JP6784182B2 - Steel plate temperature control method and steel sheet temperature control device - Google Patents

Steel plate temperature control method and steel sheet temperature control device Download PDF

Info

Publication number
JP6784182B2
JP6784182B2 JP2017015155A JP2017015155A JP6784182B2 JP 6784182 B2 JP6784182 B2 JP 6784182B2 JP 2017015155 A JP2017015155 A JP 2017015155A JP 2017015155 A JP2017015155 A JP 2017015155A JP 6784182 B2 JP6784182 B2 JP 6784182B2
Authority
JP
Japan
Prior art keywords
heating
temperature
plate
furnace
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017015155A
Other languages
Japanese (ja)
Other versions
JP2018123364A (en
Inventor
知義 小笠原
知義 小笠原
剛毅 山田
剛毅 山田
隆浩 ▲高▼津
隆浩 ▲高▼津
西田 哲郎
哲郎 西田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2017015155A priority Critical patent/JP6784182B2/en
Publication of JP2018123364A publication Critical patent/JP2018123364A/en
Application granted granted Critical
Publication of JP6784182B2 publication Critical patent/JP6784182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼板の温度制御方法、及び、鋼板の温度制御装置に関する。 The present invention relates to a steel sheet temperature control method and a steel sheet temperature control device.
一般に、鋼板の連続焼鈍設備は、加熱炉、均熱炉、及び冷却炉等によって構成され、設備の入側では、板厚や板幅といったサイズや規格、焼鈍条件が異なる先行材の尾端部と後行材の先端部とを溶接して一つの鋼板として連続的に処理が行われる。ここで、加熱炉では溶接部の前後で各加熱ゾーンの炉温設定値を切り替えることにより、それぞれの焼鈍条件に適するように加熱処理することが目標である。そして最終的に、設備の出側では、鋼板はコイル単位で切断されて出荷されるか、次工程に搬送される。 Generally, a continuous annealing facility for steel sheets is composed of a heating furnace, a soaking furnace, a cooling furnace, etc., and on the entrance side of the facility, the tail end of the preceding material having different sizes, specifications, and annealing conditions such as plate thickness and plate width. And the tip of the trailing material are welded together to form a single steel sheet that is continuously processed. Here, in the heating furnace, the goal is to perform heat treatment so as to be suitable for each annealing condition by switching the furnace temperature set value of each heating zone before and after the welded portion. Finally, on the exit side of the equipment, the steel sheet is cut in coil units and shipped, or is transported to the next process.
加熱炉では、ラジアントチューブを用いた輻射加熱によって鋼板を昇温させることが一般的であるが、溶接部を境にして鋼板のサイズ等が異なる状況では、その前後で加熱条件が同じになるため鋼板の温度に変動が生じる。 In a heating furnace, it is common to raise the temperature of the steel sheet by radiant heating using a radiant tube, but if the size of the steel sheet differs at the welded part, the heating conditions will be the same before and after that. The temperature of the steel sheet fluctuates.
特許文献1には、加熱炉の入側に誘導加熱装置を配置し、加熱条件を変更したときに予測した加熱炉出側板温と、ライン速度(通板速度)と、操業条件により導出する入口投入熱量残存率とによって、誘導加熱装置で加熱に必要となる鋼板温度変更量を算出し、その算出結果に基づいて、誘導加熱装置の出力を変更することにより、加熱炉出側板温の変動を低減させる鋼板の温度制御方法が開示されている。 In Patent Document 1, an induction heating device is arranged on the inlet side of the heating furnace, and the heating furnace exit side plate temperature predicted when the heating conditions are changed, the line speed (plate passing speed), and the inlet derived according to the operating conditions. The amount of change in the temperature of the steel plate required for heating by the induction heating device is calculated based on the residual rate of heat input, and the output of the induction heating device is changed based on the calculation result to change the temperature of the plate on the exit side of the heating furnace. A method for controlling the temperature of a steel plate to be reduced is disclosed.
特開2005−298941号公報Japanese Unexamined Patent Publication No. 2005-298941
加熱条件の変更による板厚変化やガス流量変化やライン速度変化に対する、板温変化を特徴づけるパラメータである無駄時間は、ライン速度(通板速度)に依存する。この無駄時間は、板厚変化やガス流量変化やライン速度変化などの影響が板温に現れるまでの時間であるから、この間に誘導加熱装置によって加熱炉の入側における鋼板の温度を変化させても、加熱炉の出側における鋼板の温度には影響がない。 The wasted time, which is a parameter that characterizes the plate temperature change with respect to the plate thickness change, gas flow rate change, and line speed change due to the change in heating conditions, depends on the line speed (plate passing speed). This wasted time is the time until the effects of changes in plate thickness, gas flow rate, line speed, etc. appear on the plate temperature. During this time, the temperature of the steel plate on the inlet side of the heating furnace is changed by an induction heating device. However, there is no effect on the temperature of the steel sheet on the outlet side of the heating furnace.
しかしながら、特許文献1に開示された鋼板の温度制御方法においては、鋼板温度変更量の算出の際に用いるライン速度として、ライン速度変更完了後の定常速度を用いているため、無駄時間が経過した後のライン速度変更中における加熱炉出側板温に大きな変動が生じてしまう。 However, in the steel sheet temperature control method disclosed in Patent Document 1, since the steady speed after the line speed change is completed is used as the line speed used when calculating the steel plate temperature change amount, wasted time has elapsed. The plate temperature on the exit side of the heating furnace will fluctuate greatly during the subsequent line speed change.
本発明は、上記課題に鑑みてなされたものであって、その目的は、ライン速度変更中における加熱炉出側板温の変動を低減させることができる鋼板の温度制御方法、及び、鋼板の温度制御装置を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is a method for controlling the temperature of a steel sheet capable of reducing fluctuations in the temperature of the plate on the exit side of the heating furnace while changing the line speed, and controlling the temperature of the steel sheet. To provide the device.
上述した課題を解決し、目的を達成するために、本発明に係る鋼板の温度制御方法は、入側に誘導加熱装置が配置され、鋼板の通板方向に沿って配置された複数の加熱ゾーンを有する加熱炉の出側における鋼板の温度を測定する板温測定工程と、各加熱ゾーンの炉温を測定する炉温測定工程と、ライン速度変更指令に基づいてライン速度を変更するライン速度変更工程と、前記ライン速度の変更開始から変更終了にかけて、前記加熱炉装入される鋼板に前記通板方向で所定間隔をあけて設定された複数の位置に対して、各加熱ゾーンの通過時間を予測する通過時間予測工程と、前記通過時間予測工程によって予測された前記複数の位置に対する通過時間予測結果と、前記炉温測定工程によって測定された現時刻の炉温測定値とを用いて、前記加熱炉の出側における鋼板の変化が生じないような前記誘導加熱装置の出側における鋼板の温度を、前記加熱炉内における鋼板の温度を計算可能な板温計算モデル式を用いて算出する誘導加熱出側板温計算工程と、前記誘導加熱出側板温計算工程によって算出された前記誘導加熱装置の出側における鋼板の温度となるように、前記誘導加熱装置の出力を変更する誘導加熱出力変更工程と、を有し、前記通過時間予測工程では、各加熱ゾーンの通過時間を予測する際に用いる各加熱ゾーンの入側速度と最終加熱ゾーンの出側速度とを求め各加熱ゾーンの入側速度は加減速中における場合と加減速完了後における場合とに分けて求めることを特徴とするものである。 In order to solve the above-mentioned problems and achieve the object, the method for controlling the temperature of a steel plate according to the present invention has a plurality of heating zones in which an induction heating device is arranged on the entrance side and arranged along the plate passing direction of the steel plate. A plate temperature measurement process that measures the temperature of the steel plate on the outlet side of the heating furnace, a furnace temperature measurement process that measures the furnace temperature of each heating zone, and a line speed change that changes the line speed based on the line speed change command. process and the toward change end from the line speed of the change start, for a plurality of positions set at predetermined intervals in the through plate direction of the steel sheet being dumped in the heating furnace, traveling time for each of the heating zones Using the passage time prediction step for predicting the passage time, the passage time prediction result for the plurality of positions predicted by the passage time prediction step, and the furnace temperature measurement value at the current time measured by the furnace temperature measurement step, The temperature of the steel plate on the outlet side of the induction heating device so that the steel plate does not change on the outlet side of the heating furnace is calculated using a plate temperature calculation model formula capable of calculating the temperature of the steel plate in the heating furnace. Induction heating output change to change the output of the induction heating device so that it becomes the temperature of the steel plate on the exit side of the induction heating device calculated by the induction heating output side plate temperature calculation step and the induction heating output side plate temperature calculation step. has a step, and in the transit time prediction step determines the delivery side speed of the input side speed and the final heating zone of the heating zone used in predicting the traveling time for each of the heating zones, the input of each heating zone The lateral speed is characterized in that it is obtained separately for the case during acceleration / deceleration and the case after completion of acceleration / deceleration.
また、本発明に係る鋼板の温度制御装置は、入側に誘導加熱装置が配置され、鋼板の通板方向に沿って配置された複数の加熱ゾーンを有する加熱炉の出側における鋼板の温度を測定する板温測定部と、各加熱ゾーンの炉温を測定する炉温測定部と、ライン速度変更指令に基づいてライン速度を変更するライン速度変更部と、前記ライン速度の変更開始から変更終了にかけて、前記加熱炉装入される鋼板に前記通板方向で所定間隔をあけて設定された複数の位置に対して、各加熱ゾーンの通過時間を予測する通過時間予測部と、前記通過時間予測部によって求められた前記複数の位置に対する通過時間予測結果と、前記炉温測定部によって測定された現時刻の炉温測定値とを用いて、前記加熱炉の出側における鋼板の変化が生じないような前記誘導加熱装置の出側における鋼板の温度を、前記加熱炉内における鋼板の温度を計算可能な板温計算モデル式を用いて算出する誘導加熱出側板温計算部と、前記誘導加熱出側板温計算部によって算出された前記誘導加熱装置の出側における鋼板の温度となるように、前記誘導加熱装置の出力を変更する誘導加熱出力変更部と、を有し、前記通過時間予測部は、各加熱ゾーンの通過時間を予測する際に用いる各加熱ゾーンの入側速度と最終加熱ゾーンの出側速度とを求め各加熱ゾーンの入側速度は加減速中における場合と加減速完了後における場合とに分けて求めることを特徴とするものである。 Further, in the steel plate temperature control device according to the present invention, an induction heating device is arranged on the entrance side, and the temperature of the steel plate on the exit side of a heating furnace having a plurality of heating zones arranged along the plate passing direction of the steel plate is measured. A plate temperature measuring unit for measuring, a furnace temperature measuring unit for measuring the furnace temperature of each heating zone, a line speed changing unit for changing the line speed based on a line speed change command, and a change end from the start of the line speed change. A passage time prediction unit that predicts the passage time of each heating zone with respect to a plurality of positions set at predetermined intervals in the plate passage direction on the steel plate charged in the heating furnace , and the passage time. The change of the steel plate on the outlet side of the heating furnace occurs by using the passing time prediction result for the plurality of positions obtained by the prediction unit and the furnace temperature measurement value at the current time measured by the furnace temperature measurement unit. The induction heating outlet plate temperature calculation unit that calculates the temperature of the steel plate on the outlet side of the induction heating device, which does not exist, using a plate temperature calculation model formula that can calculate the temperature of the steel plate in the heating furnace, and the induction heating It has an induction heating output changing unit that changes the output of the induction heating device so as to be the temperature of the steel plate on the exit side of the induction heating device calculated by the exit side plate temperature calculation unit, and the passage time prediction unit. obtains an output side speed of the input side speed and the final heating zone of the heating zone used in predicting the traveling time for each of the heating zones, acceleration and deceleration completion in the case of entry-side speed during acceleration and deceleration of each heating zone It is characterized in that it is obtained separately for the later case.
本発明に係る鋼板の温度制御方法、及び、鋼板の温度制御装置は、ライン速度変更中における加熱炉出側板温の変動を低減させることができるという効果を奏する。 The steel sheet temperature control method and the steel sheet temperature control device according to the present invention have the effect of being able to reduce fluctuations in the temperature of the plate on the exit side of the heating furnace while changing the line speed.
図1は、実施形態に係る鋼板の温度制御装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a temperature control device for a steel plate according to an embodiment. 図2は、第i加熱ゾーンにおける速度パターンの一例を示すグラフである。FIG. 2 is a graph showing an example of a velocity pattern in the i-th heating zone. 図3は、ニュートン法による誘導加熱出側板温の収束計算フローを示す図である。FIG. 3 is a diagram showing a flow of convergence calculation of the induction heating exit side plate temperature by Newton's method. 図4は、従来法における鋼板の温度制御装置の構成を示すブロック図である。FIG. 4 is a block diagram showing a configuration of a temperature control device for a steel plate in a conventional method. 図5(a)は、本発明法と従来法とにおけるライン速度を示すグラフである。図5(b)は、本発明法と従来法とにおける誘導加熱出側板温を示すグラフである。図5(c)は、本発明法と従来法とにおける加熱炉出側温度を示すグラフである。FIG. 5A is a graph showing the line speed in the method of the present invention and the conventional method. FIG. 5B is a graph showing the induction heating output side plate temperature in the method of the present invention and the conventional method. FIG. 5C is a graph showing the temperature on the exit side of the heating furnace in the method of the present invention and the conventional method.
以下に、本発明に係る鋼板の温度制御方法、及び、鋼板の温度制御装置の一実施形態について説明する。なお、本実施形態により本発明が限定されるものではない。 Hereinafter, a method for controlling the temperature of the steel sheet according to the present invention and an embodiment of the temperature control device for the steel sheet will be described. The present invention is not limited to the present embodiment.
図1は、実施形態に係る鋼板の温度制御装置1の構成を示すブロック図である。図1に示すように、実施形態に係る鋼板の温度制御装置1は、鋼板の通板方向に沿って配置されたN(≧1)個(本実施形態では第1加熱ゾーン〜第5加熱ゾーンの5個)の加熱ゾーンを有する加熱炉と、加熱炉入側に設けられた誘導加熱装置2と、を具備した連続焼鈍設備における鋼板の温度を制御する装置である。なお、図1においては、5個の加熱ゾーンを有する加熱炉を例示しているが、1個以上の加熱ゾーンを有する加熱炉であれば、本発明は適用可能である。 FIG. 1 is a block diagram showing a configuration of a temperature control device 1 for a steel plate according to an embodiment. As shown in FIG. 1, the temperature control device 1 for the steel plate according to the embodiment has N (≧ 1) pieces arranged along the sheet passing direction of the steel plate (in the present embodiment, the first heating zone to the fifth heating zone). This is a device for controlling the temperature of a steel sheet in a continuous annealing facility including a heating furnace having a heating zone (5) and an induction heating device 2 provided on the entrance side of the heating furnace. Although FIG. 1 illustrates a heating furnace having five heating zones, the present invention can be applied to any heating furnace having one or more heating zones.
鋼板の温度制御装置1は、板温測定部11、ライン速度変更部12、炉温測定部13、通過時間予測部14、誘導加熱出側板温計算部15、及び、誘導加熱出力変更部16などを主な構成要素として備えている。 The steel plate temperature control device 1 includes a plate temperature measuring unit 11, a line speed changing unit 12, a furnace temperature measuring unit 13, a passing time prediction unit 14, an induction heating output side plate temperature calculation unit 15, an induction heating output changing unit 16, and the like. Is provided as the main component.
ここで、加熱炉における昇温モデル式について説明する。加熱炉における鋼板温度の昇温計算は、数式(1)の方程式に従って計算できる。なお、数値計算上、下記(1)式は、適当な時間ステップΔtで離散化して差分計算することになる。下記(1)式中、ρは鋼板の比熱[kcal/kg/K]、Cは鋼板の比重[kg/m3]、hは鋼板の板厚[m]、Tsは鋼板の温度[℃]、Twは炉温[℃]、φcgは総括熱伝達係数[−]、σはステファンボルツマン定数(=1.3565e-11[kcal/s/m2/K4]、tは時間[s]を示している。 Here, a temperature rise model formula in a heating furnace will be described. The calculation of the temperature rise of the steel plate in the heating furnace can be calculated according to the equation of the equation (1). In the numerical calculation, the following equation (1) is discretized in an appropriate time step Δt and the difference is calculated. In the following equation (1), ρ is the specific heat of the steel sheet [kcal / kg / K], C is the specific gravity of the steel sheet [kg / m 3 ], h is the thickness of the steel sheet [m], and T s is the temperature of the steel sheet [° C. ], T w is the furnace temperature [° C], φ cg is the overall heat transfer coefficient [-], σ is the Stefan-Boltzmann constant (= 1.3565e -11 [kcal / s / m 2 / K 4 ]], t is the time [ s] is shown.
そして、複数の加熱ゾーンを有する加熱炉では、加熱ゾーン毎の炉温を設定することによって、加熱炉入側から加熱炉出側にかけての板温を計算することができる。ここで、初期板温は、加熱ゾーン入側での温度を設定すれば良い。 Then, in a heating furnace having a plurality of heating zones, the plate temperature from the heating furnace entry side to the heating furnace exit side can be calculated by setting the furnace temperature for each heating zone. Here, the initial plate temperature may be set to the temperature on the heating zone entry side.
ライン速度変更部12は、プロセスコンピュータ3から出力されたライン速度変更指令を受信してライン速度を変更する。同様に、通過時間予測部14は、ライン速度変更部12へのライン速度変更指令タイミングで、プロセスコンピュータ3から出力されたライン速度変更指令を受信する。そして、通過時間予測部14は、下記の手順1〜手順5により、ライン速度変更部12によるライン速度の変更開始から変更終了にかけて、加熱炉装入される鋼板の通板方向位置(長手位置)のうち、ライン速度変更開始時点での位置とライン速度変更終了時点での位置との2点を少なくとも含む複数の位置に対して、各加熱ゾーンの通過時間を予測する。また、説明上、通過時間の予測対象となる前記複数の位置は、ライン速度変更開始時点において、加熱炉の装入される鋼板の通板方向位置(長手位置)を位置0(k=0)とし、ライン速度変更終了時点において、加熱炉の装入される鋼板の通板方向位置(長手位置)を位置N(k=N)として、位置0から位置Nまでを等間隔にN点に分けているThe line speed change unit 12 receives the line speed change command output from the process computer 3 and changes the line speed. Similarly, the transit time prediction unit 14 receives the line speed change command output from the process computer 3 at the line speed change command timing to the line speed change unit 12. Then, transit time prediction unit 14, by the procedure 1 to procedure 5 below, toward change end from change start line speed by the line speed changing unit 12, the sheet passing direction position of the steel sheet to be charged in the furnace (the longitudinal position ), The transit time of each heating zone is predicted for a plurality of positions including at least two points , the position at the start of the line speed change and the position at the end of the line speed change. Further, description on the plurality of positions to be predicted transit time, in line speed change starting point, position the sheet passing direction position of the steel sheet to be charged in the furnace (longitudinal position) 0 (k = 0), and at the end of the line speed change , the position (longitudinal position) of the steel plate charged in the heating furnace is set to position N (k = N), and N points from position 0 to position N at equal intervals. It is divided into .
まず、手順1として、下記(2)式を用いて加減速開始から加減速完了までの時間tacc[s]を求める。なお、下記(2)式中、αは加速率[m/s2]、dVは速度変更量[m/s]を示している。 First, as step 1, the time t acc [s] from the start of acceleration / deceleration to the completion of acceleration / deceleration is obtained using the following equation (2). In the following equation (2), α indicates the acceleration rate [m / s 2 ], and dV indicates the speed change amount [m / s].
なお、以下の手順2〜手順5では、k=0,1,2,・・・Nに対して計算を行う。 In the following steps 2 to 5, the calculation is performed for k = 0, 1, 2, ... N.
次に、手順2として、下記(3)式を用いて、k=1,2,・・・Nにおける誘導加熱計算用初期速度V0(k)[m/s]、を求める。なお、下記(3)式中、V0は加減速前速度[m/s]、Nは誘導加熱計算分割数[−]を示している。 Next, as step 2, the initial velocity V 0 (k) [m / s] for induction heating calculation at k = 1, 2, ... N is obtained using the following equation (3). In the following equation (3), V 0 indicates the speed before acceleration / deceleration [m / s], and N indicates the induction heating calculation division number [-].
次に、手順3として、下記(4)式を用いて、k番目の鋼板位置における加減速開始から加減速完了までの距離である加減速距離l(k)[m]を求める。 Next, as step 3, the acceleration / deceleration distance l (k) [m], which is the distance from the start of acceleration / deceleration to the completion of acceleration / deceleration at the kth steel plate position, is obtained using the following equation (4).
次に、手順4として、第i加熱ゾーン入側速度と最終加熱ゾーン出側速度とを求める。 Next, as step 4, the i-th heating zone entry speed and the final heating zone exit speed are obtained.
まず、k番目の鋼板位置における第1加熱ゾーンの入側速度V(1,k)[m/s]は、下記(5)式により求まる。 First, the entry speed V (1, k) [m / s] of the first heating zone at the k-th steel plate position can be obtained by the following equation (5).
次に、k番目の鋼板位置における第i加熱ゾーン(2≦i≦5)の入側速度V(i,k)[m/s]は、加減速中と加減速完了後とに分けて求める。なお、下記(6)式〜下記(8)式中、Lz(j)は、各加熱ゾーンの通板方向における設備長である区間距離(j=1〜5)を示している。 Next, the entry speed V (i, k) [m / s] of the i-th heating zone (2 ≦ i ≦ 5) at the k-th steel plate position is obtained separately for during acceleration / deceleration and after completion of acceleration / deceleration. .. In the following equations (6) to (8), L z (j) indicates the section distance (j = 1 to 5) which is the equipment length in the plate passing direction of each heating zone.
まず、下記(6)式の関係を満たすライン速度の加減速中における第i加熱ゾーン(2≦i≦5)の入側速度V(i,k)[m/s]は、下記(7)式により求まる。 First, the entry speed V (i, k) [m / s] of the i-th heating zone (2 ≦ i ≦ 5) during acceleration / deceleration of the line speed satisfying the relationship of the following equation (6) is determined by the following (7). Obtained by the formula.
一方、下記(8)式の関係を満たすライン速度の加減速完了後における第i加熱ゾーン(2≦i≦5)の入側速度V(i,k)は、下記(9)式により求まる。 On the other hand, the entry speed V (i, k) of the i-th heating zone (2 ≦ i ≦ 5) after the acceleration / deceleration of the line speed satisfying the relationship of the following formula (8) is completed can be obtained by the following formula (9).
そして、最終加熱ゾーン出側速度(第5加熱ゾーン出側速度)は、ライン速度の加速減完了後における第i加熱ゾーン(2≦i≦5)の入側速度V(i,k)と同じであることから、上記(9)式により求まる。 The final heating zone exit speed (fifth heating zone exit speed) is the same as the entry speed V (i, k) of the i-th heating zone (2 ≦ i ≦ 5) after the acceleration / reduction of the line speed is completed. Therefore, it can be obtained by the above equation (9).
次に、手順5として、第i加熱ゾーンの通過時間を求める。 Next, as step 5, the transit time of the i-th heating zone is obtained.
図2は、第i加熱ゾーンにおける速度パターンの一例を示すグラフである。図2に示すような第i加熱ゾーンにおける速度パターンにおいて、k番目の鋼板位置が、第i加熱ゾーンを通過する通過時間t(i,k)[s]を求めることを考える。この通過時間t(i,k)[s]は、第i加熱ゾーン内における加速時間t1と一定速度時間t2との和によって求めることができる。なお、手順4において、第i加熱ゾーン入側速度と最終加熱ゾーン出側速度とが求められていることに注意して計算する。 FIG. 2 is a graph showing an example of a velocity pattern in the i-th heating zone. In the velocity pattern in the i-th heating zone as shown in FIG. 2, it is considered that the passage time t (i, k) [s] at which the k-th steel plate position passes through the i-th heating zone is obtained. This transit time t (i, k) [s] can be obtained by the sum of the acceleration time t 1 and the constant velocity time t 2 in the i-th heating zone. Note that in step 4, the i-th heating zone entry speed and the final heating zone exit speed are calculated.
まず、図2に示す第i加熱ゾーン内における加速時間t1[s]の区間の距離である加速距離x1[m]は、下記(10)式により求まる。 First, the acceleration distance x 1 [m], which is the distance in the section of the acceleration time t 1 [s] in the i-th heating zone shown in FIG. 2, can be obtained by the following equation (10).
次に、図2に示す第i加熱ゾーン内における一定速度時間t2[s]の区間の距離である一定速度距離x2[m]は、下記(11)式により求まる。 Next, the constant velocity distance x 2 [m], which is the distance in the section of the constant velocity time t 2 [s] in the i-th heating zone shown in FIG. 2, can be obtained by the following equation (11).
ここで、加熱炉内における第i加熱ゾーン(1≦i≦5)の区間距離Lz(i)は、上述したように各加熱ゾーンの通板方向における設備長から与えられており、下記(12)式により一定速度時間t2[s]が求まる。 Here, the section distance L z (i) of the i-th heating zone (1 ≦ i ≦ 5) in the heating furnace is given by the equipment length in the plate-passing direction of each heating zone as described above, and is given by the following ( The constant velocity time t 2 [s] can be obtained by the equation 12).
なお、本実施形態においては、第i加熱ゾーン(1≦i≦5)の区間距離Lz(i)が、第1加熱ゾーンの区間距離Lz(1)=20.4[m]、第2加熱ゾーンの区間距離Lz(2)=5.1[m]、第3加熱ゾーンの区間距離Lz(3)=5.1[m]、第4加熱ゾーンの区間距離Lz(4)=5.1[m]、第5加熱ゾーンの区間距離Lz(5)=5.1[m]として与えられている。 In the present embodiment, the section distance L z (i) of the i-th heating zone (1 ≦ i ≦ 5) is the section distance L z (1) = 20.4 [m] of the first heating zone. 2 section distance L z (2) = 5.1 [m] of the heating zone, section distance L z (3) = 5.1 [m] of the third heating zone, section distance L z (4) of the fourth heating zone ) = 5.1 [m], and the section distance L z (5) of the fifth heating zone is given as 5.1 [m].
また、加速時間t1[s]は、下記(13)式により求まる。 Further, the acceleration time t 1 [s] can be obtained by the following equation (13).
このようにして求めた、第i加熱ゾーンにおける加速時間t1[s]と一定速度時間t2[s]との和から、第i加熱ゾーン通過時間t(i,k)[s]が求まる。 From the sum of the acceleration time t 1 [s] in the i-th heating zone and the constant velocity time t 2 [s] obtained in this way, the i-th heating zone transit time t (i, k) [s] can be obtained. ..
続いて、誘導加熱出側板温計算部15について説明する。誘導加熱出側板温計算部15は、加熱炉出側で板温変動が最小となる誘導加熱装置出側における板温を求めるものである。板温測定部11は、ライン速度変更指令タイミングで加熱炉出側における板温を測定し、その測定した板温の値を誘導加熱出側板温計算部15に伝送する。また、炉温測定部13は、ライン速度変更指令タイミングにおいて、加熱炉内の各加熱ゾーンの炉温の実績値を測定し、その測定した実績値を誘導加熱出側板温計算部15に伝送する。また、誘導加熱出側板温計算部15は、通過時間予測部14から各加熱ゾーンの通過時間の予測結果も受信する。 Subsequently, the induction heating output side plate temperature calculation unit 15 will be described. The induction heating outlet side plate temperature calculation unit 15 obtains the plate temperature on the outlet side of the induction heating device that minimizes the fluctuation of the plate temperature on the outlet side of the heating furnace. The plate temperature measuring unit 11 measures the plate temperature on the heating furnace outlet side at the line speed change command timing, and transmits the measured plate temperature value to the induction heating outlet side plate temperature calculating unit 15. Further, the furnace temperature measuring unit 13 measures the actual value of the furnace temperature of each heating zone in the heating furnace at the line speed change command timing, and transmits the measured actual value to the induction heating output side plate temperature calculating unit 15. .. In addition, the induction heating output side plate temperature calculation unit 15 also receives the prediction result of the passage time of each heating zone from the passage time prediction unit 14.
ここで、k番目の鋼板位置における加熱炉出側板温計算値を、T0=f(TIH,t(i,k),TW(i),ρ,C,H,φCG,σ)で表す。関数fは、数式(1)に基づく昇温モデル式である。また、TIHは、誘導加熱出側板温(板温計算の初期値)である。また、TW(i)は、各加熱ゾーンの炉温測定値(炉温測定部13による測定値)である。 Here, the calculated value of the plate temperature on the exit side of the heating furnace at the k-th steel plate position is T 0 = f ( TIH , t (i, k), TW (i), ρ, C, H, φ CG , σ). It is represented by. The function f is a temperature rise model formula based on the mathematical formula (1). Further, TIH is the induction heating exit side plate temperature (initial value of plate temperature calculation). Further, TW (i) is a furnace temperature measured value (measured value by the furnace temperature measuring unit 13) of each heating zone.
図3は、ニュートン法による誘導加熱出側板温の収束計算フローを示す図である。誘導加熱出側板温計算部15は、図3に示すニュートン法により、加熱炉出側板温計算値T0が出側板温目標値Taimに対して誤差ε[℃]以内になるよう収束計算を行って、誘導加熱出側板温の計算値を求める。 FIG. 3 is a diagram showing a flow of convergence calculation of the induction heating exit side plate temperature by Newton's method. The induction heating output side plate temperature calculation unit 15 uses the Newton method shown in FIG. 3 to perform convergence calculation so that the calculation value T 0 of the output side plate temperature of the heating furnace is within an error ε [° C.] with respect to the output side plate temperature target value T aim . To obtain the calculated value of the induction heating output side plate temperature.
すなわち、誘導加熱出側板温計算部15によるニュートン法による誘導加熱出側板温の収束計算では、まず、収束計算の回数を示す変数「Loop」に「1」を代入し(S1)、誘導加熱出側温度を示す変数「TIH」に誘導加熱出側温度の初期値「TIH0」を代入する(S2)。次に、誘導加熱出側板温計算部15は、加熱炉出側板温計算値T0を算出するとともに、変数「Loop」に「Loop+1」を代入する(S3)。そして、誘導加熱出側板温計算部15は、加熱炉出側板温計算値T0が出側板温目標値Taimに対して誤差ε[℃]以内であるか、変数「Loop」が予め設定されたn回を超えたかを判断する(S4)。なお、出側板温目標値Taimとしては、板温測定部11による測定値でも良いし、加速前のライン速度から求めた加熱炉出側板温計算値でも良い。 That is, in the convergence calculation of the induction heating output side plate temperature by the Newton method by the induction heating output side plate temperature calculation unit 15, first, "1" is substituted into the variable "Loop" indicating the number of convergence calculations (S1), and the induction heating output is performed. the initial value of the induction heating delivery temperature to the variable "T the IH" indicating side temperature assigns "T IH0" (S2). Next, the induction heating output side plate temperature calculation unit 15 calculates the heating furnace output side plate temperature calculation value T 0 , and substitutes “Loop + 1” into the variable “Loop” (S3). Then, in the induction heating output side plate temperature calculation unit 15, the variable "Loop" is set in advance so that the calculation value T 0 of the output side plate temperature of the heating furnace is within an error ε [° C.] with respect to the output side plate temperature target value T aim . It is determined whether the number of times exceeds n times (S4). The output side plate temperature target value T aim may be a value measured by the plate temperature measuring unit 11 or a heating furnace exit side plate temperature calculated value obtained from the line speed before acceleration.
加熱炉出側板温計算値T0が出側板温目標値Taimに対して誤差ε[℃]以内でない、または、変数「Loop」が予め設定されたn回を超えていないと、誘導加熱出側板温計算部15が判断したら(S4でNo)、誘導加熱出側板温計算部15は、ニュートン法によって加熱炉出側板温計算値T0が出側板温目標値Taimに対して誤差ε[℃]以内になるよう収束計算を行う(S5)。そして、加熱炉出側板温計算値T0が出側板温目標値Taimに対して誤差ε[℃]以内に収束するか、変数「Loop」が予め設定されたn回を超えたと、誘導加熱出側板温計算部15が判断したら(S4でYes)、誘導加熱出側板温計算部15はニュートン法による誘導加熱出側板温の収束計算を終了する。 If the calculated value T 0 of the outside plate temperature of the heating furnace is not within the error ε [° C] with respect to the target value T aim of the output side plate temperature, or if the variable “Loop” does not exceed the preset n times, the induction heating is performed. When the side plate temperature calculation unit 15 determines (No in S4), the induction heating output side plate temperature calculation unit 15 uses the Newton method to make the heating furnace output side plate temperature calculation value T 0 an error ε with respect to the output side plate temperature target value T aim [ Convergence calculation is performed so as to be within [° C.] (S5). Then, when the calculated value T 0 of the outside plate temperature of the heating furnace converges within an error ε [° C.] with respect to the target value T aim of the output side plate temperature, or when the variable “Loop” exceeds the preset n times, induction heating is performed. When the output side plate temperature calculation unit 15 determines (Yes in S4), the induction heating output side plate temperature calculation unit 15 ends the convergence calculation of the induction heating output side plate temperature by the Newton method.
そして、そのときの収束計算における誘導加熱出側板温の計算値を、誘導加熱出側板温計算部15から誘導加熱出力変更部16に伝送し、誘導加熱出力変更部16が誘導加熱装置2の出力を変更する。なお、誘導加熱出側板温計算部15における板温計算モデル式は、現時刻のライン速度と炉温測定値とを、板温計算モデル式の入力として求めた板温予測値の測定値との誤差で補正してもよい。 Then, the calculated value of the induction heating output side plate temperature in the convergence calculation at that time is transmitted from the induction heating output side plate temperature calculation unit 15 to the induction heating output changing unit 16, and the induction heating output changing unit 16 outputs the output of the induction heating device 2. To change. The plate temperature calculation model formula in the induction heating output side plate temperature calculation unit 15 is the measured value of the plate temperature predicted value obtained by inputting the line speed at the current time and the furnace temperature measurement value as the input of the plate temperature calculation model formula. It may be corrected by an error.
[実施例]
本発明法(実施形態に係る鋼板の温度制御方法)の有効性をシミュレーションにより検証した。なお、各加熱ゾーンの設定値を以下の表1に示し、鋼板の設定値を以下の表2に示す。また、速度変更量dVとして、0.05[m/s]、加速率αは、8.3333e-4[m/s2]とする。そして、設計パラメータである誘導加熱計算分割数Nは5とした。
[Example]
The effectiveness of the method of the present invention (the method for controlling the temperature of the steel sheet according to the embodiment) was verified by simulation. The set values of each heating zone are shown in Table 1 below, and the set values of the steel sheet are shown in Table 2 below. The speed change amount dV is 0.05 [m / s], and the acceleration rate α is 8.3333e -4 [m / s 2 ]. Then, the induction heating calculation division number N, which is a design parameter, was set to 5.
また、図1に示す鋼板の温度制御装置1を用いた本発明法との比較のために、従来法における鋼板の温度制御装置の構成を示すブロック図を図4に示す。図4に示すように、従来法における鋼板の温度制御装置100は、鋼板の通板方向に沿って配置された5個の加熱ゾーン(第1加熱ゾーン〜第5加熱ゾーン)を有する加熱炉と、加熱炉入側に設けられた誘導加熱装置102と、を具備した連続焼鈍設備における鋼板の温度を制御する装置である。従来法における鋼板の温度制御装置100は、板温測定部111、ライン速度変更部112、炉温測定部113、誘導加熱出側板温計算部115、及び、誘導加熱出力変更部116などを主な構成要素として備えている。一方、従来法における鋼板の温度制御装置100は、本発明法における鋼板の温度制御装置1が備える通過時間予測部14に相当するものを備えていない。そのため、誘導加熱出側板温計算部115では、ライン速度の加減速途中の状態を考慮せず、ライン速度変更完了速度を用いて、加熱炉出側板温の変動を低減できる誘導加熱出側板温を求めるものとする。なお、ライン速度変更部103及び誘導加熱出側板温計算部115には、プロセスコンピュータ103からライン速度変更指令が出力される。 Further, for comparison with the method of the present invention using the temperature control device 1 for the steel sheet shown in FIG. 1, a block diagram showing the configuration of the temperature control device for the steel sheet in the conventional method is shown in FIG. As shown in FIG. 4, the temperature control device 100 for a steel sheet in the conventional method includes a heating furnace having five heating zones (first heating zone to fifth heating zone) arranged along the sheet passing direction of the steel sheet. This is a device for controlling the temperature of a steel sheet in a continuous annealing facility provided with an induction heating device 102 provided on the entry side of the heating furnace. The steel plate temperature control device 100 in the conventional method mainly includes a plate temperature measuring unit 111, a line speed changing unit 112, a furnace temperature measuring unit 113, an induction heating output side plate temperature calculating unit 115, an induction heating output changing unit 116, and the like. It is provided as a component. On the other hand, the steel sheet temperature control device 100 in the conventional method does not include a device corresponding to the transit time prediction unit 14 included in the steel sheet temperature control device 1 in the method of the present invention. Therefore, the induction heating output side plate temperature calculation unit 115 does not consider the state during acceleration / deceleration of the line speed, and uses the line speed change completion speed to determine the induction heating output side plate temperature that can reduce the fluctuation of the heating furnace exit side plate temperature. It shall be sought. A line speed change command is output from the process computer 103 to the line speed change unit 103 and the induction heating output side plate temperature calculation unit 115.
図5(a)は、本発明法と従来法とにおけるライン速度を示すグラフである。図5(b)は、本発明法と従来法とにおける誘導加熱出側板温を示すグラフである。図5(c)は、本発明法と従来法とにおける加熱炉出側温度を示すグラフである。 FIG. 5A is a graph showing the line speed in the method of the present invention and the conventional method. FIG. 5B is a graph showing the induction heating output side plate temperature in the method of the present invention and the conventional method. FIG. 5C is a graph showing the temperature on the exit side of the heating furnace in the method of the present invention and the conventional method.
図5(a)に示すように、ライン速度は本発明法と従来法とで同じように変更にさせており、ライン速度の変更が65[s]あたりで完了している。図5(b)において、従来法では、ライン速度変更完了後の定常速度を用いて、誘導加熱出側板温を設定するのに対して、本発明法では、ライン速度の加減速中と加減速完了後との速度予測に基づいて、複数の鋼板位置における誘導加熱出側板温を設定している。 As shown in FIG. 5A, the line speed is changed in the same manner in the method of the present invention and the conventional method, and the change of the line speed is completed around 65 [s]. In FIG. 5B, in the conventional method, the induction heating output side plate temperature is set by using the steady speed after the line speed change is completed, whereas in the method of the present invention, the line speed is being accelerated / decelerated and accelerated / decelerated. Based on the speed prediction after completion, the induction heating output side plate temperature is set at a plurality of steel plate positions.
本発明法と従来法とにおいては、図5(c)に示すように、45[s]あたりまで無駄時間が存在している。そして、本発明法では、無駄時間が経過した直後から、加熱炉出側板温が目標値に収束している。一方、従来法では、100[s]を経過しても加熱炉出側板温が目標値に収束しておらず、本発明法のほうが従来法よりも加熱炉出側板温の収束性が良いことがわかる。このように、本発明法においては、従来法よりも、無駄時間が経過した後のライン速度変更中における加熱炉出側板温の変動を低減させることができる。 In the method of the present invention and the conventional method, as shown in FIG. 5C, there is wasted time up to around 45 [s]. Then, in the method of the present invention, the plate temperature on the exit side of the heating furnace has converged to the target value immediately after the wasted time has elapsed. On the other hand, in the conventional method, the heating furnace outlet side plate temperature does not converge to the target value even after 100 [s], and the method of the present invention has better convergence of the heating furnace outlet side plate temperature than the conventional method. I understand. As described above, in the method of the present invention, it is possible to reduce the fluctuation of the plate temperature on the exit side of the heating furnace during the change of the line speed after the lapse of wasted time, as compared with the conventional method.
1 温度制御装置
2 誘導加熱装置
3 プロセスコンピュータ
11 板温測定部
12 ライン速度変更部
13 炉温測定部
14 通過時間予測部
15 誘導加熱出側板温計算部
16 誘導加熱出力変更部
1 Temperature control device 2 Induction heating device 3 Process computer 11 Plate temperature measurement unit 12 Line speed change unit 13 Furnace temperature measurement unit 14 Passing time prediction unit 15 Induction heating output side plate temperature calculation unit 16 Induction heating output change unit

Claims (2)

  1. 入側に誘導加熱装置が配置され、鋼板の通板方向に沿って配置された複数の加熱ゾーンを有する加熱炉の出側における鋼板の温度を測定する板温測定工程と、
    各加熱ゾーンの炉温を測定する炉温測定工程と、
    ライン速度変更指令に基づいてライン速度を変更するライン速度変更工程と、
    前記ライン速度の変更開始から変更終了にかけて、前記加熱炉装入される鋼板に前記通板方向で所定間隔をあけて設定された複数の位置に対して、各加熱ゾーンの通過時間を予測する通過時間予測工程と、
    前記通過時間予測工程によって予測された前記複数の位置に対する通過時間予測結果と、前記炉温測定工程によって測定された現時刻の炉温測定値とを用いて、前記加熱炉の出側における鋼板の変化が生じないような前記誘導加熱装置の出側における鋼板の温度を、前記加熱炉内における鋼板の温度を計算可能な板温計算モデル式を用いて算出する誘導加熱出側板温計算工程と、
    前記誘導加熱出側板温計算工程によって算出された前記誘導加熱装置の出側における鋼板の温度となるように、前記誘導加熱装置の出力を変更する誘導加熱出力変更工程と、
    を有し、
    前記通過時間予測工程では、
    各加熱ゾーンの通過時間を予測する際に用いる各加熱ゾーンの入側速度と最終加熱ゾーンの出側速度とを求め各加熱ゾーンの入側速度は加減速中における場合と加減速完了後における場合とに分けて求めることを特徴とする鋼板の温度制御方法。
    An induction heating device is arranged on the entrance side, and a plate temperature measuring step for measuring the temperature of the steel plate on the exit side of a heating furnace having a plurality of heating zones arranged along the plate passing direction of the steel plate, and
    A furnace temperature measurement process that measures the furnace temperature in each heating zone,
    The line speed change process that changes the line speed based on the line speed change command,
    Toward change end from change start of the line speed, to a plurality of positions set at predetermined intervals in the through plate direction of the steel sheet being dumped in the heating furnace, predicts the traveling time for each of the heating zones Transit time prediction process and
    Using the passing time prediction results for the plurality of positions predicted by the passing time prediction step and the furnace temperature measurement value at the current time measured by the furnace temperature measuring step, the steel plate on the outlet side of the heating furnace The induction heating outlet side plate temperature calculation step of calculating the temperature of the steel plate on the outlet side of the induction heating device so that no change occurs using a plate temperature calculation model formula capable of calculating the temperature of the steel plate in the heating furnace, and
    An induction heating output changing step of changing the output of the induction heating device so as to be the temperature of the steel plate on the exit side of the induction heating device calculated by the induction heating output side plate temperature calculation step.
    Have,
    In the transit time prediction step,
    Seeking and exit side speed of the input side speed and the final heating zone of the heating zone used in predicting the traveling time for each of the heating zones, after when the acceleration or deceleration completion in the entry-side speed during acceleration and deceleration of each heating zone A method for controlling the temperature of a steel sheet, which is characterized in that it is obtained separately for each case.
  2. 入側に誘導加熱装置が配置され、鋼板の通板方向に沿って配置された複数の加熱ゾーンを有する加熱炉の出側における鋼板の温度を測定する板温測定部と、
    各加熱ゾーンの炉温を測定する炉温測定部と、
    ライン速度変更指令に基づいてライン速度を変更するライン速度変更部と、
    前記ライン速度の変更開始から変更終了にかけて、前記加熱炉装入される鋼板に前記通板方向で所定間隔をあけて設定された複数の位置に対して、各加熱ゾーンの通過時間を予測する通過時間予測部と、
    前記通過時間予測部によって求められた前記複数の位置に対する通過時間予測結果と、前記炉温測定部によって測定された現時刻の炉温測定値とを用いて、前記加熱炉の出側における鋼板の変化が生じないような前記誘導加熱装置の出側における鋼板の温度を、前記加熱炉内における鋼板の温度を計算可能な板温計算モデル式を用いて算出する誘導加熱出側板温計算部と、
    前記誘導加熱出側板温計算部によって算出された前記誘導加熱装置の出側における鋼板の温度となるように、前記誘導加熱装置の出力を変更する誘導加熱出力変更部と、
    を有し、
    前記通過時間予測部は、
    各加熱ゾーンの通過時間を予測する際に用いる各加熱ゾーンの入側速度と最終加熱ゾーンの出側速度とを求め各加熱ゾーンの入側速度は加減速中における場合と加減速完了後における場合とに分けて求めることを特徴とする鋼板の温度制御装置。
    An induction heating device is arranged on the entrance side, and a plate temperature measuring unit for measuring the temperature of the steel plate on the exit side of a heating furnace having a plurality of heating zones arranged along the plate passing direction of the steel plate.
    A furnace temperature measuring unit that measures the furnace temperature in each heating zone,
    A line speed change unit that changes the line speed based on the line speed change command,
    Toward change end from change start of the line speed, to a plurality of positions set at predetermined intervals in the through plate direction of the steel sheet being dumped in the heating furnace, predicts the traveling time for each of the heating zones Transit time prediction unit and
    Using the passing time prediction results for the plurality of positions obtained by the passing time prediction unit and the furnace temperature measurement value at the current time measured by the furnace temperature measuring unit, the steel plate on the exit side of the heating furnace An induction heating output side plate temperature calculation unit that calculates the temperature of the steel plate on the outlet side of the induction heating device so that no change occurs using a plate temperature calculation model formula that can calculate the temperature of the steel plate in the heating furnace.
    An induction heating output changing unit that changes the output of the induction heating device so that the temperature of the steel plate on the exit side of the induction heating device is calculated by the induction heating output side plate temperature calculation unit.
    Have,
    The transit time prediction unit
    Seeking and exit side speed of the input side speed and the final heating zone of the heating zone used in predicting the traveling time for each of the heating zones, after when the acceleration or deceleration completion in the entry-side speed during acceleration and deceleration of each heating zone A temperature control device for a steel sheet, which is characterized in that it is obtained separately for each case.
JP2017015155A 2017-01-31 2017-01-31 Steel plate temperature control method and steel sheet temperature control device Active JP6784182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017015155A JP6784182B2 (en) 2017-01-31 2017-01-31 Steel plate temperature control method and steel sheet temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017015155A JP6784182B2 (en) 2017-01-31 2017-01-31 Steel plate temperature control method and steel sheet temperature control device

Publications (2)

Publication Number Publication Date
JP2018123364A JP2018123364A (en) 2018-08-09
JP6784182B2 true JP6784182B2 (en) 2020-11-11

Family

ID=63111052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017015155A Active JP6784182B2 (en) 2017-01-31 2017-01-31 Steel plate temperature control method and steel sheet temperature control device

Country Status (1)

Country Link
JP (1) JP6784182B2 (en)

Also Published As

Publication number Publication date
JP2018123364A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP6146553B1 (en) Steel plate temperature control device and temperature control method
US6891139B2 (en) Heat treatment apparatus, heat treatment method, medium on which heat treatment program is recorded, and steel product
WO2009011070A1 (en) Method of cooling control, cooling control unit and cooling water quantity computing unit
WO2017130508A1 (en) Steel sheet temperature control device and temperature control method
KR101956365B1 (en) System for control temperature pattern of strip in continuous annealing line and the method of the same
JP6784182B2 (en) Steel plate temperature control method and steel sheet temperature control device
JP2006281300A (en) Cooling control method, device, and computer program
WO2014006681A1 (en) Temperature control device
JP2005279655A (en) Steel extraction temperature prediction method for continuous heating furnace
JP2015134951A (en) Cooling control device and cooling control method
US10500619B2 (en) Rolling system
JP2011157590A (en) Apparatus and method for controlling sheet temperature in continuous annealing furnace
JP2015001004A (en) Method and program for setting furnace velocity and furnace temperature in continuous annealing line
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JP4894686B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP5493993B2 (en) Thick steel plate cooling control device, cooling control method, and manufacturing method
JP2006122987A (en) Cooling control apparatus and method for metallic sheet
JP3710572B2 (en) Heating furnace control device
JP2004197144A (en) Method for controlling temperature of continuous normalized sheet
JP2021109990A (en) Plate temperature control method, heating control device, and metal plate manufacturing method
JP2003301218A (en) Heat treatment method for steel material and program therefor
JP2744415B2 (en) Hot rolled steel coiling temperature control device
JP2013116506A (en) Winding temperature controller and control method thereof
JP2006274401A (en) Method for automatically controlling combustion in continuous heating furnace
JP2019209372A (en) Steel plate temperature control device in hot endless rolling line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201006

R150 Certificate of patent or registration of utility model

Ref document number: 6784182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150