JP4864337B2 - Control method of walking beam type heating furnace - Google Patents

Control method of walking beam type heating furnace Download PDF

Info

Publication number
JP4864337B2
JP4864337B2 JP2005091962A JP2005091962A JP4864337B2 JP 4864337 B2 JP4864337 B2 JP 4864337B2 JP 2005091962 A JP2005091962 A JP 2005091962A JP 2005091962 A JP2005091962 A JP 2005091962A JP 4864337 B2 JP4864337 B2 JP 4864337B2
Authority
JP
Japan
Prior art keywords
temperature
furnace
steel slab
skid
surface temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005091962A
Other languages
Japanese (ja)
Other versions
JP2006274307A (en
Inventor
祐二 平本
基 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005091962A priority Critical patent/JP4864337B2/en
Publication of JP2006274307A publication Critical patent/JP2006274307A/en
Application granted granted Critical
Publication of JP4864337B2 publication Critical patent/JP4864337B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

本発明は,ウォーキングビーム式の加熱炉を制御するための方法に関する。   The present invention relates to a method for controlling a walking beam furnace.

従来より,鋼片の圧延ラインにおける圧延中に鋼片の反りが発生してしまうという問題が存在する。この反りは,鋼片の厚み方向の種々の非対称性に起因するが,その中でも特に大きな原因は鋼片の厚み方向の温度差である。鋼片の厚み方向に温度差がある場合,鋼片を圧延する際に,Ar変態点を境にγ相(オーステナイト相)とα相(フェライト相)とが混在すると鋼片の厚み方向の変形抵抗に差が生じて鋼片が反ってしまう。例えば,鋼片を圧延する前にウォーキングビーム式の加熱炉内で加熱する場合,固定式スキッド及び移動式スキッドを用いて鋼片を移動させるので,スキッドと接触する鋼片の下面温度が鋼片の上面温度よりも低くなり,反りが生じてしまう場合がある。 Conventionally, there has been a problem that the billet is warped during rolling in the billet rolling line. This warpage is caused by various asymmetries in the thickness direction of the steel slab, but among them, the major cause is the temperature difference in the thickness direction of the steel slab. When there is a temperature difference in the thickness direction of the billet, when rolling the billet, if the γ phase (austenite phase) and the α phase (ferrite phase) coexist at the Ar 3 transformation point, the thickness direction of the billet A difference occurs in the deformation resistance and the steel piece is warped. For example, when a slab is heated in a walking beam type furnace before rolling, the steel slab is moved using a stationary skid and a mobile skid, so that the bottom surface temperature of the slab in contact with the skid is In some cases, the temperature of the upper surface of the substrate becomes lower and warpage occurs.

上述の問題を解決するために,特許文献1では,まず,下部炉温の値等から算出される加熱炉内の鋼片の平均温度を求める。そして,この平均温度を利用して鋼片の上下面温度差を所定の値に近づけて,鋼片の上下面の温度差をなくし,反りの発生を防止している。   In order to solve the above-mentioned problem, in Patent Document 1, first, an average temperature of the steel slabs in the heating furnace calculated from the value of the lower furnace temperature and the like is obtained. The average temperature is used to bring the temperature difference between the upper and lower surfaces of the steel slab closer to a predetermined value, thereby eliminating the temperature difference between the upper and lower surfaces of the steel slab and preventing warpage.

また,特許文献2では,加熱炉内の被加熱材の抽出時の予想抽出温度,予想表裏温度差等を下部炉温の値等から求め,これらの値を利用して鋼片の上下面の温度差をなくし,反りの発生を防止している。
特開昭62−174325号公報 特開平5−255762号公報
Also, in Patent Document 2, the expected extraction temperature at the time of extraction of the material to be heated in the heating furnace, the expected front / back temperature difference, etc. are obtained from the value of the lower furnace temperature, etc., and these values are used to determine the upper and lower surfaces of the steel slab. The temperature difference is eliminated to prevent warping.
JP-A-62-174325 JP-A-5-255762

しかしながら,上記特許文献1では,下部炉温の値から算出される鋼片の平均温度を用いて加熱炉の出力の制御を行っているので,加熱炉の設定温度に大きな誤差が生じる恐れがある。通常下部炉温を測定する際には,加熱炉の炉側壁下部に設けられている温度センサを用いて炉内下部雰囲気の温度を測定している。この温度センサが測定する炉内下部雰囲気は,炉側壁付近の鋼片端部や,炉内下部に設けられたスキッド等の影響を強く受ける。即ち,測定される炉内下部雰囲気の温度は,各鋼片の鋼片長が異なることに起因する鋼片端部の変動や,鋼片を移動させるためのスキッドの移動等を原因とする外乱の影響を強く受けている。従って,この炉内下部雰囲気の温度に基づいて算出される鋼片の平均温度や上下面温度差は,誤差が生じやすく,その平均温度や上下面温度差に基づいて行われる加熱炉の温度制御は,不安定になる。   However, in the above-mentioned Patent Document 1, since the output of the heating furnace is controlled using the average temperature of the steel slab calculated from the value of the lower furnace temperature, there is a possibility that a large error occurs in the set temperature of the heating furnace. . Usually, when the temperature of the lower furnace is measured, the temperature of the lower atmosphere in the furnace is measured using a temperature sensor provided in the lower part of the furnace side wall of the heating furnace. The atmosphere in the lower part of the furnace measured by this temperature sensor is strongly influenced by the end of the steel slab near the furnace side wall and the skid provided in the lower part of the furnace. In other words, the temperature of the lower atmosphere in the furnace measured is affected by disturbances caused by fluctuations in the end of the slab due to the difference in the slab length of each slab, movement of the skid for moving the slab, etc. Strongly received. Therefore, the average slab temperature and the upper and lower surface temperature difference calculated based on the temperature in the lower atmosphere of the furnace are prone to errors, and the temperature control of the heating furnace is performed based on the average temperature and upper and lower surface temperature difference. Becomes unstable.

上記特許文献2においても,下部炉温の値に基づいて被加熱材の抽出時の内部温度分布を算出してから,出力制御のための設定炉温を求めている。従って,この場合も同様に,下部炉温に基づいて算出される内部温度分布や設定炉温に誤差が生じ,炉の温度制御が不安定になる。   Also in the said patent document 2, after calculating the internal temperature distribution at the time of extraction of a to-be-heated material based on the value of a lower furnace temperature, the preset furnace temperature for output control is calculated | required. Accordingly, in this case as well, an error occurs in the internal temperature distribution calculated based on the lower furnace temperature and the set furnace temperature, and the furnace temperature control becomes unstable.

本発明は上記課題に鑑みてなされたものであり,ウォーキングビーム式の加熱炉の温度制御をする際に,誤差の少ない安定した制御を可能にするウォーキングビーム式の加熱炉の制御方法を提供することをその目的とする。   The present invention has been made in view of the above problems, and provides a walking beam heating furnace control method that enables stable control with few errors when controlling the temperature of a walking beam heating furnace. That is the purpose.

上記課題を解決するために,本発明によれば,炉内の鋼片をスキッドによって所定方向に移動させながら炉内の上部と下部に設けられた加熱装置により加熱するウォーキングビーム式の加熱炉において,前記鋼片より上側の炉内上部雰囲気の温度を測定し,当該炉内上部雰囲気の温度に基づいて,鉛直下方に前記スキッドが配置されていない位置の前記鋼片の上面温度を算出し,当該上面温度を目標上面温度に近づけるように前記炉内上部の前記加熱装置の出力を調整する工程と,前記鋼片より下側の炉内下部雰囲気の温度を測定し,当該炉内下部雰囲気の温度に基づいて,前記スキッドに接触する位置の前記鋼片の下面温度を算出し,当該鋼片の下面温度を目標下面温度に近づけるように前記炉内下部の前記加熱装置の出力を調整する工程とを有し,前記鋼片が,質量%でCを0.01%以下含み,前記鋼片のAr 変態温度をT Ar3 ℃として,前記目標上面温度X℃と前記目標下面温度(X−Y)℃とが,0<Y<X−(T Ar3 +60)を満たすように設定されることを特徴とするウォーキングビーム式の加熱炉の制御方法が提供される。 In order to solve the above-described problems, according to the present invention, in a walking beam type heating furnace in which a steel piece in a furnace is moved by a skid in a predetermined direction and heated by heating devices provided at an upper part and a lower part in the furnace. , Measuring the temperature of the upper atmosphere in the furnace above the steel slab, and calculating the upper surface temperature of the steel slab at a position where the skid is not disposed vertically below, based on the temperature of the upper atmosphere in the furnace, Adjusting the output of the heating device in the upper part of the furnace so that the upper surface temperature approaches the target upper surface temperature, and measuring the temperature of the lower atmosphere in the furnace below the steel slab, Calculating the bottom surface temperature of the steel slab at a position in contact with the skid based on the temperature, and adjusting the output of the heating device at the lower part in the furnace so that the bottom surface temperature of the steel slab approaches the target bottom surface temperature Have a said steel strip comprises 0.01% of C in mass%, the Ar 3 transformation temperature of the steel strip as T Ar @ 3 ° C., the target upper surface temperature X ° C. and the target bottom surface temperature (X-Y ) ° C. is set so as to satisfy 0 <Y <X− (T Ar3 +60) . A method of controlling a walking beam heating furnace is provided.

また,上記制御方法において,前記炉内上部雰囲気の温度を測定する際には,前記加熱炉の幅方向の中央付近であって,前記鉛直下方に前記スキッドが配置されていない位置の上方の前記炉内上部雰囲気の温度を測定し,前記炉内下部雰囲気の温度を測定する際には,前記炉内側壁部付近の前記炉内下部雰囲気の温度を測定するようにしてよい。 Further, in the above control method, when measuring the temperature of the upper atmosphere in the furnace, the temperature is near the center in the width direction of the heating furnace and above the position where the skid is not arranged vertically below. When the temperature of the upper atmosphere in the furnace is measured and the temperature of the lower atmosphere in the furnace is measured, the temperature of the lower atmosphere in the furnace near the inner wall of the furnace may be measured.

本発明によれば,ウォーキングビーム式の加熱炉の温度制御をする際に,誤差の少ない安定した制御が可能になる。   According to the present invention, stable control with few errors can be performed when controlling the temperature of a walking beam type heating furnace.

以下,図面を参照しながら,本発明の好適な実施形態について説明をする。なお,本明細書及び図面において,実質的に同一の機能構成を有する要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図1は,本発明の実施の形態に係るウォーキングビーム式の加熱炉の制御方法を適用したウォーキングビーム式の加熱炉1の説明図である。この加熱炉1は,圧延する前の鋼片10を,所定温度まで加熱するものである。図1に示すように,加熱炉1は,鋼片10の搬送方向(図1の加熱炉1の長手方向Y)に沿って,予熱帯12,加熱帯13及び均熱帯14を順に備えている。図2は,加熱炉1の平面図である。図1及び図2に示すように,加熱炉1の内部には,細長形状の複数の固定式スキッド15と移動式スキッド16が設けられている。固定式スキッド15と移動式スキッド16は,平面から見て,加熱炉1の長手方向Yに沿って平行に配置されている。固定式スキッド15と移動式スキッド16は,加熱炉1の長手方向Yに直交する幅方向Xに向けて,交互に配置されている。固定式スキッド15は,加熱炉1に固定されている。移動式スキッド16は,図1の矢印17a,17b,17c及び17dで示すように,地面に対して平行を維持しながら鉛直面内で周期運動を行うことができる。鋼片10は,固定式スキッド15と移動式スキッド16の上面に,長辺方向が幅方向Xに向くように載置される。以下に説明するように,鋼片10は,移動式スキッド16の周期運動によって,長手方向Yに移動される。   FIG. 1 is an explanatory diagram of a walking beam heating furnace 1 to which a walking beam heating furnace control method according to an embodiment of the present invention is applied. The heating furnace 1 heats a steel slab 10 before rolling to a predetermined temperature. As shown in FIG. 1, the heating furnace 1 includes a pre-tropical zone 12, a heating zone 13, and a soaking zone 14 in order along the conveying direction of the steel slab 10 (longitudinal direction Y of the heating furnace 1 in FIG. 1). . FIG. 2 is a plan view of the heating furnace 1. As shown in FIGS. 1 and 2, a plurality of elongated fixed skids 15 and movable skids 16 are provided inside the heating furnace 1. The fixed skid 15 and the movable skid 16 are arranged in parallel along the longitudinal direction Y of the heating furnace 1 as viewed from above. The fixed skid 15 and the movable skid 16 are alternately arranged in the width direction X orthogonal to the longitudinal direction Y of the heating furnace 1. The fixed skid 15 is fixed to the heating furnace 1. As shown by arrows 17a, 17b, 17c and 17d in FIG. 1, the mobile skid 16 can perform periodic motion in a vertical plane while maintaining parallelism with the ground. The steel piece 10 is placed on the upper surfaces of the fixed skid 15 and the movable skid 16 so that the long side direction is in the width direction X. As will be described below, the steel slab 10 is moved in the longitudinal direction Y by the periodic movement of the movable skid 16.

移動式スキッド16の周期運動を説明する。固定式スキッド15及び移動式スキッド16は,両方とも常にその上面を地面に平行に維持している。まず,最初の状態として,移動式スキッド16が固定式スキッド15よりも低い位置にあり,固定式スキッド15上に複数の鋼片10が載置されている。その状態から矢印17aで示すように,移動式スキッド16が上昇し,固定式スキッド15よりも位置が高くなると,固定式スキッド15上に載置された鋼片10は,移動式スキッド16の上面によって持上げられる。即ち,鋼片10は上昇する移動式スキッド16に支持された状態になる。そして,矢印17bで示すように,移動用スキッド16は,鋼片10と共に加熱炉1の長手方向Yに前進し,その後,矢印17cに示すように下降する。移動式スキッド16が下降して固定式スキッド15よりも位置が低くなると,移動式スキッド16上に支持されていた鋼片10が固定スキッド15の上面に載置される。従って,鋼片10は,最初の位置よりも長手方向Yに進行した位置で固定式スキッド15上に再度,載置されることになる。その後,移動用スキッド16は,矢印17dに示すように,後退して最初の位置に戻る。以下,この運動を繰り返すことによって,鋼片10は,加熱炉1内を長手方向Yに進行していく。   The periodic motion of the mobile skid 16 will be described. Both the fixed skid 15 and the mobile skid 16 always maintain their upper surfaces parallel to the ground. First, as a first state, the movable skid 16 is at a lower position than the fixed skid 15, and a plurality of steel pieces 10 are placed on the fixed skid 15. When the movable skid 16 is lifted and the position becomes higher than the fixed skid 15 from the state as indicated by an arrow 17 a, the steel piece 10 placed on the fixed skid 15 is placed on the upper surface of the movable skid 16. Lifted by. That is, the steel slab 10 is supported by the ascending movable skid 16. Then, as indicated by the arrow 17b, the moving skid 16 advances in the longitudinal direction Y of the heating furnace 1 together with the steel piece 10, and then descends as indicated by the arrow 17c. When the movable skid 16 descends and the position becomes lower than the fixed skid 15, the steel piece 10 supported on the movable skid 16 is placed on the upper surface of the fixed skid 15. Accordingly, the steel piece 10 is placed again on the fixed skid 15 at a position advanced in the longitudinal direction Y from the initial position. Thereafter, the moving skid 16 moves backward and returns to the initial position as indicated by an arrow 17d. Hereinafter, the steel piece 10 advances in the longitudinal direction Y in the heating furnace 1 by repeating this motion.

図1に戻ると,ウォーキングビーム式の加熱炉1の予熱帯12及び加熱帯13の炉内上部には,炉内上部雰囲気の温度を測定するための温度センサとして複数の熱電対18aが,長手方向Yに沿って設けられている。同様に,加熱炉1の均熱帯14の炉内上部にも,炉内上部雰囲気の温度を測定する温度センサとして複数の熱電対18bが設けられている。また,加熱炉1の予熱帯12及び加熱帯13の炉内下部には,炉内下部雰囲気の温度を測定するための温度センサとして複数の熱電対19aが,長手方向Yに沿って設けられている。同様に,加熱炉1の均熱帯14の炉内下部にも,炉内下部雰囲気の温度を測定する温度センサとして複数の熱電対19bが設けられている。   Returning to FIG. 1, a plurality of thermocouples 18 a as longitudinal temperature sensors for measuring the temperature of the atmosphere in the upper part of the furnace are provided in the upper part of the pre-tropical zone 12 and the heating zone 13 of the walking beam type heating furnace 1. It is provided along the direction Y. Similarly, a plurality of thermocouples 18b are provided in the upper part of the soaking zone 14 of the heating furnace 1 as temperature sensors for measuring the temperature of the atmosphere in the upper part of the furnace. A plurality of thermocouples 19 a are provided along the longitudinal direction Y as temperature sensors for measuring the temperature of the atmosphere in the lower part of the furnace in the pre-tropical zone 12 of the heating furnace 1 and the heating zone 13. Yes. Similarly, a plurality of thermocouples 19b are provided in the lower part of the soaking zone 14 of the heating furnace 1 as temperature sensors for measuring the temperature of the atmosphere in the lower part of the furnace.

図3は,炉内上部の熱電対18a,18b及び炉内下部の熱電対19a,19bの詳細な配置状況を示す平面図である。図3に示すように,熱電対18a及び18bは,炉内上部,即ち,炉体11の天井に設けられる。その位置は,加熱炉1の中央付近で,且つ鉛直下方に固定式スキッド15及び移動式スキッド16のいずれもが配置されていない位置である。   FIG. 3 is a plan view showing the detailed arrangement of the thermocouples 18a and 18b in the upper part of the furnace and the thermocouples 19a and 19b in the lower part of the furnace. As shown in FIG. 3, the thermocouples 18 a and 18 b are provided in the upper part of the furnace, that is, on the ceiling of the furnace body 11. The position is a position in the vicinity of the center of the heating furnace 1 where neither the fixed skid 15 nor the movable skid 16 is disposed vertically below.

また,図3に示すように,炉内下部に設けられた熱電対19aは,加熱炉1の炉内側壁に配置されている。このように炉内下部の熱電対19aを加熱炉1の側壁下部に配置することによって,炉内下部雰囲気の温度を測定する際に,鋼片10,固定式スキッド15,又は移動式スキッド16等に起因する破片やゴミ等の悪影響を軽減させることができる。即ち,より安定した炉内下部雰囲気の温度を測定することが可能になる。   As shown in FIG. 3, the thermocouple 19 a provided in the lower part of the furnace is disposed on the inner wall of the heating furnace 1. By arranging the thermocouple 19a in the lower part of the furnace in the lower part of the side wall of the heating furnace 1 in this way, when measuring the temperature of the atmosphere in the lower part of the furnace, the steel slab 10, the fixed skid 15, the movable skid 16, etc. It is possible to reduce the adverse effects such as debris and dust caused by. That is, it becomes possible to measure the temperature of the lower atmosphere in the furnace more stably.

さらに,加熱炉1の予熱帯12及び加熱帯13の炉内上部には,鋼片10を加熱するための加熱装置として複数のバーナ20aが,長手方向Yに沿って設けられている。同様に,加熱炉1の均熱帯14の炉内上部にも,加熱装置としてバーナ20bが設けられている。また,加熱炉1の予熱帯12及び加熱帯13の炉内下部には,加熱装置として複数のバーナ21aが,長手方向Yに沿って設けられている。同様に,加熱炉1の均熱帯14の炉内下部にも,加熱装置としてバーナ21bが設けられている。   Further, a plurality of burners 20 a are provided along the longitudinal direction Y as heating devices for heating the steel slab 10 in the pre-tropical zone 12 of the heating furnace 1 and the upper part of the heating zone 13 in the furnace. Similarly, a burner 20b is provided as a heating device also in the upper part of the soaking zone 14 of the heating furnace 1. Further, a plurality of burners 21 a are provided along the longitudinal direction Y as a heating device in the pre-tropical zone 12 of the heating furnace 1 and the lower part of the heating zone 13 in the furnace. Similarly, a burner 21b is provided as a heating device in the lower part of the soaking zone 14 of the heating furnace 1 as well.

さらに,図1に示すように,加熱炉1の温度制御装置22が,均熱帯14の炉内上部の熱電対18bと,均熱帯14の炉内下部の熱電対19bと,均熱帯14の炉内上部のバーナ20bと,均熱帯14の炉内下部のバーナ21bとに接続されている。   Further, as shown in FIG. 1, the temperature control device 22 of the heating furnace 1 includes a thermocouple 18 b in the upper part of the soaking zone 14, a thermocouple 19 b in the lower part of the soaking zone 14, and a soaking zone 14 furnace. The inner upper burner 20b is connected to the soaking zone 14 lower burner 21b.

温度制御装置22は,炉内上部の熱電対18bによって測定された炉内上部雰囲気の温度に基づいて鋼片10の上面温度を算出し,この鋼片10の上面温度が,鋼片10を加熱炉1から抽出する際の鋼片10の目標上面温度に近づくように,炉内上部のバーナ20bの燃料及び空気量等を調整できる。   The temperature controller 22 calculates the upper surface temperature of the steel slab 10 based on the temperature of the upper atmosphere in the furnace measured by the thermocouple 18b at the upper part of the furnace, and the upper surface temperature of the steel slab 10 heats the steel slab 10. The fuel and air amount of the burner 20b in the upper part of the furnace can be adjusted so as to approach the target upper surface temperature of the steel slab 10 when extracting from the furnace 1.

また,温度制御装置22は,加熱炉1の均熱帯14の炉内部の熱電対19bによって測定された炉内下部雰囲気の温度に基づいて鋼片10の下面温度を算出し,この鋼片10の下面温度が,鋼片10を加熱炉1から抽出する際の鋼片10の目標下面温度に近づくように,加熱炉1の均熱帯14の炉内下部のバーナ21bの燃料及び空気量等を調整できる。 The temperature control unit 22 calculates the lower surface temperature of the steel strip 10 based on the temperature of the thermocouple furnace bottom atmosphere measured by 19b in the furnace bottom portion of the heating furnace 1 in the soaking zone 14, the steel strip 10 so that the bottom surface temperature of the steel plate 10 approaches the target bottom surface temperature of the steel piece 10 when the steel piece 10 is extracted from the heating furnace 1. Can be adjusted.

次に,上述のウォーキングビーム式の加熱炉で行われる制御方法について説明する。   Next, a control method performed in the above-described walking beam type heating furnace will be described.

鋼片10は,例えば,3時間〜3時間半の間,加熱炉1内に滞在する。鋼片10は,図1に示すウォーキングビーム式の加熱炉1内の予熱帯12側から搬入される。このとき予熱帯12の温度は,例えば1100〜1200℃程度に設定される。なお,鋼片10の厚みは,例えば薄すぎると鋼片10の上面温度が鋼片10の下面温度の影響を受け易いので,150mm以上が好ましい。また,鋼片10の幅は,例えば小さすぎると鋼片10の上面温度が鋼片10の端部温度の影響を受け易いので,鋼片10の厚みの4倍以上が好ましい。前述したように,この鋼片10は,予熱帯12内で,固定式スキッド15及び移動式スキッド16(以下,まとめてスキッド15及び16とする)によって,加熱炉1の長手方向Yに移動されながら,バーナ20a,21aで予熱される。この予熱帯12において,鋼片10は,例えば900〜1000℃程度に加熱される。   The steel slab 10 stays in the heating furnace 1 for 3 hours to 3 and a half hours, for example. The steel piece 10 is carried in from the pre-tropical zone 12 in the walking beam type heating furnace 1 shown in FIG. At this time, the temperature of the pre-tropical zone 12 is set to, for example, about 1100 to 1200 ° C. In addition, since the upper surface temperature of the steel slab 10 will be easily influenced by the lower surface temperature of the steel slab 10 if the thickness of the steel slab 10 is too thin, for example, 150 mm or more is preferable. Further, if the width of the steel slab 10 is too small, for example, the upper surface temperature of the steel slab 10 is likely to be affected by the end temperature of the steel slab 10, so that the thickness of the steel slab 10 is preferably four times or more. As described above, the slab 10 is moved in the longitudinal direction Y of the heating furnace 1 by the fixed skid 15 and the movable skid 16 (hereinafter collectively referred to as skids 15 and 16) in the pre-tropical zone 12. However, it is preheated by the burners 20a and 21a. In the pre-tropical zone 12, the steel slab 10 is heated to, for example, about 900 to 1000 ° C.

次に,鋼片10は,スキッド15及び16によって加熱帯13に移動される。このときの加熱帯13は,例えば1100℃程度の温度に設定されている。鋼片10は,加熱帯13内で,スキッド15及び16によって,加熱炉1の長手方向Yに移動されながら,バーナ20a,21aで加熱される。この加熱帯13において,鋼片10は,例えば1100℃程度に加熱される。   Next, the steel piece 10 is moved to the heating zone 13 by the skids 15 and 16. The heating zone 13 at this time is set to a temperature of about 1100 ° C., for example. The steel piece 10 is heated by the burners 20 a and 21 a while being moved in the longitudinal direction Y of the heating furnace 1 by the skids 15 and 16 in the heating zone 13. In the heating zone 13, the steel piece 10 is heated to about 1100 ° C., for example.

次に,鋼片10は,スキッド15及び16によって均熱帯14内で移動される。このときの均熱14は,例えば1050℃程度の温度に設定され,鋼片10は,例えば1100℃前後に加熱される。鋼片10が均熱帯14に滞在する時間は,60分を上回ると鋼片10の上面温度が鋼片10の下面温度の影響を受ける可能性があるので,60分以下に設定するのが好ましい。また,均熱帯14において,鋼片10より上側の炉内上部雰囲気の温度と,鋼片10より下側の炉内下部雰囲気の温度との温度差が50℃を上回ると,均熱帯14の温度バランスが不均一になる可能性があるので,50℃以下に設定するのが好ましい。 Next, the billet 10 is moved within the soaking zone 14 by skids 15 and 16. Soaking zone 14 at this time is, for example, set to a temperature of about 1050 ° C., the steel strip 10 is heated around for example 1100 ° C.. If the slab 10 stays in the soaking zone 14 exceeds 60 minutes, the upper surface temperature of the slab 10 may be affected by the lower surface temperature of the slab 10, so it is preferable to set it to 60 minutes or less. . In the soaking zone 14, if the temperature difference between the temperature in the furnace upper atmosphere above the slab 10 and the temperature in the furnace lower atmosphere below the slab 10 exceeds 50 ° C., the temperature in the soaking zone 14 Since the balance may become non-uniform, it is preferable to set the temperature to 50 ° C. or lower.

均熱帯14内では,温度制御装置22によって,鋼片10より上側の炉内上部雰囲気の温度が,均熱帯14の炉内上部の熱電対18bを用いて測定される。図4は,熱電対18b及び19bを含む均熱帯14の断面図である。図3及び図4に示すように,均熱帯14の炉内上部の熱電対18bは,加熱炉1の幅方向Xの中央付近で,且つ鉛直下方にスキッド15又は16のいずれもが配置されていない位置に設けられている。これらの熱電対18bによって,鋼片10より上側の炉内上部雰囲気の温度が測定される。この炉内上部雰囲気は,その鉛直下方にスキッド15又は16のいずれもが配置されていないので,この炉内上部雰囲気の温度は,スキッド15及び16による熱の外乱の影響が軽減されて安定した値になる。   In the soaking zone 14, the temperature of the upper atmosphere in the furnace above the steel slab 10 is measured by the temperature control device 22 using the thermocouple 18 b in the upper soaking zone of the soaking zone 14. FIG. 4 is a cross-sectional view of the soaking zone 14 including the thermocouples 18b and 19b. As shown in FIGS. 3 and 4, the thermocouple 18 b in the upper part of the furnace of the soaking zone 14 is located near the center in the width direction X of the heating furnace 1, and either the skid 15 or 16 is arranged vertically downward. There is no position. By these thermocouples 18b, the temperature of the upper atmosphere in the furnace above the steel slab 10 is measured. Since neither the skid 15 nor 16 is disposed vertically below the upper atmosphere in the furnace, the temperature of the upper atmosphere in the furnace is stabilized by reducing the influence of thermal disturbance caused by the skids 15 and 16. Value.

次に,温度制御装置22により,炉内上部雰囲気の測定温度に基づいて,鉛直下方にスキッド15又は16のいずれもが配置されていない位置A(図4に示す)の鋼片10の上面温度が算出される。この計算の際には,例えば,「鉄鋼便覧第三版,第III巻の8〜15頁」に記載されている差分による計算方法等を用いてよい。或いは,例えば,特開平5−255762の数1〜数3に記載されているコントロールボリューム法による計算方法等を利用してもよい。通常,鉛直下方にスキッド15又は16が配置されている位置B又はC等の鋼片10の上面温度は,スキッド15又は16による熱の外乱の影響を受けるので非常に不安定である。従って,本願では,鉛直下方にスキッド15又は16のいずれもが配置されていない位置Aの鋼片10の上面温度を測定することで,鋼片10の上面温度の測定値に含まれる誤差を少なくできる。   Next, the upper surface temperature of the steel slab 10 at the position A (shown in FIG. 4) where neither the skid 15 nor 16 is disposed vertically below the temperature control device 22 based on the measured temperature of the upper atmosphere in the furnace. Is calculated. In this calculation, for example, a calculation method using a difference described in “Steel Handbook 3rd Edition, Volume III, pages 8 to 15” may be used. Or you may utilize the calculation method by the control volume method etc. which are described in the formula 1-formula 3 of Unexamined-Japanese-Patent No. 5-255762, for example. Usually, the upper surface temperature of the steel slab 10 such as the position B or C where the skid 15 or 16 is disposed vertically below is very unstable because it is affected by thermal disturbance caused by the skid 15 or 16. Therefore, in the present application, by measuring the upper surface temperature of the steel slab 10 at the position A where neither the skid 15 nor 16 is vertically arranged, the error included in the measured value of the upper surface temperature of the steel slab 10 is reduced. it can.

次に,温度制御装置22により,上述のように算出した鋼片10の上面温度が目標上面温度になるように,均熱帯14内のバーナ20bの燃料及び空気量等が調整される。この目標上面温度は,予め設定されている鋼片抽出温度から求められる。   Next, the fuel, air amount, etc. of the burner 20b in the soaking zone 14 are adjusted by the temperature control device 22 so that the upper surface temperature of the steel piece 10 calculated as described above becomes the target upper surface temperature. This target upper surface temperature is obtained from a preset billet extraction temperature.

また,温度制御装置22によって,均熱帯14の炉内側壁部に設けられた熱電対19bを用いて,鋼片10より下側の炉内下部雰囲気の温度が測定される。この炉内下部雰囲気の測定温度に基づいて,図4に示すスキッド15又は16に接触する位置Dの鋼片10の下面温度が算出される。この計算の際には,例えば,「鉄鋼便覧第三版,第III巻の8〜15頁」に記載されている差分による計算方法等を用いてよい。或いは,例えば,特開平5−255762の数1〜数3に記載されているコントロールボリューム法による計算方法等を利用してもよい。さらに,温度制御装置22により,上述のように算出した鋼片10の下面温度が予め設定されている目標下面温度になるように,均熱帯14内のバーナ21bの燃料及び空気量等が調整される。   Moreover, the temperature of the lower atmosphere in the furnace below the steel slab 10 is measured by the temperature control device 22 using the thermocouple 19b provided on the inner wall of the furnace in the soaking zone 14. Based on the measured temperature of the lower atmosphere in the furnace, the lower surface temperature of the steel piece 10 at the position D in contact with the skid 15 or 16 shown in FIG. 4 is calculated. In this calculation, for example, a calculation method using a difference described in “Steel Handbook 3rd Edition, Volume III, pages 8 to 15” may be used. Or you may utilize the calculation method by the control volume method etc. which are described in the formula 1-formula 3 of Unexamined-Japanese-Patent No. 5-255762, for example. Further, the temperature control device 22 adjusts the fuel and air amount of the burner 21b in the soaking zone 14 so that the lower surface temperature of the steel slab 10 calculated as described above becomes a preset target lower surface temperature. The

以上の実施の形態では,鉛直下方にスキッド15又は16のいずれもが配置されていない位置の鋼片の上面温度に基づいて,炉内上部の加熱装置の出力を調整するようにしたので,鋼片10の上面温度を,より正確で誤差の少ない目標上面温度に近づけることができる。   In the above embodiment, the output of the heating device in the upper part of the furnace is adjusted based on the upper surface temperature of the steel piece at a position where neither the skid 15 nor 16 is arranged vertically below. It is possible to bring the upper surface temperature of the piece 10 closer to the target upper surface temperature that is more accurate and less error-prone.

さらに,以上の実施の形態では,鉛直下方にスキッド15又は16のいずれもが配置されていない位置の上方の前記炉内上部雰囲気の温度を測定するようにしたので,外乱の影響が少ない,より誤差の少ない炉内上部雰囲気の温度を測定することができる。   Furthermore, in the above embodiment, since the temperature of the upper atmosphere in the furnace above the position where neither the skid 15 or 16 is vertically arranged is measured, the influence of disturbance is less. It is possible to measure the temperature of the upper atmosphere in the furnace with little error.

ここで,上述のように,鋼片10の上面温度及び下面温度を制御する際に,どのような条件で制御を行うのが最適であるか検討する。鋼片10の圧延中に反りが生じる問題を解決するためには,鋼片10のAr変態温度を考慮する必要がある。鋼片10を圧延する前に加熱して冷却していく際に,鋼片10は,Ar変態点でγ相(オーステナイト相)からα相(フェライト相)に変化する。従って,鋼片10の温度がAr変態温度付近である場合,温度がAr変態温度を上回る鋼片部分がγ相になり,温度がAr変態温度を下回る鋼片部分がα相になる。一般に,γ相は変形抵抗が大きく,α相は変形抵抗が小さい。従って,鋼片10がAr変態温度の付近の温度で圧延されると,鋼片10の厚み方向に関する温度と変形抵抗との関係に相変態によって変化し,反りの問題が複雑化してしまう。そこで,本願では,質量%でCを0.01%以下含む鋼片10を加熱炉1内で制御する際に,目標下面温度が鋼片10のAr変態温度より60℃以上高くなるように設定する。 Here, as described above, when the upper surface temperature and the lower surface temperature of the steel slab 10 are controlled, it is examined under what conditions it is optimal to perform the control. In order to solve the problem of warping during rolling of the steel slab 10, it is necessary to consider the Ar 3 transformation temperature of the steel slab 10. When the steel slab 10 is heated and cooled before rolling, the steel slab 10 changes from the γ phase (austenite phase) to the α phase (ferrite phase) at the Ar 3 transformation point. Therefore, when the temperature of the steel strip 10 is near Ar 3 transformation temperature, the temperature becomes billet portion γ phase above the Ar 3 transformation temperature, the steel strip portion temperature is below the Ar 3 transformation temperature is α-phase . In general, the γ phase has a large deformation resistance, and the α phase has a small deformation resistance. Therefore, when the steel slab 10 is rolled at a temperature in the vicinity of the Ar 3 transformation temperature, the relationship between the temperature in the thickness direction of the steel slab 10 and the deformation resistance changes due to phase transformation, and the problem of warpage becomes complicated. Therefore, in the present application, when the steel slab 10 containing 0.01% or less by mass% is controlled in the heating furnace 1, the target bottom surface temperature is set to be 60 ° C. or more higher than the Ar 3 transformation temperature of the steel slab 10. Set.

また,鋼片が,質量%でCを0.01%以下含む場合に,鋼片のAr変態温度をTAr3℃として,前記目標上面温度をX℃と前記目標下面温度を(X−Y)℃とが,0<Y<X−(TAr3+60)を満たすように設定する。こうすることにより,鋼片10の反りの量を最も好適に軽減させることが実験により判明した。 When the steel slab contains 0.01% or less by mass% of C, the Ar 3 transformation temperature of the steel slab is T Ar3 ° C., the target upper surface temperature is X ° C. and the target lower surface temperature is (XY ) .Degree . C. is set so as to satisfy 0 <Y <X- (T Ar3 +60). By doing so, it has been experimentally found that the amount of warpage of the steel slab 10 is most preferably reduced.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において,各種の変更例又は修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, this invention is not limited to the example which concerns. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

例えば,上述した実施形態においては,温度センサとして熱電対の場合について説明したが,温度センサは金属式温度計を用いたもの、超音波を用いたもの、光ファイバを用いたもの、核四極共鳴を用いたもの、核磁気共鳴を用いたもの、電子スピン共鳴を用いたもの、マイクロ波を用いたもの、赤外線を用いたもの、気体温度計を用いたもの、ガラス製二重管温度計を用いたものなどであってもよい。   For example, in the above-described embodiment, the case where a thermocouple is used as the temperature sensor has been described. However, the temperature sensor uses a metal thermometer, uses an ultrasonic wave, uses an optical fiber, uses nuclear quadrupole resonance. , Those using nuclear magnetic resonance, those using electron spin resonance, those using microwaves, those using infrared rays, those using a gas thermometer, glass double tube thermometers It may be the one used.

質量%での各成分が表1に示すような値であるIF鋼の鋼板10に対して,反りを最小に抑えるための具体的な条件を実験により求めた。   With respect to the steel plate 10 of IF steel whose values in mass% are as shown in Table 1, specific conditions for minimizing warpage were obtained by experiments.

Figure 0004864337
Figure 0004864337

ここで,鋼片10は,厚さが250mmであり,幅が1250mmであり,且つ長さが8000mmである。鋼片10のAr変態温度は900℃である。また,鋼片10が加熱炉1内に存在する時間は180分であり,均熱帯14に存在する時間は30分である。このような条件で,均熱帯14内での鋼片10の目標上面温度と,鋼片10の上下面温度差(即ち,鉛直下方にスキッド15又は16のいずれも配置されていない図4に示す位置Aの鋼片10の上面温度から,スキッド15又は16のいずれかと接触する図4に示す位置Dの鋼片10の下面温度を差引いた値)とを種々の値に温度調整して加熱制御してから,粗圧延して反り量を測定した。この測定結果を,加熱炉1内の均熱帯14において加熱制御する際の鋼片10の目標上面温度を横軸,鋼片10の上下面温度差を縦軸にして,示したのが図5である。図5に示されるように,各条件で加熱制御した後に粗圧延した結果の反り量が,値に応じて異なるマークで示されている。 Here, the steel piece 10 has a thickness of 250 mm, a width of 1250 mm, and a length of 8000 mm. The Ar 3 transformation temperature of the billet 10 is 900 ° C. Moreover, the time for which the steel slab 10 exists in the heating furnace 1 is 180 minutes, and the time for which it exists in the soaking zone 14 is 30 minutes. Under such conditions, the target upper surface temperature of the steel slab 10 in the soaking zone 14 and the temperature difference between the upper and lower surfaces of the steel slab 10 (that is, no skid 15 or 16 is arranged vertically below as shown in FIG. 4). Heat control by adjusting the temperature to the various values from the upper surface temperature of the slab 10 at position A minus the lower surface temperature of the slab 10 at position D shown in FIG. Then, the amount of warpage was measured by rough rolling. The measurement results are shown with the target upper surface temperature of the steel slab 10 in the soaking zone 14 in the heating furnace 1 as the horizontal axis and the upper and lower surface temperature difference of the steel slab 10 as the vertical axis. It is. As shown in FIG. 5, the warpage amount as a result of rough rolling after heating control under each condition is indicated by different marks depending on the values.

鋼片10の目標上面温度と鋼片10の上下面温度差との条件が図5に示す直線L1より上の領域に該当する場合,粗圧延時の反り量は,400mm以上になった。鋼片10の目標上面温度と鋼片10の上下面温度差との条件が,図5に示す直線L1より下,図5に示す直線L2より上の領域に該当する場合,粗圧延時の反り量は,300〜400mmになった。鋼片10の目標上面温度と鋼片10の上下面温度差との条件が,図5に示す直線L2より下,図5に示すL3より上の領域に該当する場合,粗圧延時の反り量は,200〜300mmになった。鋼片10の目標上面温度と鋼片10の上下面温度差との条件が,図5に示す直線L3より下,図5に示すL4より上の領域に該当する場合,粗圧延時の反り量は,100〜200mmになった。さらに,鋼片10の目標上面温度と鋼片10の上下面温度差との条件が,図5に示す直線L4より下の領域に該当する場合,粗圧延時の反り量は,100mm未満になった。従って,反り量を200mm以下に抑えるためには,鋼片10の目標上面温度及び上下面温度差の条件が図5に示す直線L3より下の領域に該当するように両条件を設定する必要がある。ここで図5に示す直線L3は,鋼片10の目標上面温度をX℃,鋼片10の目標下面温度を(X−Y)℃,としたときに,Y=X−960と表せる。従って,鋼片10の目標上面温度X及び鋼片10の上下面温度差Yが,0<Y<X−960を満たすように加熱炉1内の均熱帯14の温度を制御すると反り量を最小限に抑えることが可能になる。さらに,Ar変態温度をTAr3とすると,ここでは,TAr3=900℃なので,上記の式は,0<Y<X−(TAr3+60)と一般化して表せる。即ち,鋼片のAr変態温度をTAr3℃,前記目標上面温度をX℃,前記目標下面温度を(X−Y)℃,としたときに,0<Y<X−(TAr3+60)の範囲で制御すると鋼片10の反りの量を最小限に抑えることができる。 When the condition between the target upper surface temperature of the steel slab 10 and the temperature difference between the upper and lower surfaces of the steel slab 10 corresponds to a region above the straight line L1 shown in FIG. 5, the amount of warpage during rough rolling was 400 mm or more. If the condition between the target upper surface temperature of the steel slab 10 and the temperature difference between the upper and lower surfaces of the steel slab 10 falls below the straight line L1 shown in FIG. 5 and above the straight line L2 shown in FIG. The amount became 300-400 mm. When the condition between the target upper surface temperature of the steel slab 10 and the temperature difference between the upper and lower surfaces of the steel slab 10 corresponds to a region below the straight line L2 shown in FIG. 5 and above L3 shown in FIG. Became 200-300 mm. When the condition between the target top surface temperature of the steel slab 10 and the temperature difference between the top and bottom surfaces of the steel slab 10 corresponds to a region below the straight line L3 shown in FIG. 5 and above L4 shown in FIG. Became 100-200 mm. Furthermore, when the condition between the target upper surface temperature of the steel slab 10 and the temperature difference between the upper and lower surfaces of the steel slab 10 corresponds to a region below the straight line L4 shown in FIG. 5, the amount of warpage during rough rolling is less than 100 mm. It was. Therefore, in order to suppress the warpage amount to 200 mm or less, it is necessary to set both conditions so that the target upper surface temperature and the upper and lower surface temperature difference conditions of the steel slab 10 correspond to the region below the straight line L3 shown in FIG. is there. Here, the straight line L3 shown in FIG. 5 can be expressed as Y = X-960 when the target upper surface temperature of the steel slab 10 is X ° C. and the target lower surface temperature of the steel slab 10 is (XY) ° C. Therefore, if the temperature of the soaking zone 14 in the heating furnace 1 is controlled so that the target upper surface temperature X of the slab 10 and the upper and lower surface temperature difference Y of the slab 10 satisfy 0 <Y <X-960, the amount of warpage is minimized. It becomes possible to limit to the limit. Further, assuming that the Ar 3 transformation temperature is T Ar3 , since T Ar3 = 900 ° C., the above formula can be generalized as 0 <Y <X− (T Ar3 +60). That is, assuming that the Ar 3 transformation temperature of the steel slab is T Ar3 ° C, the target upper surface temperature is X ° C, and the target lower surface temperature is (XY) ° C, 0 <Y <X− (T Ar3 +60) If controlled within the range, the amount of warp of the steel slab 10 can be minimized.

本発明によれば,ウォーキングビーム式の加熱炉を制御することが可能である。   According to the present invention, it is possible to control a walking beam type heating furnace.

本発明の実施の形態に係るウォーキングビーム式の加熱炉の制御方法を適用したウォーキングビーム式の加熱炉の側面断面図である。It is side surface sectional drawing of the walking beam type heating furnace to which the control method of the walking beam type heating furnace which concerns on embodiment of this invention is applied. 本発明の実施の形態に係るウォーキングビーム式の加熱炉の平面図である。It is a top view of the walking beam type heating furnace which concerns on embodiment of this invention. 均熱帯の炉内上部の熱電対及び均熱帯の炉内下部の熱電対の詳細な配置状況を示す平面図である。It is a top view which shows the detailed arrangement | positioning condition of the thermocouple of the inside of a soaking tropics furnace, and the thermocouple of the soaking tropics inside a furnace. 熱電対及びを含む均熱帯の断面図である。It is sectional drawing of a soaking zone containing a thermocouple and. 加熱炉内の均熱帯において加熱制御する際の,鋼片の目標上面温度を横軸,鋼片の上下面温度差を縦軸として,その後に粗圧延した結果の反り量を値に応じて異なるマークで表示した図である。When heating control is performed in the soaking zone in the heating furnace, the target upper surface temperature of the steel slab is plotted on the horizontal axis and the temperature difference between the upper and lower surfaces of the steel slab is plotted on the vertical axis, and then the amount of warpage resulting from rough rolling varies depending on the value. It is the figure displayed with the mark.

符号の説明Explanation of symbols

1 ウォーキングビーム式の加熱炉
10 鋼片
11 加熱炉の炉体
12 予熱帯
13 加熱帯
14 均熱帯
15 固定式スキッド
16 移動式スキッド
18a,18b,19a,19b 熱電対
20a,20b,21a,21b バーナ
22 温度制御装置
L1,L2,L3,L4 図5内の領域を決定する直線
DESCRIPTION OF SYMBOLS 1 Walking beam type heating furnace 10 Billet 11 Heating furnace body 12 Pre-tropical zone 13 Heating zone 14 Soaking zone 15 Fixed skid 16 Mobile skid 18a, 18b, 19a, 19b Thermocouple 20a, 20b, 21a, 21b Burner 22 Temperature controller L1, L2, L3, L4 A straight line that determines the region in FIG.

Claims (2)

炉内の鋼片をスキッドによって所定方向に移動させながら炉内の上部と下部に設けられた加熱装置により加熱するウォーキングビーム式の加熱炉において,
前記鋼片より上側の炉内上部雰囲気の温度を測定し,当該炉内上部雰囲気の温度に基づいて,鉛直下方に前記スキッドが配置されていない位置の前記鋼片の上面温度を算出し,当該上面温度を目標上面温度に近づけるように前記炉内上部の前記加熱装置の出力を調整する工程と,
前記鋼片より下側の炉内下部雰囲気の温度を測定し,当該炉内下部雰囲気の温度に基づいて,前記スキッドに接触する位置の前記鋼片の下面温度を算出し,当該鋼片の下面温度を目標下面温度に近づけるように前記炉内下部の前記加熱装置の出力を調整する工程とを有し,
前記鋼片が,質量%でCを0.01%以下含み,前記鋼片のAr変態温度をTAr3℃として,前記目標上面温度X℃と前記目標下面温度(X−Y)℃とが,0<Y<X−(TAr3+60)を満たすように設定されることを特徴とする,ウォーキングビーム式の加熱炉の制御方法。
In a walking beam type heating furnace in which a steel piece in a furnace is moved by a skid in a predetermined direction and heated by heating devices provided at the upper and lower parts of the furnace,
The temperature of the upper atmosphere in the furnace above the steel slab is measured, and based on the temperature of the upper atmosphere in the furnace, the upper surface temperature of the steel slab at a position where the skid is not disposed vertically below is calculated, Adjusting the output of the heating device in the upper part of the furnace to bring the upper surface temperature closer to the target upper surface temperature;
Measure the temperature of the lower atmosphere in the furnace below the steel slab, calculate the lower surface temperature of the steel slab at the position in contact with the skid based on the temperature of the lower atmosphere in the furnace, Adjusting the output of the heating device at the lower part of the furnace so that the temperature approaches the target bottom surface temperature,
The steel slab contains 0.01% by mass or less of C and the Ar 3 transformation temperature of the steel slab is T Ar3 ° C. The target upper surface temperature X ° C and the target lower surface temperature (XY) ° C are , 0 <Y <X− (T Ar3 +60). A method for controlling a walking beam type heating furnace.
前記炉内上部雰囲気の温度を測定する際には,前記加熱炉の幅方向の中央付近であって,前記鉛直下方に前記スキッドが配置されていない位置の上方の前記炉内上部雰囲気の温度を測定し,
前記炉内下部雰囲気の温度を測定する際には,前記炉内側壁部付近の前記炉内下部雰囲気の温度を測定することを特徴とする,請求項1に記載のウォーキングビーム式の加熱炉の制御方法。
When measuring the temperature of the upper atmosphere in the furnace, the temperature of the upper atmosphere in the furnace near the center in the width direction of the heating furnace and above the position where the skid is not arranged vertically below the furnace. Measure,
2. The walking beam heating furnace according to claim 1, wherein when the temperature of the lower atmosphere in the furnace is measured, the temperature of the lower atmosphere in the furnace near the inner wall of the furnace is measured. Control method.
JP2005091962A 2005-03-28 2005-03-28 Control method of walking beam type heating furnace Expired - Fee Related JP4864337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091962A JP4864337B2 (en) 2005-03-28 2005-03-28 Control method of walking beam type heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091962A JP4864337B2 (en) 2005-03-28 2005-03-28 Control method of walking beam type heating furnace

Publications (2)

Publication Number Publication Date
JP2006274307A JP2006274307A (en) 2006-10-12
JP4864337B2 true JP4864337B2 (en) 2012-02-01

Family

ID=37209340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091962A Expired - Fee Related JP4864337B2 (en) 2005-03-28 2005-03-28 Control method of walking beam type heating furnace

Country Status (1)

Country Link
JP (1) JP4864337B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174325A (en) * 1986-01-24 1987-07-31 Toshiba Corp Method for controlling temperature of heating furnace
JPS6338521A (en) * 1986-08-04 1988-02-19 Nippon Steel Corp Temperature control method for continuous heating furnace
JPS63149319A (en) * 1986-12-12 1988-06-22 Toshiba Corp Control method for furnace temperature in continuous heating furnace
JPH0717964B2 (en) * 1990-10-04 1995-03-01 新日本製鐵株式会社 Furnace temperature control method for heating furnace

Also Published As

Publication number Publication date
JP2006274307A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP2006265606A (en) High frequency induction heat-treatment method, high frequency induction heat-treatment facility and high frequency induction heat-treating article
JP2004510338A (en) System and method for controlling movement of a workpiece in a heat treatment system
JP4864337B2 (en) Control method of walking beam type heating furnace
JP2009117798A (en) Temperature control method, method of obtaining temperature correction value, method of manufacturing semiconductor and substrate treatment apparatus
JP2008024966A (en) Method for controlling furnace temperature in continuous type heating furnace, and method for producing steel material
US20210002774A1 (en) Pickling facility and operation method of pickling facility
JP4998655B2 (en) Combustion control method for continuous heating furnace
CN104807419A (en) Method for compensating measurement errors due to thermally induced structural deformations in a coordinate measurement machine
JP2012153971A (en) Combustion control method and combustion control device for continuous heating furnace
JP6797759B2 (en) Steel material temperature prediction method
JP5493993B2 (en) Thick steel plate cooling control device, cooling control method, and manufacturing method
CN108627136A (en) Shape measuring apparatus
JP6252532B2 (en) Apparatus and method for setting target molten steel temperature at the end of converter blowing
JP2006272395A (en) Method and apparatus for controlling cooling and computer program
KR100858902B1 (en) A calibration method of coiling temperature of hot rolled steel sheet and the prediction of mechanical properties
KR101746036B1 (en) An apparatus and a method for measuring the temprature of material
JP4762758B2 (en) Linear heating method and linear heating control system
JP2018003084A (en) Method for predicting the temperature of steel material
JP6716964B2 (en) Steel sheet surface composition determination method, surface composition determination apparatus, manufacturing method, and manufacturing apparatus
JPS61170508A (en) Method for erasing skid mark in continuous heating furnace
JP2000309820A (en) Steel slab heating furnace and method for heating steel slab
JP2023125248A (en) Correction device and correction method for slab temperature model, furnace temperature control device and furnace temperature control method for heating furnace and manufacturing method of steel plate
JP2023125249A (en) Correction device and correction method for slab temperature model, furnace temperature control device and furnace temperature control method for heating furnace and manufacturing method of steel plate
JP2010150614A (en) Heating furnace and heating method
KR101676203B1 (en) Heat treatment method of stainless steel slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4864337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees