JP2018003084A - Method for predicting the temperature of steel material - Google Patents

Method for predicting the temperature of steel material Download PDF

Info

Publication number
JP2018003084A
JP2018003084A JP2016130264A JP2016130264A JP2018003084A JP 2018003084 A JP2018003084 A JP 2018003084A JP 2016130264 A JP2016130264 A JP 2016130264A JP 2016130264 A JP2016130264 A JP 2016130264A JP 2018003084 A JP2018003084 A JP 2018003084A
Authority
JP
Japan
Prior art keywords
steel material
temperature
heat absorption
absorption rate
overall heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016130264A
Other languages
Japanese (ja)
Inventor
岳洋 佃
Takehiro Tsukuda
岳洋 佃
長瀬 佳之
Yoshiyuki Nagase
佳之 長瀬
圭一 山下
Keiichi Yamashita
圭一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016130264A priority Critical patent/JP2018003084A/en
Publication of JP2018003084A publication Critical patent/JP2018003084A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for predicting the temperature of a steel material capable of predicting the temperature of a steel material in a heating furnace at high precision even in the case the total combustion amount of burners is changed.SOLUTION: Provided is a method for predicting a steel material in a heating furnace provided with a plurality of burners arranged in such a manner that the central axis of a crater is made horizontal and also is made into a vertical direction to the carrying direction of the steel material, including: a step of acquiring the standard total heat absorptivity of the steel material at each position in the furnace length direction in the heating furnace when the total combustion amount of the burners being a prescribed one; a step of acquiring the corrected total heat absorptivity obtained by correcting the standard total heat absorptivity based on the total combustion amount of the burners; and a step of predicting the temperature of the steel material at each position in the furnace length direction in the heating furnace based on the corrected total heat absorptivity, and it is characterized in that the correction is performed using the carrying direction distance between the steel material and the burners.SELECTED DRAWING: Figure 1

Description

本発明は、鋼材の温度予測方法に関する。   The present invention relates to a temperature prediction method for steel materials.

鋼材を例えば連続加熱炉等で加熱する際、加熱炉内での鋼材温度履歴は鋼材の品質に大きく影響する。目標とする温度履歴からの偏差が大きいと、脱炭と呼ばれる現象が発生し、所望の機械特性が得られなくなる可能性がある。そのため、製品の品質を担保するためには、加熱炉内における鋼材の温度履歴をオペレータが適切に制御する必要がある。   For example, when a steel material is heated in a continuous heating furnace or the like, the steel material temperature history in the heating furnace greatly affects the quality of the steel material. If the deviation from the target temperature history is large, a phenomenon called decarburization may occur and desired mechanical characteristics may not be obtained. Therefore, in order to ensure the quality of the product, the operator needs to appropriately control the temperature history of the steel material in the heating furnace.

オペレータが温度履歴を適切に制御するには、高精度の鋼材の温度予測が必要である。一方で、生産性の観点からは温度予測の時間とコストを抑制する必要もある。そこで、予め総括熱吸収率(炉から鋼材への熱伝達効率)を求めておき、この総括熱吸収率を補正項で補正することで鋼材の温度を予測する方法が提案されている(特開2015−40333号公報参照)。   In order for the operator to appropriately control the temperature history, it is necessary to accurately predict the temperature of the steel material. On the other hand, it is necessary to suppress the time and cost of temperature prediction from the viewpoint of productivity. Therefore, a method has been proposed in which the overall heat absorption rate (heat transfer efficiency from the furnace to the steel material) is obtained in advance, and the temperature of the steel material is predicted by correcting the overall heat absorption rate with a correction term (Japanese Patent Application Laid-Open No. 2005-318867). No. 2015-40333).

しかし、加熱炉においては、操業条件によってバーナーの燃焼数が変化する。例えば鋼材の加熱温度が高い場合はバーナーの燃焼数は増加され、鋼材の在炉時間が長くなる場合は加熱炉の抽出温度を調整するためバーナーの燃焼数は低減される。このようにバーナーの燃焼数(総燃焼量)が変わると、総括熱吸収率は大きく変化する。これに対し、上記方法のような従来技術では、バーナーの総燃焼量の変化への対応は考慮されておらず、バーナーの燃焼数等が変わった場合に予測精度が大きく低下するという課題がある。   However, in the heating furnace, the number of burners burned varies depending on the operating conditions. For example, when the heating temperature of the steel material is high, the burner combustion number is increased, and when the in-furnace time of the steel material is lengthened, the burner combustion number is reduced to adjust the extraction temperature of the heating furnace. When the burner combustion number (total combustion amount) changes in this way, the overall heat absorption rate changes greatly. On the other hand, in the conventional technique such as the above method, the response to the change in the total combustion amount of the burner is not considered, and there is a problem that the prediction accuracy is greatly reduced when the burner combustion number or the like is changed. .

特開2015−40333号公報Japanese Patent Laying-Open No. 2015-40333

上記不都合に鑑みて、本発明は、加熱炉内の鋼材温度を精度良く予測できる鋼材の温度予測方法を提供することを課題とする。   In view of the above inconveniences, an object of the present invention is to provide a steel material temperature prediction method capable of accurately predicting a steel material temperature in a heating furnace.

上記課題を解決するためになされた発明は、火口の中心軸が水平かつ鋼材の搬送方向と垂直方向となるよう配設される複数のバーナーを備える加熱炉内の鋼材の温度予測方法であって、上記バーナーの総燃焼量が所定のときの加熱炉内の炉長方向における各位置での鋼材の基準総括熱吸収率を取得する工程と、上記バーナーの総燃焼量に基づき上記基準総括熱吸収率を補正した補正総括熱吸収率を取得する工程と、上記補正総括熱吸収率に基づき加熱炉内の炉長方向における各位置での鋼材の温度を予測する工程とを備え、上記補正を鋼材と上記バーナーとの搬送方向距離を用いて行うことを特徴とする。   The invention made to solve the above problems is a method for predicting the temperature of a steel material in a heating furnace comprising a plurality of burners arranged so that the central axis of the crater is horizontal and perpendicular to the conveying direction of the steel material. Obtaining a standard overall heat absorption rate of the steel material at each position in the furnace length direction in the heating furnace when the total combustion amount of the burner is predetermined, and the reference overall heat absorption based on the total combustion amount of the burner A step of obtaining a corrected overall heat absorption rate with the rate corrected, and a step of predicting the temperature of the steel material at each position in the furnace length direction in the heating furnace based on the corrected overall heat absorption rate. And using the distance in the conveying direction with the burner.

当該鋼材の温度予測方法は、あるバーナー総燃焼量のときの基準総括熱吸収率に対し、鋼材とバーナーとの搬送方向距離を用いて補正を行うことで、バーナーの総燃焼量が変わった場合にも計算負荷を高めることなく比較的高い精度で鋼材温度を予測することができる。   The method for predicting the temperature of the steel material is for the case where the total burnup amount of the burner is changed by correcting the standard overall heat absorption rate at a certain burner total burnup amount using the distance in the conveyance direction between the steel material and the burner. In addition, the steel temperature can be predicted with relatively high accuracy without increasing the calculation load.

本発明の鋼材の温度予測方法は、バーナーの総燃焼量が変わった場合にも加熱炉内の鋼材温度を精度良く予測できる。   The steel material temperature prediction method of the present invention can accurately predict the steel material temperature in the heating furnace even when the total combustion amount of the burner changes.

本発明の一実施形態の鋼材の温度予測方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the temperature prediction method of the steel material of one Embodiment of this invention. 加熱炉内のバーナーの配置を説明する平面図であり、(a)は搬送面の下方から視た平面図、(b)は搬送面の上方から視た平面図である。It is a top view explaining arrangement | positioning of the burner in a heating furnace, (a) is the top view seen from the downward direction of a conveyance surface, (b) is the top view seen from the upper direction of the conveyance surface. 加熱炉内のバーナーの配置を説明する側面図である。It is a side view explaining arrangement | positioning of the burner in a heating furnace. 実施例におけるパラメータの決定段階での鋼材の実測温度と予測温度とを比較するグラフである。It is a graph which compares the measured temperature of steel materials in the parameter determination stage in an Example, and predicted temperature. 実施例で求めた補正係数を表すグラフである。It is a graph showing the correction coefficient calculated | required in the Example. 実施例で求めた基準総括熱吸収率及び補正総括熱吸収率を表すグラフである。It is a graph showing the standard overall heat absorption rate calculated | required in the Example, and a correction | amendment overall heat absorption rate. 左列は実施例における鋼材の実測温度と予測温度とを比較するグラフであり、右列は実施例における実測温度と予測温度との偏差を示すグラフである。The left column is a graph comparing the measured temperature and the predicted temperature of the steel material in the example, and the right column is a graph showing the deviation between the measured temperature and the predicted temperature in the example.

以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

[鋼材の温度予測方法]
当該鋼材の温度予測方法は、火口の中心軸が水平かつ鋼材の搬送方向と垂直方向となるよう配設される複数のバーナーを備える加熱炉内の鋼材の温度予測方法である。当該鋼材の温度予測方法は、図1に示すように、初期条件を設定する初期条件設定工程S1と、バーナーの総燃焼量が所定のときの加熱炉内の炉長方向における各位置での鋼材の基準総括熱吸収率を取得する基準総括熱吸収率取得工程S2と、バーナーの総燃焼量に基づき基準総括熱吸収率を補正した補正総括熱吸収率を取得する補正総括熱吸収率取得工程S3と、補正総括熱吸収率に基づき加熱炉内の炉長方向における各位置での鋼材の温度を予測する温度予測工程S4とを主に備える。
[Method for predicting steel temperature]
The steel material temperature prediction method is a temperature prediction method for a steel material in a heating furnace including a plurality of burners arranged such that the central axis of the crater is horizontal and perpendicular to the steel material conveyance direction. As shown in FIG. 1, the steel material temperature prediction method includes an initial condition setting step S1 for setting initial conditions, and a steel material at each position in the furnace length direction in the heating furnace when the total combustion amount of the burner is predetermined. The reference overall heat absorption rate acquisition step S2 for obtaining the reference overall heat absorption rate, and the corrected overall heat absorption rate acquisition step S3 for obtaining the corrected overall heat absorption rate obtained by correcting the reference overall heat absorption rate based on the total combustion amount of the burner And a temperature prediction step S4 for predicting the temperature of the steel material at each position in the furnace length direction in the heating furnace based on the corrected overall heat absorption rate.

当該鋼材の温度予測方法は、上記複数のバーナーを備える公知の加熱炉に適用できる。具体的には、例えば図2及び図3に示すように、鋼材Aの搬送面10の上側及び/又は下側に鋼材Aの搬送方向(図中矢印方向)と垂直方向に火口が対向する複数対のいわゆるサイドバーナーを設けた加熱炉が用いられる。なお、搬送面10は、鋼材Aをウォーキングビームにより搬送する面である。また、図2及び図3では、搬送面10の下方かつ搬送方向下流側に2対のバーナー1a、搬送面10の上方かつ搬送方向下流側に1対のバーナー1bを配設しているが、バーナーの数や位置はこれに限定されない。また、加熱炉は図2及び図3に示す構成を1つの加熱ゾーンとし、複数の加熱ゾーンを有する構成としてもよい。   The temperature prediction method for the steel material can be applied to a known heating furnace including the plurality of burners. Specifically, for example, as shown in FIGS. 2 and 3, a plurality of craters face the upper side and / or the lower side of the conveying surface 10 of the steel material A in the direction perpendicular to the conveying direction (arrow direction in the drawing) of the steel material A. A heating furnace provided with a pair of so-called side burners is used. In addition, the conveyance surface 10 is a surface which conveys the steel material A by a walking beam. 2 and 3, two pairs of burners 1a are disposed below the conveyance surface 10 and downstream in the conveyance direction, and a pair of burners 1b are disposed above the conveyance surface 10 and downstream in the conveyance direction. The number and position of the burners are not limited to this. In addition, the heating furnace may have a configuration in which the configuration shown in FIGS. 2 and 3 is used as one heating zone and a plurality of heating zones are used.

複数対のバーナーの搬送方向の間隔は適宜設計することができる。また、バーナーとしては例えば軸流バーナーが使用できる。   The intervals in the conveyance direction of the plurality of pairs of burners can be appropriately designed. Further, as the burner, for example, an axial flow burner can be used.

当該鋼材の温度予測方法が対象とする鋼材の形状は特に限定されず、棒鋼、鋼板等に適用が可能である。また、当該鋼材の温度予測方法で用いる加熱炉は他の加熱炉と組み合わせて使用できる。なお、鋼材の最終加熱温度は例えば1000℃以上1200℃以下である。   The shape of the steel material targeted by the temperature prediction method of the steel material is not particularly limited, and can be applied to steel bars, steel plates, and the like. Moreover, the heating furnace used with the temperature prediction method of the said steel material can be used in combination with another heating furnace. In addition, the final heating temperature of steel materials is 1000 degreeC or more and 1200 degrees C or less, for example.

<初期条件設定工程>
初期条件設定工程S1では、鋼材の加熱条件を主に設定する。具体的には、鋼材の種類及び加熱初期温度、在炉時間、加熱炉内温度等を設定する。
<Initial condition setting process>
In the initial condition setting step S1, the heating condition of the steel material is mainly set. Specifically, the type of steel material, the initial heating temperature, the in-furnace time, the temperature in the heating furnace, and the like are set.

<基準総括熱吸収率取得工程>
基準総括熱吸収率取得工程S2では、バーナーの総燃焼量が所定量(基準値)のときの鋼材の基準となる総括熱吸収率(基準総括熱吸収率)を加熱炉内の炉長方向における位置毎に取得する。
<Standard overall heat absorption rate acquisition process>
In the reference overall heat absorption rate acquisition step S2, the overall heat absorption rate (reference overall heat absorption rate) that serves as a reference for the steel material when the total combustion amount of the burner is a predetermined amount (reference value) is determined in the furnace length direction in the heating furnace. Get for each position.

この基準総括熱吸収率は、実際に鋼材を加熱炉で所定の燃焼量で加熱した際の温度を実測し、この測定値から計算により求めてもよいし、予め算出した基準総括熱吸収率のテーブルから上記初期条件に対応した基準総括熱吸収率を選択して求めてもよい。   This standard overall heat absorption rate may be obtained by actually measuring the temperature when the steel material is actually heated at a predetermined combustion amount in a heating furnace and calculating from this measurement value. The reference overall heat absorption rate corresponding to the initial condition may be selected from the table and obtained.

ここで、加熱炉内の搬送方向位置dにおける総括熱吸収率φCG(d)は下記式(1)の関係における係数である。 Here, the overall heat absorption rate φ CG (d) at the conveyance direction position d in the heating furnace is a coefficient in the relationship of the following formula (1).

Figure 2018003084
Figure 2018003084

上記式(1)中、q[W/m]は鋼材への熱流束、δ[W/m/K]はステファンボルツマン定数、T[K]は炉内温度、T[K]は鋼材表面温度である。 In the above formula (1), q [W / m 2 ] is the heat flux to the steel material, δ [W / m 2 / K 4 ] is the Stefan-Boltzmann constant, T f [K] is the furnace temperature, and T s [K ] Is the steel surface temperature.

基準総括熱吸収率を鋼材表面温度の実測値から求める場合、温度は例えば熱電対で測定することができる。得られた鋼材温度と、炉内温度、入熱量等とを用いて、式(1)から総括熱吸収率φCGを算出し、基準総括熱吸収率とする。 When the standard overall heat absorption rate is obtained from the actual measured value of the steel surface temperature, the temperature can be measured, for example, with a thermocouple. Using the obtained steel material temperature, furnace temperature, heat input, and the like, the overall heat absorption rate φ CG is calculated from the equation (1), and set as the reference overall heat absorption rate.

ここで、バーナーの総燃焼量は、燃焼しているバーナーの数(以下、「バーナーの燃焼数」ともいう)とバーナー1本当たりの燃焼負荷の積で表される。鋼材長手方向と同方向に火炎が延びている場合、1本当たりの燃焼負荷の変化は小さく、総燃焼量はバーナーの燃焼数に比例するとみなせる。なお、1本当たりの燃焼負荷の変化が大きい場合も、燃焼負荷に応じて総括熱吸収率を与えれば、同様に扱うことが出来るため、このような場合も、本発明の意図する範囲である。そのため、バーナーの燃焼数を用いて制御を行うこと、つまりバーナーの燃焼数が所定(基準値)の時の基準総括熱吸収率を求めることで、当該鋼材の温度予測方法の制御を容易にすることができる。基準総括熱吸収率におけるバーナーの燃焼数(所定の燃焼数)は限定されないが、後述する総括熱吸収率の補正を容易かつ確実に行う観点から、燃焼数は1以上とすることが好ましい。特に、図2及び図3に示すように対向する複数対のバーナーを用いる場合は、対となるバーナーの燃焼のオンオフを一括制御することが好ましいため、燃焼数は1対のバーナーを制御単位として決定するとよい。   Here, the total combustion amount of the burner is represented by the product of the number of burners burned (hereinafter also referred to as “burner combustion number”) and the combustion load per burner. When the flame extends in the same direction as the longitudinal direction of the steel material, the change in the combustion load per piece is small, and the total amount of combustion can be regarded as being proportional to the number of burners burned. In addition, even when the change of the combustion load per one is large, if the overall heat absorption rate is given according to the combustion load, it can be handled in the same manner, and such a case is also within the intended range of the present invention. . Therefore, by controlling using the burner combustion number, that is, by obtaining the reference overall heat absorption rate when the burner combustion number is a predetermined (reference value), the control of the temperature prediction method of the steel material is facilitated. be able to. The burner combustion number (predetermined combustion number) in the reference overall heat absorption rate is not limited, but the number of combustions is preferably 1 or more from the viewpoint of easily and reliably correcting the overall heat absorption rate described later. In particular, when multiple pairs of opposed burners are used as shown in FIGS. 2 and 3, it is preferable to collectively control the on / off of combustion of the paired burners. It is good to decide.

<補正総括熱吸収率取得工程>
補正総括熱吸収率取得工程S3では、取得した基準総括熱吸収率を現在のバーナーの総燃焼量に応じて補正することで、現在のバーナー燃焼状態に対応する補正後の総括熱吸収率(補正総括熱吸収率)を取得する。なお、上述のように1つのバーナーの燃焼量が一定の場合は、バーナーの燃焼数に基づく補正を行うとよい。
<Correction general heat absorption rate acquisition process>
In the corrected overall heat absorption rate acquisition step S3, the obtained reference overall heat absorption rate is corrected in accordance with the current total burner combustion amount, thereby correcting the overall overall heat absorption rate (corrected) corresponding to the current burner combustion state. Obtain the overall heat absorption rate. As described above, when the combustion amount of one burner is constant, correction based on the number of combustions of the burner may be performed.

ここで、鋼材がバーナーに近づくと、バーナー火炎の影響が大きくなり、鋼材への入熱量は増加する。一方、鋼材がバーナーから離れると、鋼材への入熱量は低下する。従って、燃焼しているバーナーと鋼材との距離により総括熱吸収率を補正することで、温度予測の精度を高めることができる。そのため、補正総括熱吸収率取得工程では、鋼材とバーナーとの搬送方向距離を考慮して基準総括熱吸収率が補正された補正総括熱吸収率を取得する。   Here, when a steel material approaches a burner, the influence of a burner flame becomes large and the amount of heat input to the steel material increases. On the other hand, when the steel material is separated from the burner, the heat input to the steel material decreases. Therefore, the accuracy of temperature prediction can be improved by correcting the overall heat absorption rate based on the distance between the burning burner and the steel material. Therefore, in the corrected overall heat absorption rate acquisition step, a corrected overall heat absorption rate in which the reference overall heat absorption rate is corrected in consideration of the conveyance direction distance between the steel material and the burner is acquired.

補正総括熱吸収率は、基準総括熱吸収率を後述する手順の計算により補正することで求めてもよいし、予め算出した補正総括熱吸収率のテーブルからバーナーの総燃焼量(燃焼数)に対応した補正総括熱吸収率を選択して求めてもよい。   The corrected overall heat absorption rate may be obtained by correcting the reference overall heat absorption rate by calculation in the procedure described later, or the burner total combustion amount (combustion number) is calculated from the previously calculated corrected overall heat absorption rate table. A corresponding corrected overall heat absorption rate may be selected and obtained.

計算により基準総括熱吸収率を補正することで補正総括熱吸収率を求める手順の一例として、鋼材とバーナーとの搬送方向距離により決まる補正係数を基準総括熱吸収率に乗算する方法が好適に使用できる。具体的には、例えば下記式(2)で表される加熱炉内の搬送方向位置dにおける補正係数F(d)を求める。   As an example of the procedure for obtaining the corrected overall heat absorption rate by correcting the reference overall heat absorption rate by calculation, the method of multiplying the reference overall heat absorption rate by a correction coefficient determined by the distance in the conveyance direction between the steel and the burner is preferably used. it can. More specifically, for example, a correction coefficient F (d) at the conveyance direction position d in the heating furnace represented by the following formula (2) is obtained.

Figure 2018003084
Figure 2018003084

上記式(2)中、nは燃焼中のバーナー対の数である。bは燃焼中のi番目のバーナー対の加熱炉内の搬送方向位置である。Kは、i番目のバーナー対毎に設定される係数である。C,C,C,Cは係数である。K及びC,C,C,Cは、鋼材温度の実測を行い、実測値と予測値との偏差が小さくなるように予め決定される定数である。これらのパラメータは、具体的には、基準総括熱吸収率を算出した場合と異なるあるバーナーの燃焼条件において、鋼材測温実験を行い、測温結果を活用して決定することができる。なお、Kは燃焼中のバーナー対の数nが1の場合は1とすることができる。 In the above formula (2), n is the number of burner pairs during combustion. b i is the position in the conveying direction of the i-th burner pair during combustion in the heating furnace. K i is a coefficient set for each i-th burner pair. C 1 , C 2 , C 3 , and C 4 are coefficients. K i and C 1 , C 2 , C 3 , and C 4 are constants determined in advance so that the deviation between the actually measured value and the predicted value becomes small by actually measuring the steel material temperature. Specifically, these parameters can be determined by conducting a temperature measurement experiment on steel under a certain burner combustion condition different from the case where the reference overall heat absorption rate is calculated, and utilizing the temperature measurement result. K i can be 1 when the number n of burner pairs during combustion is 1.

式(2)で求めた補正係数F(d)により、加熱炉内の搬送方向位置dにおける補正総括熱吸収率φCG NEW(d)は、下記式(3)により算出される。 Based on the correction coefficient F (d) obtained by the equation (2), the corrected overall heat absorption rate φ CG NEW (d) at the conveyance direction position d in the heating furnace is calculated by the following equation (3).

Figure 2018003084
Figure 2018003084

上記式(3)中、φCG ST(d)は、基準総括熱吸収率取得工程S2で取得した基準総括熱吸収率である。 In the above formula (3), φ CG ST (d) is the reference overall heat absorption rate acquired in the reference overall heat absorption rate acquisition step S2.

<温度予測工程>
温度予測工程S4では、補正総括熱吸収率取得工程S3で取得した補正総括熱吸収率に基づき、加熱炉内の搬送方向位置dでの鋼材の温度を予測する。
<Temperature prediction process>
In the temperature prediction step S4, the temperature of the steel material at the transport direction position d in the heating furnace is predicted based on the corrected overall heat absorption rate acquired in the corrected overall heat absorption rate acquisition step S3.

温度予測の方法としては、公知の二次元熱伝導方程式を用い、上記(1)式及び初期条件設定工程S1で設定した条件を境界条件として搬送方向位置dにおける鋼材の表面から内部までの温度分布を求める。上記二次元熱伝導方程式は、下記式(4)で表される。   As a temperature prediction method, a known two-dimensional heat conduction equation is used, and the temperature distribution from the surface to the inside of the steel material at the transport direction position d using the conditions set in the above equation (1) and the initial condition setting step S1 as boundary conditions. Ask for. The two-dimensional heat conduction equation is represented by the following formula (4).

Figure 2018003084
Figure 2018003084

上記式(4)中、ρ[g/m]は鋼材の密度、c[J/g/K]は鋼材の比熱、T[K]は鋼材の温度[K]、δtは微小時間[s]、δx、δyは微小区間[m]、λx、λy[W/m/K]はx方向又はy方向の熱伝導率である。 In the above formula (4), ρ [g / m 3 ] is the density of the steel material, c [J / g / K] is the specific heat of the steel material, T [K] is the temperature of the steel material [K], and δt is the minute time [s. ], [Delta] x, [delta] y are micro sections [m], [lambda] x, [lambda] y [W / m / K] are the thermal conductivities in the x direction or y direction.

なお、補正総括熱吸収率は、鋼材の部位ごとに求めることが好ましい。例えば図2及び図3の加熱炉で鋼材を加熱する場合、鋼材の上面、下面及び側面で別々に補正総括熱吸収率を取得することが好ましい。   In addition, it is preferable to obtain | require a correction | amendment general heat absorption rate for every site | part of steel materials. For example, when the steel material is heated in the heating furnace shown in FIGS. 2 and 3, it is preferable to obtain the corrected overall heat absorption rate separately on the upper surface, the lower surface and the side surface of the steel material.

このような温度予測を鋼材の複数点においてその搬送方向位置d毎に行うことで、加熱炉内での鋼材の温度の変化予測を得ることができる。   By performing such temperature prediction at each of the conveyance direction positions d at a plurality of points of the steel material, it is possible to obtain a temperature change prediction of the steel material in the heating furnace.

当該鋼材の温度予測方法は、加熱炉内の鋼材温度を比較的高い精度で予測できるので、鋼材の予測温度に基づいて温度履歴を制御する工程を有する鋼材の加熱方法や、この加熱方法を用いる鋼材の製造方法に好適に適用できる。   Since the steel material temperature prediction method can predict the steel material temperature in the heating furnace with relatively high accuracy, the steel material heating method having a step of controlling the temperature history based on the predicted temperature of the steel material, or this heating method is used. It can be suitably applied to a method for manufacturing a steel material.

[利点]
当該鋼材の温度予測方法は、バーナー総燃焼量が所定のときの基準総括熱吸収率に対し、鋼材とバーナーとの搬送方向距離を用いて補正を行うことで、バーナー総燃焼量が変わった場合にも計算負荷を高めることなく比較的高い精度で鋼材温度を予測することができる。
[advantage]
The temperature prediction method for the steel material is based on the case where the burner total combustion amount has changed by correcting the reference overall heat absorption rate when the total burner combustion amount is predetermined using the distance in the conveyance direction between the steel material and the burner. In addition, the steel temperature can be predicted with relatively high accuracy without increasing the calculation load.

[その他の実施形態]
本発明の鋼材の温度予測方法は、上記実施形態に限定されるものではない。例えば、当該鋼材の温度予測方法は必要に応じて上述以外の工程を備えてもよい。
[Other Embodiments]
The method for predicting the temperature of the steel material of the present invention is not limited to the above embodiment. For example, the temperature prediction method for the steel material may include steps other than those described above as necessary.

以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。   EXAMPLES Hereinafter, although this invention is explained in full detail based on an Example, this invention is not interpreted limitedly based on description of this Example.

厚さ(搬送面と垂直方向の寸法)155mm、幅(搬送方向の寸法)155mm、ある長さ(搬送方向及び搬送面と垂直方向の寸法)の鋼材に対し、図2及び図3に示す構成の加熱炉を用い、下方の2対のバーナー1aのうち、抽出側(出口側)の1対のバーナーのみを燃焼させた状態で加熱を行った。この条件で加熱中の鋼材に対し、上面から25mm(A)、77.5mm(B)及び130mm(C)の3点の温度予測と、温度実測とを行った。   2 and 3 for a steel material having a thickness (dimension in the direction perpendicular to the conveyance surface) 155 mm, width (dimension in the conveyance direction) 155 mm, and a certain length (dimension in the conveyance direction and the direction perpendicular to the conveyance surface). The heating furnace was used in a state where only one pair of burners on the extraction side (exit side) was burned out of the two pairs of lower burners 1a. Under this condition, the steel material being heated was subjected to temperature prediction at three points of 25 mm (A), 77.5 mm (B), and 130 mm (C) from the upper surface, and temperature measurement.

具体的には、まず基準総括熱吸収率として、図2及び図3のバーナーを全て燃焼させた状態での鋼材の実測温度から、鋼材長さ方向中央部での上面及び下面の総括熱吸収率を算出した。   Specifically, first, as the reference overall heat absorption rate, the overall heat absorption rate of the upper surface and the lower surface in the central portion in the length direction of the steel material from the measured temperature of the steel material in a state where all the burners of FIGS. 2 and 3 are burned. Was calculated.

次に、上記式(2)中のパラメータを以下のようにして決定した。なお、以下では加熱炉内の搬送方向位置(座標)dを0〜1.00とした。   Next, the parameters in the above formula (2) were determined as follows. In the following, the conveyance direction position (coordinates) d in the heating furnace is set to 0 to 1.00.

まず、基準総括熱吸収率を算出した場合と異なるバーナーの燃焼数における鋼材の実測温度から、特にバーナー付近における鋼材の実測温度と、補正総括熱吸収率を用いた予測温度との偏差が0℃に近づくように、上記式(2)におけるK及びC、C、C、Cを決定した。具体的には、図2及び図3のバーナーのうち、上方のバーナーを燃焼させず、下方の2対のバーナーのみを燃焼させた状態で鋼材測温を行った。この測温結果に対し、式(2)におけるK及びC、C、C、CをK=1、C=1、C=0.05、C=1、C=2とすることで、図4に示すように、上面から25mmの点において、鋼材の実測温度と予測温度との偏差が0℃に近づくように調整することができた。 First, the deviation between the measured temperature of the steel material at the burner combustion number different from that in the case of calculating the standard overall heat absorption rate, particularly the estimated temperature of the steel material near the burner and the predicted temperature using the corrected overall heat absorption rate is 0 ° C. K i and C 1 , C 2 , C 3 , and C 4 in the above formula (2) were determined so as to approach. Specifically, among the burners of FIGS. 2 and 3, the steel material temperature measurement was performed in a state where only the lower two burners were burned without burning the upper burner. For this temperature measurement result, K i and C 1 , C 2 , C 3 , C 4 in Equation (2) are changed to K 1 = 1, C 1 = 1, C 2 = 0.05, C 3 = 1, C By setting 4 = 2, as shown in FIG. 4, it was possible to adjust the deviation between the measured temperature and the predicted temperature of the steel material to approach 0 ° C. at a point 25 mm from the upper surface.

なお、上方バーナーの搬送方向位置(座標)は0.96であり、また、バーナーの燃焼数は1対であるため、上記式(2)において、b=0.96、n=1と与えた。   In addition, since the conveyance direction position (coordinates) of the upper burner is 0.96, and the burner has one pair of combustion numbers, b = 0.96 and n = 1 are given in the above equation (2). .

上記と同様の方法を用いて、上面から130mmの点において、鋼材の実測温度と予測温度との偏差が0℃に近づくように調整を行い、下面における式(2)におけるK及びC、C、C、CをK=1、C=1、C=0.05、C=1、C=2と決定した。 Using a similar method to that described above in that the top surface of 130 mm, to adjust so that the deviation of the measured temperature of the steel material and the predicted temperature approaches 0 ° C., K i and C 1 in Formula (2) in the lower surface, C 2 , C 3 , C 4 were determined as K 1 = 1, C 1 = 1, C 2 = 0.05, C 3 = 1, C 4 = 2.

なお、燃焼を行っていない下方バーナーの搬送方向位置(座標)は0.80であり、また、抽出側の下方バーナーのみを燃焼させているため、式(2)において、b=0.80、n=1と与えた。   In addition, since the conveyance direction position (coordinates) of the lower burner not performing combustion is 0.80, and only the lower burner on the extraction side is burned, in equation (2), b = 0.80, n = 1.

次に、図2及び図3のバーナーのうち、下方の2対のバーナー1aのうち、抽出側の1対のバーナーのみを燃焼させた状態の上面及び下面の補正係数F(d)を上記K及びC、C、C、C並びにn、bの値を用いて上記式(2)によりそれぞれ求めた。この補正係数を図5に示す。さらに、補正総括熱吸収率を上記式(3)により算出した。得られた補正総括熱吸収率と基準総括熱吸収率とを図6に合わせて示す。 Next, the correction coefficient F (d) of the upper surface and the lower surface in a state where only one pair of burners on the extraction side in the lower two pairs of burners 1a among the two pairs of burners of FIGS. i and C 1, C 2, C 3 , C 4 and n, using the value of b respectively determined by the above formula (2). This correction coefficient is shown in FIG. Further, the corrected overall heat absorption rate was calculated by the above formula (3). The obtained corrected overall heat absorption rate and reference overall heat absorption rate are shown together in FIG.

最後に、上記補正総括熱吸収率を用いて上記3点の温度を上記式(4)を用いて予測し、実測値と比較した。なお、鋼材側面の総括熱吸収率は、上面及び下面の総括熱吸収率の平均値とした。この結果を図7に示す。図7中の「実施例」は補正総括熱吸収率を用いて温度予測を行ったものであり、「比較例」は基準総括熱吸収率をそのまま用いて温度予測を行ったものである。また、実測値と予測値との偏差が20℃以内の領域割合を上記3点ごとに求めた結果を表1に示す。   Finally, the temperature at the three points was predicted using the above equation (4) using the corrected overall heat absorption rate, and compared with the actually measured value. In addition, the overall heat absorption rate of the steel material side surface was an average value of the overall heat absorption rate of the upper surface and the lower surface. The result is shown in FIG. “Example” in FIG. 7 is a temperature prediction using the corrected overall heat absorption rate, and “Comparative example” is a temperature prediction using the reference overall heat absorption rate as it is. In addition, Table 1 shows the results of determining the area ratio within 20 ° C. between the measured value and the predicted value for each of the three points.

Figure 2018003084
Figure 2018003084

図7及び表1の結果から、鋼材と燃焼中のバーナーとの搬送方向距離を用いて基準総括熱吸収率を補正することで、実測値との偏差が小さくなり、予測精度を大きく向上できることがわかる。   From the results of FIG. 7 and Table 1, by correcting the reference overall heat absorption rate using the transport direction distance between the steel material and the burning burner, the deviation from the actual measurement value can be reduced, and the prediction accuracy can be greatly improved. Recognize.

当該鋼材の温度予測方法は、バーナーの総燃焼量が変わった場合にも加熱炉内の鋼材温度を精度良く予測できるので、加熱工程を伴う種々の鋼材の製造に好適に適用できる。   Since the steel material temperature prediction method can accurately predict the steel material temperature in the heating furnace even when the total combustion amount of the burner is changed, it can be suitably applied to the production of various steel materials that involve a heating process.

1a、1b バーナー
10 搬送面
A 鋼材
S1 初期条件設定工程
S2 基準総括熱吸収率取得工程
S3 補正総括熱吸収率取得工程
S4 温度予測工程
1a, 1b Burner 10 Conveying surface A Steel S1 Initial condition setting step S2 Standard overall heat absorption rate acquisition step S3 Correction overall heat absorption rate acquisition step S4 Temperature prediction step

Claims (1)

火口の中心軸が水平かつ鋼材の搬送方向と垂直方向となるよう配設される複数のバーナーを備える加熱炉内の鋼材の温度予測方法であって、
上記バーナーの総燃焼量が所定のときの加熱炉内の炉長方向における各位置での鋼材の基準総括熱吸収率を取得する工程と、
上記バーナーの総燃焼量に基づき上記基準総括熱吸収率を補正した補正総括熱吸収率を取得する工程と、
上記補正総括熱吸収率に基づき加熱炉内の炉長方向における各位置での鋼材の温度を予測する工程と
を備え、
上記補正を鋼材と上記バーナーとの搬送方向距離を用いて行うことを特徴とする鋼材の温度予測方法。
A method for predicting the temperature of a steel material in a heating furnace comprising a plurality of burners arranged such that the central axis of the crater is horizontal and perpendicular to the conveying direction of the steel material,
Obtaining a standard overall heat absorption rate of the steel at each position in the furnace length direction in the heating furnace when the total combustion amount of the burner is predetermined;
Obtaining a corrected overall heat absorption rate obtained by correcting the reference overall heat absorption rate based on the total combustion amount of the burner;
A step of predicting the temperature of the steel material at each position in the furnace length direction in the furnace based on the corrected overall heat absorption rate,
A method for predicting a temperature of a steel material, wherein the correction is performed using a conveyance direction distance between the steel material and the burner.
JP2016130264A 2016-06-30 2016-06-30 Method for predicting the temperature of steel material Pending JP2018003084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016130264A JP2018003084A (en) 2016-06-30 2016-06-30 Method for predicting the temperature of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016130264A JP2018003084A (en) 2016-06-30 2016-06-30 Method for predicting the temperature of steel material

Publications (1)

Publication Number Publication Date
JP2018003084A true JP2018003084A (en) 2018-01-11

Family

ID=60947745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016130264A Pending JP2018003084A (en) 2016-06-30 2016-06-30 Method for predicting the temperature of steel material

Country Status (1)

Country Link
JP (1) JP2018003084A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115512455A (en) * 2022-09-22 2022-12-23 济南汉升节能技术有限公司 Heating furnace steel billet temperature prediction method integrating mechanism and model migration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115512455A (en) * 2022-09-22 2022-12-23 济南汉升节能技术有限公司 Heating furnace steel billet temperature prediction method integrating mechanism and model migration
CN115512455B (en) * 2022-09-22 2023-07-25 济南汉升节能技术有限公司 Heating furnace billet temperature prediction method integrating mechanism and model migration

Similar Documents

Publication Publication Date Title
CN104073623B (en) A kind of roller bottom type annealing furnace temperature-controlled process
KR101956365B1 (en) System for control temperature pattern of strip in continuous annealing line and the method of the same
KR102122143B1 (en) Steel plate temperature control device and temperature control method
JP6035817B2 (en) Automatic combustion control method and apparatus for continuous heating furnace
JP2008024966A (en) Method for controlling furnace temperature in continuous type heating furnace, and method for producing steel material
JP2018003084A (en) Method for predicting the temperature of steel material
JP6797759B2 (en) Steel material temperature prediction method
JP4998655B2 (en) Combustion control method for continuous heating furnace
US10619925B2 (en) Heating device for hot stamping
JP2011173153A (en) Cooling controller for thick steel plate, cooling control method, and manufacturing method
JP6631824B1 (en) Heating method of steel sheet and continuous annealing equipment in continuous annealing
JP7225066B2 (en) Steel temperature prediction method
KR101746036B1 (en) An apparatus and a method for measuring the temprature of material
JP2006274401A (en) Method for automatically controlling combustion in continuous heating furnace
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
KR20130034946A (en) Burning control method of heating furnace
JP5509965B2 (en) Casting heating method
JP2010150614A (en) Heating furnace and heating method
KR101225785B1 (en) Temperature control method of heating furnace
KR101676203B1 (en) Heat treatment method of stainless steel slab
JP2005105291A (en) Steel manufacturing method
KR101863847B1 (en) Predictive control method of continuous reheating furnace
JP4864337B2 (en) Control method of walking beam type heating furnace
JP2023125249A (en) Correction device and correction method for slab temperature model, furnace temperature control device and furnace temperature control method for heating furnace and manufacturing method of steel plate
JP2023125248A (en) Correction device and correction method for slab temperature model, furnace temperature control device and furnace temperature control method for heating furnace and manufacturing method of steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200721