usually adopted.
The content of iodine in this aqueous solution is usually about 0.01 to 1 part by mass per 100 parts by mass of water. The content of potassium iodide is usually about 0.5 to 20 parts by mass per 100 parts by mass of water. The temperature of the aqueous solution used for dyeing is usually about 20 to 40°C. The immersion time (dyeing time) in this aqueous solution is usually about 20 to 1,800 seconds.
 一方、二色性色素として二色性の有機染料を用いる場合は通常、水溶性二色性染料を含む水溶液にポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。
この水溶液における二色性有機染料の含有量は、水100質量部あたり、通常、1×10-4~10質量部程度であり、好ましくは1×10-3~1質量部であり、さらに好ましくは1×10-3~1×10-2質量部である。この水溶液は、硫酸ナトリウム等の無機塩を染色助剤として含んでいてもよい。染色に用いる二色性染料水溶液の温度は、通常、20~80℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常、10~1,800秒程度である。
On the other hand, when a dichroic organic dye is used as the dichroic dye, a method of immersing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic dye and dyeing is usually employed.
The content of the dichroic organic dye in this aqueous solution is usually about 1×10 −4 to 10 parts by mass, preferably 1×10 −3 to 1 part by mass, and more preferably 100 parts by mass of water. Is 1×10 −3 to 1×10 −2 parts by mass. This aqueous solution may contain an inorganic salt such as sodium sulfate as a dyeing aid. The temperature of the dichroic dye aqueous solution used for dyeing is usually about 20 to 80°C. The immersion time (dyeing time) in this aqueous solution is usually about 10 to 1,800 seconds.
 二色性色素による染色後のホウ酸処理は通常、染色されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液に浸漬する方法により行うことができる。このホウ酸水溶液におけるホウ酸の含有量は、水100質量部あたり、通常2~15質量部程度であり、好ましくは5~12質量部である。二色性色素としてヨウ素を用いた場合には、このホウ酸水溶液はヨウ化カリウムを含有することが好ましく、その場合のヨウ化カリウムの含有量は、水100質量部あたり、通常0.1~15質量部程度であり、好ましくは5~12質量部である。ホウ酸水溶液への浸漬時間は、通常60~1,200秒程度であり、好ましくは150~600秒、さらに好ましくは200~400秒である。ホウ酸処理の温度は、通常50℃以上であり、好ましくは50~85℃、さらに好ましくは60~80℃である。 The boric acid treatment after dyeing with the dichroic dye can usually be performed by a method of immersing the dyed polyvinyl alcohol-based resin film in an aqueous boric acid solution. The content of boric acid in this aqueous boric acid solution is usually about 2 to 15 parts by mass, preferably 5 to 12 parts by mass, per 100 parts by mass of water. When iodine is used as the dichroic dye, the aqueous boric acid solution preferably contains potassium iodide, and the content of potassium iodide in this case is usually 0.1 to 100 parts by mass per 100 parts by mass of water. The amount is about 15 parts by mass, preferably 5 to 12 parts by mass. The immersion time in the aqueous boric acid solution is usually about 60 to 1,200 seconds, preferably 150 to 600 seconds, more preferably 200 to 400 seconds. The temperature of the boric acid treatment is usually 50° C. or higher, preferably 50 to 85° C., more preferably 60 to 80° C.
 ホウ酸処理後のポリビニルアルコール系樹脂フィルムは通常、水洗処理される。水洗処理は、例えば、ホウ酸処理されたポリビニルアルコール系樹脂フィルムを水に浸漬する方法により行うことができる。水洗処理における水の温度は、通常5~40℃程度である。
また浸漬時間は、通常1~120秒程度である。
The polyvinyl alcohol-based resin film after the boric acid treatment is usually washed with water. The water washing treatment can be performed by, for example, a method of immersing the polyvinyl alcohol-based resin film treated with boric acid in water. The temperature of water in the water washing treatment is usually about 5 to 40°C.
The immersion time is usually about 1 to 120 seconds.
 水洗後に乾燥処理が施されて、偏光子が得られる。乾燥処理は例えば、熱風乾燥機や遠赤外線ヒーターを用いて行うことができる。乾燥処理の温度は、通常30~100℃程度であり、好ましくは50~80℃である。乾燥処理の時間は、通常60~600秒程度であり、好ましくは120~600秒である。乾燥処理により、偏光子の水分率は実用程度にまで低減される。その水分率は、通常5~20質量%程度であり、好ましくは8~15質量%である。水分率が上記範囲内であると適度な可塑性有し、熱安定性が良好な偏光子を得ることができる。 After drying with water, a polarizer is obtained. The drying treatment can be performed using, for example, a hot air dryer or a far infrared heater. The temperature of the drying treatment is usually about 30 to 100°C, preferably 50 to 80°C. The drying treatment time is usually about 60 to 600 seconds, preferably 120 to 600 seconds. By the drying treatment, the water content of the polarizer is reduced to a practical level. The water content thereof is usually about 5 to 20% by mass, preferably 8 to 15% by mass. When the water content is within the above range, a polarizer having appropriate plasticity and good thermal stability can be obtained.
 こうしてポリビニルアルコール系樹脂フィルムに、一軸延伸、二色性色素による染色、ホウ酸処理、水洗および乾燥をして得られる偏光子の厚さは好ましくは5~40μmである。 Thus, the thickness of the polarizer obtained by uniaxially stretching, dyeing with a dichroic dye, boric acid treatment, washing with water and drying the polyvinyl alcohol resin film is preferably 5 to 40 μm.
 吸収異方性を有する色素を塗布したフィルムとしては、液晶性を有する二色性色素を含む組成物または、二色性色素と重合性液晶とを含む組成物を塗布して得られるフィルム等が挙げられる。当該フィルムは、好ましくは、その片面または両面に保護フィルムを有する。当該保護フィルムとしては、液晶硬化膜の製造に用い得る基材として先に例示した樹脂フィルムと同一のものが挙げられる。 Examples of the film coated with a dye having absorption anisotropy include a composition containing a dichroic dye having liquid crystallinity or a film obtained by coating a composition containing a dichroic dye and a polymerizable liquid crystal. Can be mentioned. The film preferably has a protective film on one side or both sides thereof. Examples of the protective film include the same resin films as those exemplified above as the substrate that can be used for producing the liquid crystal cured film.
 吸収異方性を有する色素を塗布したフィルムは薄い方が好ましいが、薄すぎると強度が低下し、加工性に劣る傾向がある。当該フィルムの厚さは、通常20μm以下であり、好ましくは5μm以下であり、より好ましくは0.5~3μmである。 It is preferable that the film coated with a dye having absorption anisotropy is thin, but if it is too thin, the strength will decrease and the processability will tend to be poor. The thickness of the film is usually 20 μm or less, preferably 5 μm or less, and more preferably 0.5 to 3 μm.
 前記吸収異方性を有する色素を塗布したフィルムとしては、具体的には、特開2012-33249号公報等に記載のフィルムが挙げられる。 Specific examples of the film coated with the dye having the absorption anisotropy include films described in JP 2012-33249 A and the like.
 このようにして得られた偏光子の少なくとも一方の面に、接着剤を介して透明保護フィルムを積層することにより偏光フィルムが得られる。透明保護フィルムとしては、液晶硬化膜の製造に用い得る基材として先に例示した樹脂フィルムと同様の透明フィルムを好ましく用いることができる。 A polarizing film can be obtained by laminating a transparent protective film on at least one surface of the thus obtained polarizer with an adhesive. As the transparent protective film, the same transparent film as the resin film exemplified above as a substrate that can be used for producing a liquid crystal cured film can be preferably used.
 本発明の楕円偏光板は、本発明の位相差板と偏光フィルムとを含んで構成されるものであり、例えば、本発明の位相差板と偏光フィルムとを接着剤層または粘着剤層等を介して積層させることにより本発明の楕円偏光板を得ることができる。 The elliptically polarizing plate of the present invention is configured to include the retardation plate of the present invention and a polarizing film. For example, the retardation plate of the present invention and the polarizing film may be provided with an adhesive layer or a pressure-sensitive adhesive layer. The elliptically polarizing plate of the present invention can be obtained by laminating the elliptically polarizing plates.
 本発明の一態様においては、水平配向液晶硬化膜を含む本発明の位相差板と偏光フィルムとが積層される場合、位相差板を構成する水平配向液晶硬化膜の遅相軸(光軸)と偏光フィルムの吸収軸との成す角が45±5°となるように積層することが好ましい。 In one aspect of the present invention, when a retardation plate of the present invention including a horizontally aligned liquid crystal cured film and a polarizing film are laminated, a slow axis (optical axis) of the horizontally aligned liquid crystal cured film forming the retardation plate. It is preferable to laminate so that the angle between the absorption axis of the polarizing film and the absorption axis of the polarizing film is 45±5°.
 本発明の楕円偏光板は、従来の一般的な楕円偏光板、または偏光フィルムおよび位相差板が備えるような構成を有していてよい。そのような構成としては、例えば、楕円偏光板を有機EL等の表示素子に貼合するための粘着剤層(シート)、偏光フィルムや位相差板の表面を傷や汚れから保護する目的で用いられるプロテクトフィルム等が挙げられる。 The elliptically polarizing plate of the present invention may have a conventional general elliptically polarizing plate, or a configuration that a polarizing film and a retardation plate have. As such a structure, for example, it is used for the purpose of protecting the surface of an adhesive layer (sheet) for laminating an elliptically polarizing plate on a display element such as an organic EL, a polarizing film or a retardation plate from scratches and dirt. The protective film etc. which are used are mentioned.
 本発明の楕円偏光板は、さまざまな表示装置に用いることができる。
 表示装置とは、表示素子を有する装置であり、発光源として発光素子または発光装置を含む。表示装置としては、液晶表示装置、有機エレクトロルミネッセンス(EL)表示装置、無機エレクトロルミネッセンス(EL)表示装置、タッチパネル表示装置、電子放出表示装置(例えば電場放出表示装置(FED)、表面電界放出表示装置(SED))、電子ペーパー(電子インクや電気泳動素子を用いた表示装置、プラズマ表示装置、投射型表示装置(例えばグレーティングライトバルブ(GLV)表示装置、デジタルマイクロミラーデバイス(DMD)を有する表示装置)および圧電セラミックディスプレイなどが挙げられる。液晶表示装置は、透過型液晶表示装置、半透過型液晶表示装置、反射型液晶表示装置、直視型液晶表示装置および投写型液晶表示装置などのいずれをも含む。これらの表示装置は、2次元画像を表示する表示装置であってもよいし、3次元画像を表示する立体表示装置であってもよい。特に本発明の楕円偏光板は有機エレクトロルミネッセンス(EL)表示装置および無機エレクトロルミネッセンス(EL)表示装置に好適に用いることができ、本発明の位相差板は液晶表示装置およびタッチパネル表示装置に好適に用いることができる。これらの表示装置は、光学特性に優れる本発明の楕円偏光板を備えることにより、良好な画像表示特性を発現することができる。
The elliptically polarizing plate of the present invention can be used in various display devices.
A display device is a device having a display element and includes a light-emitting element or a light-emitting device as a light-emitting source. As the display device, a liquid crystal display device, an organic electroluminescence (EL) display device, an inorganic electroluminescence (EL) display device, a touch panel display device, an electron emission display device (for example, field emission display device (FED), surface field emission display device). (SED)), electronic paper (display device using electronic ink or electrophoretic element, plasma display device, projection display device (eg, grating light valve (GLV) display device, display device having digital micromirror device (DMD)) ) And piezoelectric ceramic displays, etc. Liquid crystal display devices include any of transmissive liquid crystal display devices, semi-transmissive liquid crystal display devices, reflective liquid crystal display devices, direct-view liquid crystal display devices, and projection liquid crystal display devices. These display devices may be a display device that displays a two-dimensional image or may be a stereoscopic display device that displays a three-dimensional image.In particular, the elliptically polarizing plate of the present invention is an organic electroluminescence ( EL) display devices and inorganic electroluminescence (EL) display devices can be suitably used, and the retardation plate of the present invention can be suitably used for liquid crystal display devices and touch panel display devices. By providing the elliptically polarizing plate of the present invention having excellent characteristics, good image display characteristics can be exhibited.
 以下、実施例により本発明をより具体的に説明する。尚、例中の「%」および「部」は、特記ない限り、それぞれ質量%および質量部を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples. In addition, "%" and "part" in an example mean mass% and mass part, respectively, unless otherwise specified.
1.実施例1
(1)水平配向膜形成用組成物の調製
 下記構造の光配向性材料5部(重量平均分子量:30000)とシクロペンタノン(溶媒)95部とを成分として混合し、得られた混合物を80℃で1時間攪拌することにより、水平配向膜形成用組成物(1)を得た。
 光配向性材料:
Figure JPOXMLDOC01-appb-C000003
1. Example 1
(1) Preparation of composition for forming horizontal alignment film 5 parts of a photo-alignment material having the following structure (weight average molecular weight: 30,000) and 95 parts of cyclopentanone (solvent) were mixed as components, and the resulting mixture was mixed with 80 parts. The composition for horizontal alignment film formation (1) was obtained by stirring at 0° C. for 1 hour.
Photo-alignment material:
Figure JPOXMLDOC01-appb-C000003
(2)重合性液晶組成物の調製
 特開2010-31223号公報に記載の方法に準じて製造した重合性液晶化合物(A-1)100質量部に対して、ポリアクリレート化合物(レベリング剤)(BYK-361N;BYK-Chemie社製)0.1質量部と、光重合開始剤として、イルガキュアOXE-03(BASFジャパン株式会社製)7.5質量部、2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(イルガキュア369(Irg369);BASFジャパン株式会社製)3.0質量部と、一次酸化防止剤として、Sumirizer GS(フェノール系酸化防止剤、住友化学(株)製)1.0質量部と、二次酸化防止剤として、アデカスタブ TTP(リン系酸化防止剤、ADEKA社製)5.0質量部とを混合した。更に、固形分濃度が13%となるようにN-メチル-2-ピロリドン(NMP)を添加し、80℃で1時間攪拌することにより、重合性液晶組成物を得た。
 なお、重合性液晶化合物(A-1)の1mg/50mLテトラヒドロフラン溶液を調製し、光路長1cmの測定用セルに測定用試料として該溶液を入れ、紫外可視分光光度計(株式会社島津製作所製「UV-2450」)にセットして吸収スペクトルを測定した。得られた吸収スペクトルから極大吸収度となる波長を読み取ったところ、波長300~400nmの範囲における極大吸収波長λmaxは350nmであった。
(2) Preparation of Polymerizable Liquid Crystal Composition Based on 100 parts by mass of the polymerizable liquid crystal compound (A-1) produced according to the method described in JP 2010-31223 A, a polyacrylate compound (leveling agent) ( BYK-361N; BYK-Chemie) 0.1 parts by mass, and as a photopolymerization initiator, Irgacure OXE-03 (manufactured by BASF Japan Ltd.) 7.5 parts by mass, 2-dimethylamino-2-benzyl-1. 3.0 parts by mass of -(4-morpholinophenyl)butan-1-one (Irgacure 369 (Irg369); manufactured by BASF Japan Ltd.), and as a primary antioxidant, Sumirizer GS (phenolic antioxidant, Sumitomo Chemical ( (Manufactured by K.K.) and 1.0 part by mass of Adeka Stab TTP (phosphorus antioxidant, manufactured by ADEKA) as a secondary antioxidant. Further, N-methyl-2-pyrrolidone (NMP) was added so that the solid content concentration became 13%, and the mixture was stirred at 80° C. for 1 hour to obtain a polymerizable liquid crystal composition.
A 1 mg/50 mL tetrahydrofuran solution of the polymerizable liquid crystal compound (A-1) was prepared, and the solution was put into a measuring cell having an optical path length of 1 cm as a measuring sample, and the ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation UV-2450") and the absorption spectrum was measured. When the wavelength at which the maximum absorption was obtained was read from the obtained absorption spectrum, the maximum absorption wavelength λ max in the wavelength range of 300 to 400 nm was 350 nm.
 重合性液晶化合物(A-1):
Figure JPOXMLDOC01-appb-C000004
Polymerizable liquid crystal compound (A-1):
Figure JPOXMLDOC01-appb-C000004
(3)重合性液晶組成物の保管安定性評価
 得られた重合性液晶組成物を、透明バイアル瓶内で、蛍光灯(三菱電機製 FHF32EX-N-H、全光束:3520lm(32W))照射下で15時間保管した後に、目視でゲル化の有無を確認した。
 <評価基準>
〇:目視でゲル化が視認されなかった。
×:目視でゲル化が視認された。
(3) Storage stability evaluation of the polymerizable liquid crystal composition The obtained polymerizable liquid crystal composition was irradiated in a transparent vial with a fluorescent lamp (FHF32EX-NH manufactured by Mitsubishi Electric, total luminous flux: 3520 lm (32 W)). After storing for 15 hours under the presence of gel, the presence or absence of gelation was visually confirmed.
<Evaluation criteria>
◯: Gelation was not visually observed.
X: Gelation was visually observed.
(4)水平配向液晶硬化膜の作製
 基材としての日本ゼオン社製のシクロオレフィンポリマー(COP)フィルム(ZF-14)を、コロナ処理装置を用いてコロナ処理した。次いで、コロナ処理を施したCOPフィルムの表面に、バーコーターを用いて上述した水平配向膜形成用組成物(1)を塗布し、80℃で1分間乾燥した後、偏光UV照射装置(SPOT CURE SP-9;ウシオ電機株式会社製)を用いて、波長313nmにおける積算光量:100mJ/cmの積算光量で偏光UV露光を実施して水平配向膜を得た。
 続いて、上記配向膜上にバーコーターを用いて上述した重合性液晶組成物を塗布し、120℃で90秒間熱をかけ、かつ熱風を当てて乾燥した。その後高圧水銀ランプを用いて、重合性液晶組成物の塗布面側から紫外線を照射(波長365nmにおける積算光量:2000mJ/cm)することにより、水平配向液晶硬化膜を形成し、COPフィルム/水平配向膜/水平配向液晶硬化膜からなる光学フィルムを形成した。得られた液晶硬化膜の極大吸収波長は350nmであった。
(4) Preparation of horizontally aligned liquid crystal cured film A cycloolefin polymer (COP) film (ZF-14) manufactured by Nippon Zeon Co., Ltd. as a substrate was subjected to corona treatment using a corona treatment device. Then, the above-mentioned composition (1) for forming a horizontal alignment film was applied to the surface of the COP film subjected to the corona treatment by using a bar coater, and dried at 80° C. for 1 minute, and then, a polarized UV irradiation device (SPOT CURE). (SP-9; manufactured by Ushio Inc.) was used to perform polarized UV exposure with a cumulative light amount at a wavelength of 313 nm: 100 mJ/cm 2 to obtain a horizontal alignment film.
Then, the above-mentioned polymerizable liquid crystal composition was applied onto the above alignment film by using a bar coater, heated at 120° C. for 90 seconds, and dried by applying hot air. Then, using a high-pressure mercury lamp, ultraviolet rays are irradiated from the coated surface side of the polymerizable liquid crystal composition (integrated light amount at a wavelength of 365 nm: 2000 mJ/cm 2 ) to form a horizontally aligned liquid crystal cured film, and then a COP film/horizontal film. An optical film composed of an alignment film/horizontal alignment liquid crystal cured film was formed. The maximum absorption wavelength of the obtained liquid crystal cured film was 350 nm.
(5)水平配向液晶硬化膜の物性/特性評価
[水平配向液晶硬化膜の面内位相差値測定]
 得られた水平配向液晶硬化膜の波長450nm、波長550nm、並びに波長650nmの光に対する面内位相差値を、王子計測機器株式会社製のKOBRA-WRを用いて測定した。面内位相差値は、Re(450)=118nm、Re(550)=142nm、Re(650)=148nmであり、Re(450)/Re(550)は0.84であった。
 得られた面内位相差値を表1に示す。本発明においては、水平液晶硬化膜の面内位相差値を初期光学特性の一指標として、以下のように評価する。
 Re(450)/Re(550)が0.85未満の場合:初期光学特性は高い
 Re(450)/Re(550)が0.85以上0.87未満の場合:初期光学特性は良好
 Re(450)/Re(550)が0.87以上の場合:初期光学特性は低い
(5) Evaluation of physical properties/characteristics of horizontally aligned liquid crystal cured film [measurement of in-plane retardation value of horizontally aligned liquid crystal cured film]
The in-plane retardation value of the obtained horizontally aligned liquid crystal cured film with respect to light having wavelengths of 450 nm, 550 nm and 650 nm was measured using KOBRA-WR manufactured by Oji Scientific Instruments. The in-plane retardation values were Re(450)=118 nm, Re(550)=142 nm, Re(650)=148 nm, and Re(450)/Re(550) was 0.84.
The obtained in-plane retardation values are shown in Table 1. In the present invention, the in-plane retardation value of the horizontal liquid crystal cured film is used as an index of initial optical characteristics and evaluated as follows.
When Re(450)/Re(550) is less than 0.85: Initial optical properties are high. When Re(450)/Re(550) is 0.85 or more and less than 0.87: Initial optical properties are good. When 450)/Re(550) is 0.87 or more: initial optical characteristics are low
[液晶硬化膜のヘイズ測定]
 得られた水平配向液晶硬化膜のヘイズ値を、ヘイズメーターを用いて測定した。結果を表1に示す。
[Haze measurement of liquid crystal cured film]
The haze value of the obtained horizontally aligned liquid crystal cured film was measured using a haze meter. The results are shown in Table 1.
[液晶硬化膜の配向性評価]
 得られた液晶硬化膜を、偏光顕微鏡(オリンパス株式会社製「BX-51」)を用いて倍率200倍の条件で観察し、視野480μm×320μmにおける配向欠陥の有無を観察した。結果を表1に示す。
 <評価基準>
 ○:配向欠陥がなかった。
 △:配向欠陥が部分的にみられた。
 ×:配向欠陥が液晶硬化膜全体に発生または多数発生した。
[Evaluation of orientation of cured liquid crystal film]
The obtained liquid crystal cured film was observed under a condition of a magnification of 200 using a polarizing microscope (“BX-51” manufactured by Olympus Corporation), and the presence or absence of alignment defects in a visual field of 480 μm×320 μm was observed. The results are shown in Table 1.
<Evaluation criteria>
◯: There was no alignment defect.
Δ: Alignment defects were partially observed.
X: Alignment defects were generated or many were generated in the entire liquid crystal cured film.
 [液晶硬化膜の重合率評価]
 得られた液晶硬化膜に対して赤外全反射吸収スペクトルの測定(入射角45°)を行い、得られた測定結果(エチレン性不飽和結合の面内変角振動(1408cm-1)由来のピーク強度I(1)と、芳香環の不飽和結合の伸縮振動(1504cm-1)由来のピーク強度I(2)の値)から、P’(液晶硬化膜の厚さ方向に対して垂直な面のうち、紫外線を照射した面におけるP値(ピーク強度I(1)/ピーク強度I(2)))を算出した。
 また、重合性液晶化合物(A-1)をクロロホルムに溶解して得た溶液を、ゲルマニウム結晶に滴下して乾燥することで、重合性液晶化合物(A-1)の薄層を得た。得られた薄層に対して赤外全反射吸収スペクトルの測定を行い、得られた測定結果(エチレン性不飽和結合の面内変角振動(1408cm-1)由来のピーク強度I(1)=0.0163、芳香環の不飽和結合の伸縮振動(1504cm-1)由来のピーク強度I(2)=0.0561)から、P0(重合性液晶化合物(A-1)のP値)を算出した。
 P’とP0の値から、(1-P’/P0)×100の値を算出し、液晶硬化膜の重合率とした。
 後述する評価基準に従い、液晶硬化膜の重合率を評価した。結果を表1に示す。
[Evaluation of polymerization rate of liquid crystal cured film]
Infrared total reflection absorption spectrum measurement (incident angle: 45°) was performed on the obtained liquid crystal cured film, and the obtained measurement result (in-plane bending vibration (1408 cm −1 ) of ethylenically unsaturated bond) was obtained. From the peak intensity I(1) and the value of the peak intensity I(2) derived from stretching vibration (1504 cm −1 ) of the unsaturated bond of the aromatic ring, P′ (perpendicular to the thickness direction of the liquid crystal cured film) Among the surfaces, the P value (peak intensity I(1)/peak intensity I(2)) of the surface irradiated with ultraviolet rays was calculated.
Further, a solution obtained by dissolving the polymerizable liquid crystal compound (A-1) in chloroform was dropped on the germanium crystal and dried to obtain a thin layer of the polymerizable liquid crystal compound (A-1). Infrared total reflection absorption spectrum of the obtained thin layer was measured, and the obtained measurement result (peak intensity I(1)=from in-plane bending vibration (1408 cm −1 ) of ethylenically unsaturated bond) was obtained. 0.013, peak intensity I(2)=0.0561 derived from stretching vibration (1504 cm −1 ) of unsaturated bond of aromatic ring was calculated, and P0 (P value of polymerizable liquid crystal compound (A-1)) was calculated. did.
The value of (1−P′/P0)×100 was calculated from the values of P′ and P0, which was taken as the polymerization rate of the liquid crystal cured film.
The polymerization rate of the liquid crystal cured film was evaluated according to the evaluation criteria described later. The results are shown in Table 1.
 [液晶硬化膜中の酸化防止剤含有量評価]
 液晶硬化膜中の酸化防止剤含有量を以下の通りで分析した。
 基材から単離した液晶硬化膜(50mg)に抽出溶媒として、テトラヒドロフラン5mLを添加し、超音波を20分間かけることにより、液晶硬化膜から酸化防止剤を抽出した。抽出液をフィルターで濾過した後、液体クロマトグラフィー測定(島津製作所製 Prominannceシリーズ、移動相:アセトニトリル、検出波長:254nm)により酸化防止剤含有量を定量した。また、得られた定量結果、及び分析に用いた液晶硬化膜の総質量から、液晶硬化膜中の重合性液晶化合物の重合体100質量部に対する酸化防止剤含有量を算出した。
 上記の方法にて測定した液晶硬化膜中の一次酸化防止剤(Sumirizer GS)含有量は800ppm(0.8×10-3質量部)、二次酸化防止剤(TTP)含有量は、4.7質量部であった。
[Evaluation of antioxidant content in cured liquid crystal film]
The antioxidant content in the liquid crystal cured film was analyzed as follows.
To the liquid crystal cured film (50 mg) isolated from the base material, 5 mL of tetrahydrofuran was added as an extraction solvent, and ultrasonic waves were applied for 20 minutes to extract the antioxidant from the liquid crystal cured film. After filtering the extract with a filter, the antioxidant content was quantified by liquid chromatography measurement (Prominance series manufactured by Shimadzu Corporation, mobile phase: acetonitrile, detection wavelength: 254 nm). Further, the content of the antioxidant with respect to 100 parts by mass of the polymer of the polymerizable liquid crystal compound in the liquid crystal cured film was calculated from the obtained quantitative result and the total mass of the liquid crystal cured film used for the analysis.
3. The content of primary antioxidant (Sumirizer GS) in the cured liquid crystal film measured by the above method is 800 ppm (0.8×10 −3 parts by mass), and the content of secondary antioxidant (TTP) is 4. It was 7 parts by mass.
2.比較例1
 表1に記載の通り、酸化防止剤を添加しなかったこと、紫外線照射時の積算光量を変更(波長365nmにおける積算光量:500mJ/cm)したこと以外は、実施例1と同じ操作を行い、重合性液晶化合物を含む比較重合性液晶組成物を調製し、比較水平配向液晶硬化膜1を得た。
 実施例1と同様の方法にて、比較重合性液晶組成物の保管安定性評価を行うとともに、得られた比較水平配向液晶硬化膜1の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定および顕微鏡観察を実施した。また、実施例1と同様の方法にて、比較水平配向液晶硬化膜1の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。
2. Comparative Example 1
As shown in Table 1, the same operation as in Example 1 was performed except that the antioxidant was not added and the cumulative light amount at the time of ultraviolet irradiation was changed (total light amount at wavelength 365 nm: 500 mJ/cm 2 ). A comparative polymerizable liquid crystal composition containing a polymerizable liquid crystal compound was prepared to obtain a comparative horizontally aligned liquid crystal cured film 1.
The storage stability of the comparative polymerizable liquid crystal composition was evaluated in the same manner as in Example 1, and the in-plane retardation value at the wavelength of 450 nm and the wavelength of 550 nm of the obtained comparative horizontally aligned liquid crystal cured film 1 was evaluated as Re. Calculation of (450)/Re(550) value, measurement of haze value and microscopic observation were carried out. Further, in the same manner as in Example 1, the infrared total reflection absorption spectrum of the comparative horizontally aligned liquid crystal cured film 1 was measured and the polymerization rate was calculated. The results are shown in Table 1.
 上記[液晶硬化膜の重合率評価]における各水平配向液晶硬化膜の比較水平配向液晶硬化膜1に対する相対重合率は、以下の通り算出した。
 水平配向液晶硬化膜の相対重合率(%)
 =(水平配向液晶硬化膜の重合率/比較水平配向液晶硬化膜の重合率)×100
 <評価基準>
 〇(非常に良い):比較水平配向液晶硬化膜1の重合率に対する、相対重合率が103%以上
 △(良い):比較水平配向液晶硬化膜1の重合率に対する、相対重合率が101%以上103%未満
 ×(悪い):比較水平配向液晶硬化膜1の重合率に対する、相対重合率が100%以下 
The relative polymerization rate of each horizontally aligned liquid crystal cured film in the above [evaluation of polymerization rate of liquid crystal cured film] to the comparative horizontally aligned liquid crystal cured film 1 was calculated as follows.
Relative polymerization rate (%) of horizontally aligned liquid crystal cured film
= (Polymerization rate of horizontally aligned liquid crystal cured film/Comparison of horizontally aligned liquid crystal cured film) x 100
<Evaluation criteria>
◯ (very good): 103% or more relative polymerization rate of the comparative horizontal alignment liquid crystal cured film 1 △ (good): 101% or more relative polymerization rate of comparative horizontal alignment liquid crystal cured film 1 Less than 103% x (bad): relative polymerization rate is 100% or less with respect to the polymerization rate of the comparative horizontally aligned liquid crystal cured film 1.
3.実施例2
 表1に記載の通り、重合性液晶化合物を重合性液晶化合物(B-1)に変更した以外は、実施例1と同じ操作を行い、重合性液晶化合物(B-1)を含む重合性液晶組成物を調製し、水平配向液晶硬化膜を得た。重合性液晶化合物(B-1)は、特開2016-81035号公報を参考にして調製した。
 尚、液晶化合物(B)の1mg/50mLテトラヒドロフラン溶液を調製し、光路長1cmの測定用セルに測定用試料として該溶液を入れ、紫外可視分光光度計(株式会社島津製作所製「UV-2450」)にセットして吸収スペクトルを測定した。得られた吸収スペクトルから極大吸収度となる波長を読み取ったところ、波長300~400nmの範囲における極大吸収波長λmaxは352nmであった。
3. Example 2
As shown in Table 1, the same operation as in Example 1 was performed except that the polymerizable liquid crystal compound was changed to the polymerizable liquid crystal compound (B-1), and the polymerizable liquid crystal containing the polymerizable liquid crystal compound (B-1) was used. A composition was prepared to obtain a horizontal alignment liquid crystal cured film. The polymerizable liquid crystal compound (B-1) was prepared with reference to JP-A-2016-81035.
In addition, a 1 mg/50 mL tetrahydrofuran solution of the liquid crystal compound (B) was prepared, and the solution was put into a measurement cell having an optical path length of 1 cm as a measurement sample, and the ultraviolet-visible spectrophotometer (“UV-2450” manufactured by Shimadzu Corporation). ) And the absorption spectrum was measured. When the wavelength at which the maximum absorption was obtained was read from the obtained absorption spectrum, the maximum absorption wavelength λ max in the wavelength range of 300 to 400 nm was 352 nm.
 重合性液晶化合物(B-1):
Figure JPOXMLDOC01-appb-C000005
Polymerizable liquid crystal compound (B-1):
Figure JPOXMLDOC01-appb-C000005
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。 In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
4.実施例3
 表1に記載の通り、重合性液晶化合物を重合性液晶化合物(C-1)に変更した以外は、実施例1と同じ操作を行い、重合性液晶化合物(C-1)を含む重合性液晶組成物を調製し、液晶硬化膜を得た。重合性液晶化合物Cは、国際特許公開2015/025793号公報を参考にして調製した。
 尚、液晶化合物(C-1)の1mg/50mLテトラヒドロフラン溶液を調製し、光路長1cmの測定用セルに測定用試料として該溶液を入れ、紫外可視分光光度計(株式会社島津製作所製「UV-2450」)にセットして吸収スペクトルを測定した。得られた吸収スペクトルから極大吸収度となる波長を読み取ったところ、波長300~400nmの範囲における極大吸収波長λmaxは352nmであった。
4. Example 3
As shown in Table 1, the same operation as in Example 1 was performed except that the polymerizable liquid crystal compound was changed to the polymerizable liquid crystal compound (C-1), and the polymerizable liquid crystal containing the polymerizable liquid crystal compound (C-1) was used. A composition was prepared to obtain a liquid crystal cured film. The polymerizable liquid crystal compound C was prepared with reference to International Patent Publication No. 2015/025793.
In addition, a 1 mg/50 mL tetrahydrofuran solution of the liquid crystal compound (C-1) was prepared, and the solution was put into a measuring cell having an optical path length of 1 cm as a measuring sample, and the ultraviolet-visible spectrophotometer (“UV- manufactured by Shimadzu Corporation” 2450") and the absorption spectrum was measured. When the wavelength at which the maximum absorption was obtained was read from the obtained absorption spectrum, the maximum absorption wavelength λ max in the wavelength range of 300 to 400 nm was 352 nm.
 重合性液晶化合物(C-1):
Figure JPOXMLDOC01-appb-C000006
Polymerizable liquid crystal compound (C-1):
Figure JPOXMLDOC01-appb-C000006
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。 In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
5.実施例4~7
 一次酸化防止剤を2,6-ビス(1,1-ジメチルエチル)-4-メチルフェノール(BHT)(フェノール系酸化防止剤、東京化成工業製)に変更し、表1に記載の添加量にて、一次酸化防止剤および二次酸化防止剤をそれぞれ添加したこと以外は、実施例1と同じ操作を行い、重合性液晶化合物(A-1)を含む重合性液晶組成物を調製し、水平配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。
5. Examples 4 to 7
The primary antioxidant was changed to 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT) (phenolic antioxidant, manufactured by Tokyo Chemical Industry Co., Ltd.) and the addition amount shown in Table 1 was used. Then, a polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) was prepared in the same manner as in Example 1 except that the primary antioxidant and the secondary antioxidant were added respectively. An oriented liquid crystal cured film was obtained.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
6.実施例8
 表1に記載の通り、一次酸化防止剤を2,6-ビス(1,1-ジメチルエチル)-4-メチルフェノール(BHT)(フェノール系酸化防止剤、東京化成工業製)に、二次酸化防止剤をChelex-O(リン系酸化防止剤、SC有機化学社製)に変更したこと以外は、実施例1と同じ操作を行い、重合性液晶化合物(A-1)を含む重合性液晶組成物を調製し、水平配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。
6. Example 8
As shown in Table 1, the secondary antioxidant was used as the primary antioxidant to 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT) (phenolic antioxidant, manufactured by Tokyo Kasei Kogyo). A polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) was performed in the same manner as in Example 1 except that the inhibitor was changed to Chelex-O (phosphorus antioxidant, manufactured by SC Organic Chemical Co., Ltd.). The product was prepared to obtain a horizontally aligned liquid crystal cured film.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
7.実施例9
 表1に記載の通り、一次酸化防止剤を2,6-ビス(1,1-ジメチルエチル)-4-メチルフェノール(BHT)(フェノール系酸化防止剤、東京化成工業製)に、二次酸化防止剤をDTDPA(イオウ系酸化防止剤、SC有機化学社製)に変更したこと以外は、実施例1と同じ操作を行い、重合性液晶化合物(A-1)を含む重合性液晶組成物を調製し、水平配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。
7. Example 9
As shown in Table 1, the secondary antioxidant was used as the primary antioxidant to 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT) (phenolic antioxidant, manufactured by Tokyo Kasei Kogyo). A polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) was prepared in the same manner as in Example 1, except that the antioxidant was changed to DTDPA (sulfur-based antioxidant, manufactured by SC Organic Chemical Co., Ltd.). A horizontal alignment liquid crystal cured film was prepared.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
8.比較例2および4
 表1に記載の通り、一次酸化防止剤を2,6-ビス(1,1-ジメチルエチル)-4-メチルフェノール(BHT)(フェノール系酸化防止剤、東京化成工業製)に変更し、表1に記載の添加量で配合し、二次酸化防止剤を含まなかったこと以外は、実施例1と同じ操作を行い、重合性液晶化合物(A-1)を含む重合性液晶組成物を調製し、水平配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。
8. Comparative Examples 2 and 4
As shown in Table 1, the primary antioxidant was changed to 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT) (phenolic antioxidant, manufactured by Tokyo Chemical Industry Co., Ltd.) A polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) was prepared in the same manner as in Example 1, except that the secondary antioxidant was not added. Then, a horizontally aligned liquid crystal cured film was obtained.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
9.比較例3
 表1に記載の通り、一次酸化防止剤を含まなかったこと以外は、実施例1と同じ操作を行い、重合性液晶化合物(A-1)を含む重合性液晶組成物を調製し、水平配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。
9. Comparative Example 3
As shown in Table 1, a polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) was prepared by performing the same operation as in Example 1 except that the primary antioxidant was not included, and the horizontal alignment was performed. A liquid crystal cured film was obtained.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
10.比較例5
 表1に記載の通り、重合性液晶化合物を重合性液晶化合物(B-1)とし、一次酸化防止剤および二次酸化防止剤を添加しなかったこと以外は、実施例1と同じ操作を行い、重合性液晶化合物(B-1)を含む重合性液晶組成物を調製し、水平配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。
10. Comparative Example 5
As shown in Table 1, the same operation as in Example 1 was performed except that the polymerizable liquid crystal compound was used as the polymerizable liquid crystal compound (B-1) and neither the primary antioxidant nor the secondary antioxidant was added. A polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (B-1) was prepared to obtain a horizontally aligned liquid crystal cured film.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
11.実施例10
 表1に記載の通り、重合性液晶化合物(A-1)を重合性液晶化合物(C-1)に、一次酸化防止剤をBHTに変更した以外は、実施例1と同じ操作を行い、重合性液晶化合物(C-1)を含む重合性液晶組成物を調製し、水平配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。
11. Example 10
As shown in Table 1, polymerization was carried out in the same manner as in Example 1 except that the polymerizable liquid crystal compound (A-1) was changed to the polymerizable liquid crystal compound (C-1) and the primary antioxidant was changed to BHT. A polymerizable liquid crystal composition containing the liquid crystal compound (C-1) was prepared to obtain a horizontally aligned liquid crystal cured film.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
12.比較例6
 表1に記載の通り、重合性液晶化合物を重合性液晶化合物(C-1)として、一次および二次酸化防止剤を添加しなかったこと以外は、実施例1と同じ操作を行い、重合性液晶化合物(C-1)を含む重合性液晶組成物を調製し、水平配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。
12. Comparative Example 6
As shown in Table 1, the polymerizable liquid crystal compound (C-1) was used as the polymerizable liquid crystal compound (C-1), and the same operation as in Example 1 was conducted except that the primary and secondary antioxidants were not added. A polymerizable liquid crystal composition containing the liquid crystal compound (C-1) was prepared to obtain a horizontally aligned liquid crystal cured film.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
13.比較例7
 表1に記載の通り、重合性液晶化合物を重合性液晶化合物(C-1)として、一次酸化防止剤を2,6-ビス(1,1-ジメチルエチル)-4-メチルフェノール(BHT)(フェノール系酸化防止剤、東京化成工業製)に変更し、二次酸化防止剤を添加しなかったこと以外は、実施例1と同じ操作を行い、重合性液晶化合物(C-1)を含む重合性液晶組成物を調製し、水平配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。
13. Comparative Example 7
As shown in Table 1, the polymerizable liquid crystal compound was used as the polymerizable liquid crystal compound (C-1), and the primary antioxidant was 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT)( Polymerization containing the polymerizable liquid crystal compound (C-1) was performed in the same manner as in Example 1 except that the phenolic antioxidant was manufactured by Tokyo Kasei Kogyo Co., Ltd. and the secondary antioxidant was not added. Liquid crystal composition was prepared to obtain a horizontally aligned liquid crystal cured film.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
14.実施例15
 光重合開始剤として、イルガキュアOXE-03とイルガキュア369に代えて、イルガキュアOXE-01(BASFジャパン株式会社製)6.0質量部を用いた以外は、実施例4と同じ操作を行い、重合性液晶化合物(A-1)を含む重合性液晶組成物を調製し、水平配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。
14. Example 15
Polymerization was performed in the same manner as in Example 4 except that 6.0 parts by mass of Irgacure OXE-01 (manufactured by BASF Japan Ltd.) was used as the photopolymerization initiator instead of Irgacure OXE-03 and Irgacure 369. A polymerizable liquid crystal composition containing the liquid crystal compound (A-1) was prepared to obtain a horizontally aligned liquid crystal cured film.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
15.実施例16
 光重合開始剤として、イルガキュアOXE-03とイルガキュア369に代えて、イルガキュアOXE-01(BASFジャパン株式会社製)6.0質量部を用いた以外は、実施例7と同じ操作を行い、重合性液晶化合物(A-1)を含む重合性液晶組成物を調製し、水平配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。
15. Example 16
Polymerization was performed in the same manner as in Example 7, except that 6.0 parts by mass of Irgacure OXE-01 (manufactured by BASF Japan Ltd.) was used as the photopolymerization initiator instead of Irgacure OXE-03 and Irgacure 369. A polymerizable liquid crystal composition containing the liquid crystal compound (A-1) was prepared to obtain a horizontally aligned liquid crystal cured film.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
16.実施例17
 光重合開始剤として、イルガキュアOXE-03とイルガキュア369に代えて、イルガキュアOXE-01(BASFジャパン株式会社製)6.0質量部を用いた以外は、実施例8と同じ操作を行い、重合性液晶化合物(A-1)を含む重合性液晶組成物を調製し、水平配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。
16. Example 17
Polymerization was performed in the same manner as in Example 8 except that 6.0 parts by mass of Irgacure OXE-01 (manufactured by BASF Japan Ltd.) was used as the photopolymerization initiator instead of Irgacure OXE-03 and Irgacure 369. A polymerizable liquid crystal composition containing the liquid crystal compound (A-1) was prepared to obtain a horizontally aligned liquid crystal cured film.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
17.実施例18
 光重合開始剤として、イルガキュアOXE-03とイルガキュア369に代えて、イルガキュアOXE-01(BASFジャパン株式会社製)6.0質量部を用いた以外は、実施例9と同じ操作を行い、重合性液晶化合物(A-1)を含む重合性液晶組成物を調製し、水平配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。
17. Example 18
Polymerization was performed in the same manner as in Example 9 except that 6.0 parts by mass of Irgacure OXE-01 (manufactured by BASF Japan Ltd.) was used as the photopolymerization initiator instead of Irgacure OXE-03 and Irgacure 369. A polymerizable liquid crystal composition containing the liquid crystal compound (A-1) was prepared to obtain a horizontally aligned liquid crystal cured film.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
18.実施例19
 光重合開始剤として、イルガキュアOXE-03とイルガキュア369に代えて、イルガキュアOXE-01(BASFジャパン株式会社製)6.0質量部を用いた以外は、実施例10と同じ操作を行い、重合性液晶化合物(C-1)を含む重合性液晶組成物を調製し、水平配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。
18. Example 19
Polymerization was performed in the same manner as in Example 10 except that 6.0 parts by mass of Irgacure OXE-01 (manufactured by BASF Japan Ltd.) was used as the photopolymerization initiator instead of Irgacure OXE-03 and Irgacure 369. A polymerizable liquid crystal composition containing the liquid crystal compound (C-1) was prepared to obtain a horizontally aligned liquid crystal cured film.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
19.比較例11
 光重合開始剤として、イルガキュアOXE-03とイルガキュア369に代えて、イルガキュアOXE-01(BASFジャパン株式会社製)6.0質量部を用いた以外は、比較例1と同じ操作を行い、重合性液晶化合物(A-1)を含む重合性液晶組成物を調製し、水平配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、得られた液晶硬化膜の波長450nm、波長550nmでの面内位相差値からRe(450)/Re(550)値の算出、ヘイズ値の測定、及び顕微鏡観察を実施した。また、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表1に示す。
19. Comparative Example 11
Polymerization was performed in the same manner as in Comparative Example 1 except that 6.0 parts by mass of Irgacure OXE-01 (manufactured by BASF Japan Ltd.) was used as the photopolymerization initiator instead of Irgacure OXE-03 and Irgacure 369. A polymerizable liquid crystal composition containing the liquid crystal compound (A-1) was prepared to obtain a horizontally aligned liquid crystal cured film.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and from the in-plane retardation value at a wavelength of 450 nm and a wavelength of 550 nm of the obtained liquid crystal cured film, Re(450)/Re was obtained. Calculation of (550) value, measurement of haze value, and microscopic observation were performed. Further, the infrared total reflection absorption spectrum of the cured liquid crystal film was measured to calculate the polymerization rate. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
20.実施例11
(1)垂直配向膜形成用組成物の調製
 配向性ポリマーであるサンエバーSE-610(日産化学工業株式会社製)0.5部に、溶媒としてN-メチル-2-ピロリドン72.3部、2-ブトキシエタノール18.1部、及びエチルシクロヘキサン9.1部、および0.01質量%のDPHA(新中村化学製)を混合して、垂直配向膜形成用組成物(1)を得た。
20. Example 11
(1) Preparation of Composition for Forming Vertical Alignment Film 0.5 part of SAN EVER SE-610 (manufactured by Nissan Chemical Industries, Ltd.), which is an oriented polymer, and 72.3 parts of N-methyl-2-pyrrolidone as a solvent, 2 -Butoxyethanol (18.1 parts), ethylcyclohexane (9.1 parts), and 0.01% by mass of DPHA (manufactured by Shin-Nakamura Chemical Co., Ltd.) were mixed to obtain a composition (1) for forming a vertical alignment film.
(2)重合性液晶組成物の調製
 重合性液晶化合物(A-1)100質量部に対して、レベリング剤としてF-556(DIC社製)0.1質量部と、光重合開始剤として、2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(イルガキュア369(Irg369);BASFジャパン株式会社製)6.0質量部と、一次酸化防止剤として、Sumirizer GS(フェノール系酸化防止剤、住友化学(株)製)1.0質量部と、二次酸化防止剤として、アデカスタブ TTP(リン系酸化防止剤、ADEKA社製)5.0質量部とを混合した。次いで、固形分濃度が13%となるようにN-メチル-2-ピロリドン(NMP)を添加し、80℃で1時間攪拌することにより、重合性液晶組成物を得た。
(2) Preparation of polymerizable liquid crystal composition 0.1 part by mass of F-556 (manufactured by DIC) as a leveling agent and 100 parts by mass of the polymerizable liquid crystal compound (A-1) as a photopolymerization initiator, 6.0 parts by mass of 2-dimethylamino-2-benzyl-1-(4-morpholinophenyl)butan-1-one (Irgacure 369 (Irg369); manufactured by BASF Japan Ltd.) and Sumirizer GS as a primary antioxidant (Phenolic antioxidant, manufactured by Sumitomo Chemical Co., Ltd.) 1.0 part by mass was mixed with 5.0 parts by mass of ADEKA STAB TTP (phosphorus antioxidant, manufactured by ADEKA) as a secondary antioxidant. .. Next, N-methyl-2-pyrrolidone (NMP) was added so that the solid content concentration became 13%, and the mixture was stirred at 80° C. for 1 hour to obtain a polymerizable liquid crystal composition.
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行った。 In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated.
(3)垂直配向液晶硬化膜の形成
 基材としてのシクロオレフィンポリマー(COP)フィルムを、コロナ処理装置を用いてコロナ処理した。次いで、コロナ処理を施したCOPフィルム(基材)の表面に、バーコーターを用いて上述した垂直配向膜形成用組成物(1)を塗布し、乾燥して、配向膜を形成した。
 続いて、上記配向膜上にバーコーターを用いて上述した塗工液を塗布し、120℃で60秒間乾燥した後、高圧水銀ランプを用いて、塗工液の塗布面側から紫外線を照射(波長365nmにおける積算光量:2000mJ/cm)することにより、液晶硬化膜を形成した。
(3) Formation of Vertically Aligned Liquid Crystal Cured Film A cycloolefin polymer (COP) film as a substrate was subjected to corona treatment using a corona treatment device. Next, the composition for vertical alignment film formation (1) described above was applied to the surface of the COP film (base material) that had been subjected to corona treatment using a bar coater, and dried to form an alignment film.
Subsequently, the above-mentioned coating liquid was applied onto the alignment film by using a bar coater, dried at 120° C. for 60 seconds, and then irradiated with ultraviolet rays from the coated surface side of the coating liquid using a high pressure mercury lamp ( A liquid crystal cured film was formed by adjusting the integrated light amount at a wavelength of 365 nm: 2000 mJ/cm 2 .
(4)垂直配向液晶硬化膜の物性/特性評価
 [垂直配向液晶硬化膜のRth測定]
 垂直配向液晶硬化膜のRthを測定するために、垂直配向液晶硬化膜を粘着剤(リンテック社製感圧式粘着剤 15μm)を介してガラスと貼合し、COPに位相差がないことを確認した上で、エリプソメータによりサンプルへの光の入射角を変えて位相差値を測定した。また、450nmおよび550nmの波長λにおける平均屈折率は屈折率計(株式会社アタゴ製、「多波長アッベ屈折計DR-M4」)を用いて測定した。得られた膜厚、平均屈折率およびエリプソメータの測定結果から算出されるRthCはそれぞれ、RthC(450)=-58nm、RthC(550)=-70nmであり、RthC(450)/RthC(550)=0.83であった。
(4) Evaluation of physical properties/characteristics of vertically aligned liquid crystal cured film [Rth measurement of vertically aligned liquid crystal cured film]
In order to measure the Rth of the vertically aligned liquid crystal cured film, the vertically aligned liquid crystal cured film was bonded to glass via an adhesive (pressure sensitive adhesive 15 μm manufactured by Lintec Co., Ltd.), and it was confirmed that there was no phase difference in COP. Above, the phase difference value was measured by changing the incident angle of light to the sample with an ellipsometer. The average refractive index at wavelengths λ of 450 nm and 550 nm was measured using a refractometer (manufactured by Atago Co., Ltd., “Multi-wavelength Abbe refractometer DR-M4”). RthC(450)=−58 nm, RthC(550)=−70 nm, and RthC(450)/RthC(550)=RthC calculated from the obtained film thickness, average refractive index, and ellipsometer measurement results, respectively. It was 0.83.
 [垂直配向液晶硬化膜の評価]
 実施例1と同様の方法にて、垂直配向液晶硬化膜のヘイズ値の測定、および顕微鏡観察を実施した。また、垂直配向液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表2に示す。なお、本発明においては、垂直配向液晶硬化膜の位相差値を初期光学特性の一指標として、以下のように評価する。
 <評価基準>
RthC(450)/RthC(550)が0.85未満の場合:初期光学特性は高い
RthC(450)/RthC(550)が0.85以上0.87未満の場合:初期光学特性は良好
RthC(450)/RthC(550)が0.87以上の場合:初期光学特性は低い
[Evaluation of vertical alignment liquid crystal cured film]
In the same manner as in Example 1, the haze value of the vertically aligned liquid crystal cured film was measured and observed with a microscope. Further, the infrared total reflection absorption spectrum of the vertically aligned liquid crystal cured film was measured to calculate the polymerization rate. The results are shown in Table 2. In the present invention, the retardation value of the vertically aligned liquid crystal cured film is used as an index of initial optical characteristics and evaluated as follows.
<Evaluation criteria>
When RthC(450)/RthC(550) is less than 0.85: Initial optical characteristics are high. When RthC(450)/RthC(550) is 0.85 or more and less than 0.87: Initial optical characteristics are good RthC( When 450)/RthC(550) is 0.87 or more: Initial optical characteristics are low.
21.比較例8
 表2に記載の通り、酸化防止剤を添加しなかったこと、紫外線照射時の積算光量を変更(波長365nmにおける積算光量:500mJ/cm)したこと以外は、実施例11と同じ操作を行い、重合性液晶化合物(A-1)を含む比較重合性液晶組成物を調製し、比較垂直配向液晶硬化膜1を得た。
 実施例1と同様の方法にて、比較重合性液晶組成物の保管安定性評価を行うとともに、実施例11と同様の方法にて、得られた比較垂直配向液晶硬化膜1のRthC(450)、RthC(550)、およびRthC(450)/RthC(550)値の算出、ヘイズ値の測定および顕微鏡観察を実施した。
21. Comparative Example 8
As shown in Table 2, the same operation as in Example 11 was carried out except that no antioxidant was added and the cumulative light amount at the time of ultraviolet irradiation was changed (total light amount at wavelength 365 nm: 500 mJ/cm 2 ). A comparative polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) was prepared to obtain a comparative vertically aligned liquid crystal cured film 1.
The storage stability of the comparative polymerizable liquid crystal composition was evaluated by the same method as in Example 1, and the RthC(450) of the comparative vertically aligned liquid crystal cured film 1 obtained was obtained by the same method as in Example 11. , RthC(550), and RthC(450)/RthC(550) values were calculated, haze values were measured, and microscopic observation was performed.
 実施例1と同様の方法にて、比較垂直配向液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。さらに、各垂直配向液晶硬化膜の比較垂直配向液晶硬化膜1に対する相対重合率を、以下の基準で判断した。
 垂直配向液晶硬化膜の相対重合率(%)
 =(垂直配向液晶硬化膜の重合率/比較垂直配向液晶硬化膜1の重合率)×100
 <評価基準>
〇(非常に良い):比較垂直配向液晶硬化膜1の重合率に対する、相対重合率が103%以上
△(良い):比較垂直配向液晶硬化膜1の重合率に対する、相対重合率が101%以上103%未満
×(悪い):比較垂直配向液晶硬化膜1の重合率に対する、相対重合率が100%以下
By the same method as in Example 1, the infrared total reflection absorption spectrum of the comparative vertically aligned liquid crystal cured film was measured and the polymerization rate was calculated. Further, the relative polymerization rate of each vertically aligned liquid crystal cured film with respect to the comparative vertically aligned liquid crystal cured film 1 was determined according to the following criteria.
Relative polymerization rate (%) of vertically aligned liquid crystal cured film
= (Polymerization rate of vertically aligned liquid crystal cured film/Comparison of vertically aligned liquid crystal cured film 1) x 100
<Evaluation criteria>
◯ (very good): 103% or more relative polymerization rate of the comparative vertical alignment liquid crystal cured film 1 Δ (good): 101% or more relative polymerization rate of the comparative vertical alignment liquid crystal cured film 1 Less than 103% × (bad): relative polymerization rate to the polymerization rate of the comparative vertically aligned liquid crystal cured film 1 is 100% or less.
22.実施例12
 表2に記載の通り、一次酸化防止剤を2,6-ビス(1,1-ジメチルエチル)-4-メチルフェノール(BHT)(フェノール系酸化防止剤、東京化成工業製)に変更した以外は、実施例11と同じ操作を行い、重合性液晶化合物(A-1)を含む重合性液晶組成物を調製し、垂直配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、実施例11と同様の方法にて、得られた垂直配向液晶硬化膜のRthC(450)/RthC(550)値の算出、ヘイズ値の測定、および顕微鏡観察を実施した。また、実施例1と同様に、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表2に示す。
22. Example 12
As shown in Table 2, except that the primary antioxidant was changed to 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT) (phenolic antioxidant, manufactured by Tokyo Kasei Kogyo). Then, the same operation as in Example 11 was performed to prepare a polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) to obtain a vertically aligned liquid crystal cured film.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and in the same manner as in Example 11, the RthC(450)/RthC( of the obtained vertically aligned liquid crystal cured film was obtained. 550) value calculation, haze value measurement, and microscopic observation. Further, in the same manner as in Example 1, the infrared total reflection absorption spectrum of the liquid crystal cured film was measured and the polymerization rate was calculated. The results are shown in Table 2.
23.実施例13
 表2に記載の通り、一次酸化防止剤を2,6-ビス(1,1-ジメチルエチル)-4-メチルフェノール(BHT)(フェノール系酸化防止剤、東京化成工業製)に、二次酸化防止剤をChelex-O(リン系酸化防止剤、SC有機化学社製)に変更した以外は、実施例11と同じ操作を行い、重合性液晶化合物(A-1)を含む重合性液晶組成物を調製し、垂直配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、実施例11と同様の方法にて、得られた垂直配向液晶硬化膜のRthC(450)/RthC(550)値の算出、ヘイズ値の測定、および顕微鏡観察を実施した。また、実施例1と同様に、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表2に示す。
23. Example 13
As shown in Table 2, the secondary antioxidant was used as the primary antioxidant with 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT) (phenolic antioxidant, manufactured by Tokyo Kasei Kogyo). A polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) was performed in the same manner as in Example 11 except that the inhibitor was changed to Chelex-O (phosphorus antioxidant, manufactured by SC Organic Chemical Co., Ltd.). Was prepared to obtain a vertically aligned liquid crystal cured film.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and in the same manner as in Example 11, the RthC(450)/RthC( of the obtained vertically aligned liquid crystal cured film was obtained. 550) value calculation, haze value measurement, and microscopic observation. Further, in the same manner as in Example 1, the infrared total reflection absorption spectrum of the liquid crystal cured film was measured and the polymerization rate was calculated. The results are shown in Table 2.
24.比較例9
 表2に記載の通り、一次酸化防止剤を2,6-ビス(1,1-ジメチルエチル)-4-メチルフェノール(BHT)(フェノール系酸化防止剤、東京化成工業製)に変更し、二次酸化防止剤を添加しなかったこと以外は、実施例11と同じ操作を行い、重合性液晶化合物(A-1)を含む重合性液晶組成物を調製し、垂直配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、実施例11と同様の方法にて、得られた垂直配向液晶硬化膜のRthC(450)/RthC(550)値の算出、ヘイズ値の測定、および顕微鏡観察を実施した。また、実施例1と同様に、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表2に示す。
24. Comparative Example 9
As shown in Table 2, the primary antioxidant was changed to 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT) (phenolic antioxidant, manufactured by Tokyo Chemical Industry Co., Ltd.). The same operation as in Example 11 was carried out except that the following antioxidant was not added, to prepare a polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (A-1) to obtain a vertically aligned liquid crystal cured film. ..
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and in the same manner as in Example 11, the RthC(450)/RthC( of the obtained vertically aligned liquid crystal cured film was obtained. 550) value calculation, haze value measurement, and microscopic observation. Further, in the same manner as in Example 1, the infrared total reflection absorption spectrum of the liquid crystal cured film was measured and the polymerization rate was calculated. The results are shown in Table 2.
25.実施例14
 表2に記載の通り、重合性液晶化合物を重合性液晶化合物(C-1)に、一次酸化防止剤を2,6-ビス(1,1-ジメチルエチル)-4-メチルフェノール(BHT)(フェノール系酸化防止剤、東京化成工業製)に変更した以外は、実施例11と同じ操作を行い、重合性液晶化合物(C-1)を含む重合性液晶組成物を調製し、垂直配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、実施例11と同様の方法にて、得られた垂直配向液晶硬化膜のRthC(450)/RthC(550)値の算出、ヘイズ値の測定、および顕微鏡観察を実施した。また、実施例1と同様に、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表2に示す。
25. Example 14
As shown in Table 2, the polymerizable liquid crystal compound was used as the polymerizable liquid crystal compound (C-1), and the primary antioxidant was used as 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT)( A phenolic antioxidant, manufactured by Tokyo Kasei Kogyo Co., Ltd.) was used, and the same operation as in Example 11 was carried out to prepare a polymerizable liquid crystal composition containing the polymerizable liquid crystal compound (C-1). A film was obtained.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and in the same manner as in Example 11, the RthC(450)/RthC( of the obtained vertically aligned liquid crystal cured film was obtained. 550) value calculation, haze value measurement, and microscopic observation. Further, in the same manner as in Example 1, the infrared total reflection absorption spectrum of the liquid crystal cured film was measured and the polymerization rate was calculated. The results are shown in Table 2.
26.比較例10
 表2に記載の通り、重合性液晶化合物を重合性液晶化合物(C-1)に、一次酸化防止剤を2,6-ビス(1,1-ジメチルエチル)-4-メチルフェノール(BHT)(フェノール系酸化防止剤、東京化成工業製)に変更し、二次酸化防止剤を添加しなかったこと以外は、実施例11と同じ操作を行い、重合性液晶化合物(C-1)を含む重合性液晶組成物を調製し、垂直配向液晶硬化膜を得た。
 実施例1と同様の方法にて、重合性液晶組成物の保管安定性評価を行うとともに、実施例11と同様の方法にて、得られた垂直配向液晶硬化膜のRthC(450)/RthC(550)値の算出、ヘイズ値の測定、および顕微鏡観察を実施した。また、実施例1と同様に、液晶硬化膜の赤外全反射吸収スペクトルを測定し、重合率を算出した。結果を表2に示す。
26. Comparative Example 10
As shown in Table 2, the polymerizable liquid crystal compound was used as the polymerizable liquid crystal compound (C-1), and the primary antioxidant was used as 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT)( Polymerization containing the polymerizable liquid crystal compound (C-1) was performed in the same manner as in Example 11 except that the phenolic antioxidant was manufactured by Tokyo Kasei Kogyo Co., Ltd. and the secondary antioxidant was not added. Liquid crystalline composition was prepared to obtain a vertically aligned liquid crystal cured film.
In the same manner as in Example 1, the storage stability of the polymerizable liquid crystal composition was evaluated, and in the same manner as in Example 11, the RthC(450)/RthC( of the obtained vertically aligned liquid crystal cured film was obtained. 550) value calculation, haze value measurement, and microscopic observation. Further, in the same manner as in Example 1, the infrared total reflection absorption spectrum of the liquid crystal cured film was measured and the polymerization rate was calculated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

Claims (17)

  1.  重合性液晶化合物、少なくとも1種の一次酸化防止剤、少なくとも1種の二次酸化防止剤および光ラジカル重合開始剤を含む重合性液晶組成物であって、前記重合性液晶化合物がエステル構造と(メタ)アクリロイル基とを有し、かつ、波長300~400nmに極大吸収を示す、重合性液晶組成物。 A polymerizable liquid crystal composition comprising a polymerizable liquid crystal compound, at least one primary antioxidant, at least one secondary antioxidant and a photoradical polymerization initiator, wherein the polymerizable liquid crystal compound has an ester structure ( A polymerizable liquid crystal composition having a (meth)acryloyl group and exhibiting maximum absorption at a wavelength of 300 to 400 nm.
  2.  一次酸化防止剤の含有量が、重合性液晶化合物100質量部に対して0.1~5質量部である、請求項1に記載の重合性液晶組成物。 The polymerizable liquid crystal composition according to claim 1, wherein the content of the primary antioxidant is 0.1 to 5 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound.
  3.  一次酸化防止剤がフェノール化合物である、請求項1または2に記載の重合性液晶組成物。 The polymerizable liquid crystal composition according to claim 1 or 2, wherein the primary antioxidant is a phenol compound.
  4.  一次酸化防止剤の分子量が400g/mol以下である、請求項1~3のいずれかに記載の重合性液晶組成物。 The polymerizable liquid crystal composition according to any one of claims 1 to 3, wherein the molecular weight of the primary antioxidant is 400 g/mol or less.
  5.  二次酸化防止剤の含有量が、重合性液晶化合物100質量部に対して0.1~15質量部である、請求項1~4のいずれかに記載の重合性液晶組成物。 The polymerizable liquid crystal composition according to any one of claims 1 to 4, wherein the content of the secondary antioxidant is 0.1 to 15 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound.
  6.  二次酸化防止剤が亜リン酸エステル化合物である、請求項1~5のいずれかに記載の重合性液晶組成物。 The polymerizable liquid crystal composition according to any one of claims 1 to 5, wherein the secondary antioxidant is a phosphite compound.
  7.  二次酸化防止剤の分子量が200g/mol以上である、請求項1~6のいずれかに記載の重合性液晶組成物。 The polymerizable liquid crystal composition according to any one of claims 1 to 6, wherein the secondary antioxidant has a molecular weight of 200 g/mol or more.
  8.  光ラジカル重合開始剤がオキシム系光重合開始剤である、請求項1~7のいずれかに記載の重合性液晶組成物。 The polymerizable liquid crystal composition according to any one of claims 1 to 7, wherein the photoradical polymerization initiator is an oxime photopolymerization initiator.
  9.  単独重合体の複屈折率が逆波長分散性を示す重合性液晶化合物を含む、請求項1~8のいずれかに記載の重合性液晶組成物。 The polymerizable liquid crystal composition according to any one of claims 1 to 8, which contains a polymerizable liquid crystal compound having a birefringence of a homopolymer exhibiting reverse wavelength dispersion.
  10.  請求項1~9のいずれかに記載の重合性液晶組成物の硬化物であり、該重合性液晶組成物中の重合性液晶化合物が配向した状態で硬化した液晶硬化膜を含む位相差板。 A cured product of the polymerizable liquid crystal composition according to any one of claims 1 to 9, and a retardation plate including a liquid crystal cured film that is cured in a state in which the polymerizable liquid crystal compound in the polymerizable liquid crystal composition is aligned.
  11.  液晶硬化膜中の一次酸化防止剤の含有量が、重合性液晶化合物の重合体100質量部に対して0.001質量部以下である、請求項10に記載の位相差板。 The retardation plate according to claim 10, wherein the content of the primary antioxidant in the cured liquid crystal film is 0.001 part by mass or less based on 100 parts by mass of the polymer of the polymerizable liquid crystal compound.
  12.  液晶硬化膜中の二次酸化防止剤の含有量が、重合性液晶化合物の重合体100質量部に対して0.05~15質量部である、請求項10または11に記載の位相差板。 The retardation plate according to claim 10 or 11, wherein the content of the secondary antioxidant in the liquid crystal cured film is 0.05 to 15 parts by mass with respect to 100 parts by mass of the polymer of the polymerizable liquid crystal compound.
  13.  液晶硬化膜が下記式(I)、(II)および(III):
     Re(450)/Re(550)≦1.00  (I)
     1.00≦Re(650)/Re(550)  (II)
     100nm≦Re(550)≦180nm    (III)
    〔式中、Re(λ)は液晶硬化膜の波長λnmにおける面内位相差値を表し、Re=(nx(λ)-ny(λ))×dである(dは液晶硬化膜の厚みを表し、nxは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に平行な方向の波長λnmにおける主屈折率を表し、nyは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に対して平行であり、且つ、前記nxの方向に対して直交する方向の波長λnmにおける屈折率を表す)〕
    で表される光学特性を有する、請求項10~12のいずれかに記載の位相差板。
    The liquid crystal cured film has the following formulas (I), (II) and (III):
    Re(450)/Re(550)≦1.00 (I)
    1.00≦Re(650)/Re(550) (II)
    100 nm≦Re(550)≦180 nm (III)
    [Wherein Re(λ) represents an in-plane retardation value at a wavelength λnm of the liquid crystal cured film, and Re=(nx(λ)−ny(λ))×d (d is the thickness of the liquid crystal cured film). In the refractive index ellipsoid formed by the liquid crystal cured film, nx represents the main refractive index at a wavelength λ nm in the direction parallel to the plane of the liquid crystal cured film, and ny represents the refractive index ellipsoid formed by the liquid crystal cured film. , Represents the refractive index at a wavelength λ nm in the direction parallel to the plane of the liquid crystal cured film and orthogonal to the nx direction)).
    The retardation plate according to any one of claims 10 to 12, which has optical characteristics represented by:
  14.  液晶硬化膜が下記式(IV)、(V)および(VI): 
     Rth(450)/Rth(550)≦1.00  (IV)
     1.00≦Rth(650)/Rth(550)  (V)
     -100nm≦Rth(550)≦-40nm    (VI)
    〔式中、Rth(λ)は液晶硬化膜の波長λnmにおける厚み方向の位相差値を表し、Rth=((nx(λ)+ny(λ))/2―nz)×dである(dは液晶硬化膜の厚みを表し、nxは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に平行な方向の波長λnmにおける主屈折率を表し、nyは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に対して平行であり、且つ、前記nxの方向に対して直交する方向の波長λnmにおける屈折率を表し、nzは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に対して垂直な方向の波長λnmにおける屈折率を表す)〕で表される光学特性を有する、請求項10~12のいずれかに記載の位相差板。
    The liquid crystal cured film has the following formulas (IV), (V) and (VI):
    Rth(450)/Rth(550)≦1.00 (IV)
    1.00≦Rth(650)/Rth(550) (V)
    -100 nm ≤ Rth(550) ≤ -40 nm (VI)
    [In the formula, Rth(λ) represents a retardation value in the thickness direction of the liquid crystal cured film at a wavelength of λ nm, and Rth=((nx(λ)+ny(λ))/2−nz)×d (d is Nx represents the thickness of the liquid crystal cured film, nx represents the main refractive index at a wavelength λnm in the direction parallel to the plane of the liquid crystal cured film in the refractive index ellipsoid formed by the liquid crystal cured film, and ny represents the liquid crystal cured film formed. In the refractive index ellipsoid, the refractive index at a wavelength λ nm in the direction parallel to the plane of the liquid crystal cured film and orthogonal to the direction of nx is represented, and nz is the refraction formed by the liquid crystal cured film. The retardation plate according to any one of claims 10 to 12, having an optical characteristic represented by a refractive index at a wavelength λnm in a direction perpendicular to the plane of the liquid crystal cured film in the index ellipsoid).
  15.  請求項10~14のいずれかに記載の位相差板の製造方法であって、
     重合性液晶組成物の塗膜を形成し、該塗膜を乾燥して一次酸化防止剤を除去し、かつ該重合性液晶組成物中の重合性液晶化合物を配向させる工程と、
     配向状態を保持したまま光照射により重合性液晶化合物を重合させ、液晶硬化膜を形成する工程
    を含む、製造方法。
    The method for manufacturing a retardation plate according to any one of claims 10 to 14,
    Forming a coating film of the polymerizable liquid crystal composition, drying the coating film to remove the primary antioxidant, and aligning the polymerizable liquid crystal compound in the polymerizable liquid crystal composition,
    A method for manufacturing, comprising a step of polymerizing a polymerizable liquid crystal compound by light irradiation while maintaining an alignment state to form a liquid crystal cured film.
  16.  請求項10~14のいずれかに記載の位相差板と偏光フィルムとを含む楕円偏光板。 An elliptically polarizing plate including the retardation plate according to any one of claims 10 to 14 and a polarizing film.
  17.  請求項16に記載の楕円偏光板を含む有機EL表示装置。 An organic EL display device including the elliptically polarizing plate according to claim 16.
PCT/JP2020/000431 2019-01-17 2020-01-09 Polymerizable liquid crystal composition, retardation plate, elliptically polarizing plate and organic el display device WO2020149205A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080009315.6A CN113330040A (en) 2019-01-17 2020-01-09 Polymerizable liquid crystal composition, retardation plate, elliptically polarizing plate, and organic EL display device
KR1020217025374A KR20210116520A (en) 2019-01-17 2020-01-09 Polymerizable liquid crystal composition, retardation plate, elliptically polarizing plate and organic EL display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-005923 2019-01-17
JP2019005923 2019-01-17
JP2019-165203 2019-09-11
JP2019165203A JP7384600B2 (en) 2019-01-17 2019-09-11 Polymerizable liquid crystal composition, retardation plate, elliptically polarizing plate, and organic EL display device

Publications (1)

Publication Number Publication Date
WO2020149205A1 true WO2020149205A1 (en) 2020-07-23

Family

ID=71613860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000431 WO2020149205A1 (en) 2019-01-17 2020-01-09 Polymerizable liquid crystal composition, retardation plate, elliptically polarizing plate and organic el display device

Country Status (1)

Country Link
WO (1) WO2020149205A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055569B2 (en) * 1980-05-10 1985-12-05 川崎製鉄株式会社 Heating temperature control method for seamless steel pipes
JP2015083671A (en) * 2013-09-18 2015-04-30 住友化学株式会社 Colored curable resin composition
JP2017062458A (en) * 2015-06-10 2017-03-30 富士フイルム株式会社 Wavelength conversion member, backlight unit, liquid crystal display device, and polymerizable composition containing quantum dot
WO2018043218A1 (en) * 2016-08-30 2018-03-08 富士フイルム株式会社 Photosensitive composition, cured film, optical filter, laminated body, pattern formation method, solid-state imaging element, image display device, and infrared sensor
JP6292355B2 (en) * 2015-09-30 2018-03-14 Dic株式会社 Polymerizable composition and optical anisotropic body using the same
WO2019009255A1 (en) * 2017-07-03 2019-01-10 富士フイルム株式会社 Liquid crystal film, optical laminate, circularly polarizing plate, and organic electroluminescent display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055569B2 (en) * 1980-05-10 1985-12-05 川崎製鉄株式会社 Heating temperature control method for seamless steel pipes
JP2015083671A (en) * 2013-09-18 2015-04-30 住友化学株式会社 Colored curable resin composition
JP2017062458A (en) * 2015-06-10 2017-03-30 富士フイルム株式会社 Wavelength conversion member, backlight unit, liquid crystal display device, and polymerizable composition containing quantum dot
JP6292355B2 (en) * 2015-09-30 2018-03-14 Dic株式会社 Polymerizable composition and optical anisotropic body using the same
WO2018043218A1 (en) * 2016-08-30 2018-03-08 富士フイルム株式会社 Photosensitive composition, cured film, optical filter, laminated body, pattern formation method, solid-state imaging element, image display device, and infrared sensor
WO2019009255A1 (en) * 2017-07-03 2019-01-10 富士フイルム株式会社 Liquid crystal film, optical laminate, circularly polarizing plate, and organic electroluminescent display device

Similar Documents

Publication Publication Date Title
JP7356480B2 (en) Optical film and its manufacturing method
JP7166049B2 (en) Elliptical polarizer
WO2021014949A1 (en) Polymerizable liquid crystal mixed composition, retardation plate, elliptically polarizing plate and organic el display device
JP2019035953A (en) Phase difference plate with optical compensation function
JP6700468B1 (en) Polymerizable liquid crystal mixture, polymerizable liquid crystal composition
JP7461122B2 (en) Laminate and elliptically polarizing plate including same
WO2020196080A1 (en) Polymerizable liquid crystal composition, liquid crystal cured film, elliptically polarizing plate, and organic el display device
WO2020149357A1 (en) Layered body, elliptical polarization plate and polymerizable liquid crystal composition
TWI808131B (en) Polymerizable liquid crystal composition, liquid crystal cured film, retardation film, elliptically polarizing plate, and display device
CN111954836B (en) Optical anisotropic film
JP7384600B2 (en) Polymerizable liquid crystal composition, retardation plate, elliptically polarizing plate, and organic EL display device
WO2020149205A1 (en) Polymerizable liquid crystal composition, retardation plate, elliptically polarizing plate and organic el display device
WO2019159889A1 (en) Layered body and method for manufacturing same
JP6675049B1 (en) Polymerizable liquid crystal composition
JP7087033B2 (en) Optically anisotropic film
CN112513697B (en) Horizontally oriented liquid crystal cured film and laminate comprising same
JP2021175785A (en) Polymerizable liquid crystal composition, liquid crystal cured film, elliptical polarization plate and organic el display device
KR20220157979A (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, retardation film, elliptically polarizing plate and organic EL display device
JP2022017912A (en) Polymerizable liquid crystal composition, liquid crystal cured film, and method of manufacturing the same
JP2022065984A (en) Polymerizable compound and elliptically polarizing plate with cured product layer thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20740790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217025374

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20740790

Country of ref document: EP

Kind code of ref document: A1