JPS60151709A - Temperature controller for industrial furnace - Google Patents

Temperature controller for industrial furnace

Info

Publication number
JPS60151709A
JPS60151709A JP575484A JP575484A JPS60151709A JP S60151709 A JPS60151709 A JP S60151709A JP 575484 A JP575484 A JP 575484A JP 575484 A JP575484 A JP 575484A JP S60151709 A JPS60151709 A JP S60151709A
Authority
JP
Japan
Prior art keywords
furnace
temperature
furnace temperature
calculates
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP575484A
Other languages
Japanese (ja)
Other versions
JPH0565883B2 (en
Inventor
Yutaka Funiyu
船生 豊
Takanori Fujiwara
藤原 高矩
Seiji Kawai
成治 川合
Kazuhiko Nakatani
中谷 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Fuji Electric Co Ltd
Fuji Facom Corp
Original Assignee
Fuji Electric Co Ltd
Fuji Facom Corp
Kawasaki Steel Corp
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Facom Corp, Kawasaki Steel Corp, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP575484A priority Critical patent/JPS60151709A/en
Publication of JPS60151709A publication Critical patent/JPS60151709A/en
Publication of JPH0565883B2 publication Critical patent/JPH0565883B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Feedback Control In General (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

PURPOSE:To attain the temperature control of an industrial furnace with high stability and high responsiveness by approximating the dynamic characteristics of the furnace temperature with a prescribed transmission function and obtaining the parameter of said function to calculate the optimum control parameter. CONSTITUTION:A material 2 such as a steel stock, etc. is shifted within a continuous heating furnace 1 while it is heated by a burner 5. A tracking arithmetic device 6 traces the state of a heating zone Z at and after a time point when the material 2 is put into the furnace 1 and calculates the position, etc. of the material 2 from its moving state. While a temperature arithmetic device 7 calculates the surface temperature of each material from the result of the device 6 and the furnace temperature obtained from a thermometer 3. Then a process characteristic arithmetic device 8 calculates the parameter related to the transmission function of the process from the results of both devices 6 and 7 as well as the furnace temperature. Furthermore a control parameter arithmetic device 9 calculates the optimum PID parameter against said transmission function and gives it to a controller 4. Then the fuel amount supplied via a route 10 and the burner 5 is controlled to obtain the coincidence between the PID parameter and the target value.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、銅材等の利F)を加熱する]−築炉(加熱
炉、均熱炉、焼鈍炉および熱処理炉等)の炉内ガス温度
、すなわち炉内温度(以下、4洗iともいう。)の1l
IiJ alll装置、特に最適なrfItJ御パラメ
ータを111トさせて制御を行なう炉温制御装置に関す
る。
[Detailed description of the invention] [Technical field to which the invention pertains] This invention is directed to heating copper materials, etc.] - inside of a furnace (heating furnace, soaking furnace, annealing furnace, heat treatment furnace, etc.) 1 liter of gas temperature, i.e. furnace temperature (hereinafter also referred to as 4 wash i)
The present invention relates to an IiJ all device, and particularly to a furnace temperature control device that performs control by adjusting optimal rfItJ control parameters.

一般ニ、プロセスのフィードバック制御においてtよ、
制御パラメータ、例えばPID(比1(・1・持分・微
分)制御ならば比例利得、積分時定数および微分時定数
をプロセスの特性に応じて適正に設定することが大切で
ある。しかしながら、プロセスの特性はその操業条件に
より変化1・るものであるから、これに応じて制御パラ
メータも変更することが望ましく、このように制御を行
なうのが、いわゆる適応制御と呼ばれるものである。
In general, in process feedback control,
For example, in the case of PID (ratio 1 (・1・equity・derivative) control), it is important to appropriately set the control parameters, proportional gain, integral time constant, and differential time constant according to the characteristics of the process. Since the characteristics change depending on the operating conditions, it is desirable to change the control parameters accordingly, and controlling in this way is called adaptive control.

〔従来技術とその問題点〕[Prior art and its problems]

一般に、加熱炉における炉温制御は、炉内のガス湿度を
検出し、これをPI制御により目標値と一致するように
燃料供給量を制御することにより行なわれる。このとき
、PIパラメータは燃料供vj1と炉温のプロセス特性
によって決まるが、このプロセス特性は前述の如く操業
状態によって大きく変化する。すなわち、第1図は無負
荷時(炉内に拐r1がないとき)と通常負荷時における
燃料供給量のステップ変化に対する炉温の応答特性を示
す特性図であるが、この図からも明らかなように、無負
荷時の場合は通′l;5負狗ISに比べて、燃料供給J
■の変化に対する炉dδ)の感度が鋭い、つまり燃料U
:玲量に対する炉温の変化量が大きいことがわかる。な
お、第1図は炉壁と相判間の熱吸収率が01の場合の例
である。このことは、操業開始時すなわち空炉の状態か
ら材料を装入する際に、いわゆる1ハンチング”を起こ
してプロセスが不安定になり易いということである。こ
れを防ぐために?i、PIパラメータを弱くする必要が
あるが、このようにすると通常負荷時の応答性が悪くな
り、適正な制御ができなくなるという難点がある。これ
は、応答を早めることと、ハンチングを起こさないよう
にすることとが相反する事項であるためである。このた
め、操業変化に対応するプロセス特性をめて制御パラメ
ータを適応させる、いわゆる適応制御を行なうことが考
えられる0しかしながら、以下に述べるように燃料供給
量と炉温のプロセス特性は材料温度、炉壁湿度等が相互
に関係しあって非常に複雑であり、これを決めることは
必ずしも容易ではない。例えば、燃料ガスについては、 一σi=□φcg ((Tg+273)’(Tsi+2
73)’ )AsH −σ、Σ φWg ((Tg+273)’鳳=1 (Tsi+273)’ )Aw −・” (1)亥た;
゛材料(i=1〜n)については、−(’i’ si 
+273) ) ・・・・・・ (3ンさらに、炉壁温
度については、 −(rw+27a) ) ・−・・−・(5)の如き関
係があり、例えば燃料ガスの温度を上記(1)式の関係
だけからめることができず、(1)〜(5)式を連立方
程式として解かなければならないという難点がある。な
お、上記(1)〜(5)式に示される記号の意味は次の
通りである。
Generally, furnace temperature control in a heating furnace is performed by detecting the gas humidity in the furnace and controlling the fuel supply amount using PI control so that it matches a target value. At this time, the PI parameter is determined by the process characteristics of fuel supply vj1 and furnace temperature, but these process characteristics vary greatly depending on the operating conditions as described above. In other words, Fig. 1 is a characteristic diagram showing the response characteristics of the furnace temperature to a step change in the fuel supply amount under no load (when there is no fuel r1 in the furnace) and under normal load. As such, when there is no load, the fuel supply J
The sensitivity of the furnace dδ) to changes in ■ is sharp, that is, the fuel U
: It can be seen that the amount of change in furnace temperature with respect to the amount of heat is large. Note that FIG. 1 is an example in which the heat absorption rate between the furnace wall and the phase plate is 01. This means that at the start of operation, that is, when charging material from an empty furnace state, so-called "1-hunting" tends to occur and the process becomes unstable. To prevent this, the ?i and PI parameters are It is necessary to make the load weaker, but this has the disadvantage that the response under normal loads will deteriorate and proper control will not be possible. Therefore, it is possible to perform so-called adaptive control, which adapts the control parameters based on the process characteristics corresponding to operational changes.However, as described below, the fuel supply amount and The process characteristics of furnace temperature are very complex as material temperature, furnace wall humidity, etc. are interrelated, and it is not always easy to determine them.For example, for fuel gas, -σi=□φcg (( Tg+273)'(Tsi+2
73)' ) AsH -σ, Σ φWg ((Tg+273)'Otori=1 (Tsi+273)' )Aw -・" (1) I got it;
゛For materials (i = 1 to n), -('i' si
+273) ) ...... (3) Furthermore, regarding the furnace wall temperature, there is a relationship as shown in -(rw+27a) ) ...... (5). For example, if the temperature of the fuel gas is The problem is that it is not possible to consider only the relationship between the equations, and equations (1) to (5) must be solved as simultaneous equations. The meanings of the symbols shown in the above formulas (1) to (5) are as follows.

Tg:炉温 Tsl: i番目の材料温度 Tw:1戸什■、11度 Ta:予熱空気湿度 Mg:炉内所定ゾーンのガス熱容量 M51: i番目の材料熱容量 Mw:炉壁の熱容量 Ma:予熱空気の熱容量 Mo:排ガスの熱容量 rq:燃料低位発熱量 ra:空燃比 Ag3: i番目の材料の表面積 Aw:炉壁の表面積 に51:i番目の材料の熱伝導率 kW:炉壁の熱伝導率 σ :ステファンOボルツマン定数 n :ゾーン内の材料本数 φcg”材料−ガス間の熱吸収率 〜g:炉壁−ガス間の熱吸収率 fg:ガス流量 X :材料の幅 y :材料の高さ 〔発明の目的〕 この発明は上記に鑑みてなされたもので、時々刻々変化
する操業東件に対応してM週な制御が可能な工業炉の炉
温制御装置を提供することを目的とするものである。
Tg: Furnace temperature Tsl: i-th material temperature Tw: 1 door, 11 degrees Ta: Preheating air humidity Mg: Gas heat capacity in a predetermined zone in the furnace M51: i-th material heat capacity Mw: Heat capacity of the furnace wall Ma: Preheating Heat capacity of air Mo: Heat capacity of exhaust gas rq: Lower heating value of fuel ra: Air-fuel ratio Ag3: Surface area of i-th material Aw: Surface area of furnace wall 51: Thermal conductivity of i-th material kW: Heat conduction of furnace wall Rate σ: Stefan O-Boltzmann constant n: Number of materials in the zone φcg" Heat absorption rate between material and gas ~ g: Heat absorption rate between furnace wall and gas fg: Gas flow rate X: Width of material y: Height of material [Object of the Invention] This invention has been made in view of the above, and an object of the present invention is to provide a furnace temperature control device for an industrial furnace that can perform control over a period of M weeks in response to ever-changing operating conditions. It is something to do.

〔発明の要点〕[Key points of the invention]

その要点は、燃料供給量に対する炉温の動特性を所定の
伝達関数で近似するとともに、炉の特性および炉内に存
在する材料の本数や特性等に応じて該伝達関数のパラメ
ータをめ、該パラメータを用いて表わされる伝達関数を
含む制御装置全体の伝達関数に対して最適な制御パラメ
ータを演算し、この制御パラメータにもとづいて炉温の
制御を行なうようにした点にある。
The key point is to approximate the dynamic characteristics of the furnace temperature with respect to the amount of fuel supplied by a predetermined transfer function, and to determine the parameters of the transfer function according to the characteristics of the furnace and the number and characteristics of the materials present in the furnace. The optimum control parameter is calculated for the transfer function of the entire control device including the transfer function expressed using the parameter, and the furnace temperature is controlled based on this control parameter.

〔発明の実施例〕[Embodiments of the invention]

まず、制御原理について説明する。 First, the control principle will be explained.

燃料供給itに対する炉温のステップ応答は負荷状態に
よって異なるが、その伝達関数の形式は次式の如く、 1次遅れ要素(上式の右辺第1項)と積分要素(上式の
右辺第2項)との和で近似できることが、第1図の特性
曲線からも明らかである。なお、Sはラプラス演算子で
ある0ところで、上記(6)式の如く表わされる炉温特
性を、先の(1)〜(5)式で表わされる特性と略一致
させるためには、(6)式で用いられる係数に1および
時定数Tl p ’r2を以下の如く選べば良いことが
確かめられている。すなわち、ただし、 A=rq+MaraTa Mg(1+ra)TgB=σ
φ ・4♂・Aw gg 」−〇gθSi +05□)Asi 十B )であり、
各記号の意味は先と同様である。なお、θ2.osit
−jそれぞれ炉の絶対湿度s[目の材料の絶対湿度で、 θ、=Tg+273 θ5i−T、i+273 である。
The step response of the furnace temperature to the fuel supply IT differs depending on the load condition, but the form of the transfer function is as shown in the following equation. It is clear from the characteristic curve in FIG. 1 that it can be approximated by the sum of the term). Note that S is the Laplace operator, which is 0. In order to make the furnace temperature characteristics expressed by the above equation (6) approximately match the characteristics expressed by the above equations (1) to (5), (6 ) It has been confirmed that the coefficient 1 and the time constant Tl p 'r2 used in the equation can be selected as follows. That is, however, A=rq+MaraTa Mg(1+ra)TgB=σ
φ・4♂・Aw gg ”−〇gθSi +05□)Asi 1B),
The meaning of each symbol is the same as above. Note that θ2. osit
-j respectively, the absolute humidity of the furnace s [absolute humidity of the eye material, θ, = Tg + 273 θ5i-T, i + 273.

一方、1tiU御装置の操作部および検出部の各伝達関
数Gu(S)およびGF(S)を、 の如く仮定する。ここに、むだ時間LU p IJFお
よび時定数’I’U p TFは、設備によって定まる
定数である。こうすることにより、操作部から検出部ま
での系全体の伝達関数G(S)は、先の(6)式の如く
推定された伝達関数Gp(8)と合わせて、次の如く表
わされる。
On the other hand, the transfer functions Gu(S) and GF(S) of the operating section and detection section of the 1tiU control device are assumed as follows. Here, the dead time LU p IJF and the time constant 'I'U p TF are constants determined depending on the equipment. By doing so, the transfer function G(S) of the entire system from the operating section to the detection section, together with the transfer function Gp(8) estimated as in equation (6) above, can be expressed as follows.

G(S)−〇U(S)・Gp(S)・Gr(S) no
・+−(12こうして得られた伝達関数G (S)に対
し、次式の如きPID制御の操作出力u(t)における
u(t) = Kp ((r Tg) ・・・・・・(t3) 最適な制御パラメータKp(比例利得) p Ti (
積分時間)およびTD (微分時間)をめる。なお、成
る伝達関数が与えられたとき、これにもとづいて最適な
制御パラメータをめる手法には種々あって、いずれも公
知である(なお、必要ならば、例えば、第22回日本自
動制御学術講演会予稿集(1978年)127〜128
頁「応答面積を用いたPIDオートチューニングの方式
」の項を参照されたい。)。なお、(11式におけるT
gは炉温であり、rはその目標値である。
G(S)-〇U(S)・Gp(S)・Gr(S) no
・+-(12 For the transfer function G (S) obtained in this way, u(t) = Kp ((r Tg) ......( t3) Optimal control parameter Kp (proportional gain) p Ti (
Calculate the integral time) and TD (differential time). There are various methods for determining the optimal control parameters based on the given transfer function, all of which are publicly known (if necessary, for example, Lecture proceedings (1978) 127-128
Please refer to the page "PID autotuning method using response area". ). In addition, (T in equation 11
g is the furnace temperature, and r is its target value.

、以上の如くしてめられた制御パラメータにもとづいて
、制御装置が工業炉の炉温を所定の目標値となるように
制御する、というのがこの発明による制御原理である0 以下、綿2図を参照して具体的に説明する0なお、第2
図はこの発明の実施例を示す構成図である。同図におい
て、1は炉、2は鋼材等の材料、311tガス温度計(
検出部)、4はコントローラ、5はバーナ、6はトラッ
キング演算装置、7は温度演算装置、8はプロセス特性
演算装置、9は制御パラメータ演算装置、10は燃料供
給経路(操作部)、11は予熱空気供給経路(操作部)
、Wは炉壁、Zは加熱ゾーンである。
The control principle according to the present invention is that the control device controls the furnace temperature of the industrial furnace to a predetermined target value based on the control parameters determined as described above. This will be explained in detail with reference to the figure.
The figure is a configuration diagram showing an embodiment of the present invention. In the figure, 1 is a furnace, 2 is a material such as steel, and a 311t gas thermometer (
4 is a controller, 5 is a burner, 6 is a tracking calculation device, 7 is a temperature calculation device, 8 is a process characteristic calculation device, 9 is a control parameter calculation device, 10 is a fuel supply path (operation portion), 11 is a Preheated air supply route (control unit)
, W is the furnace wall, and Z is the heating zone.

すなわち、第2図は連続加熱炉の例であり、炉1の一部
とそれに対応する制御装置系とが図示され°Cいる。鋼
材等の材料2は、バーナ5にて加熱されながら、炉1内
の加熱ゾーンZを通って矢印几方向へ移動せしめられる
。トラッキング演算装置6は、炉lに相打2が装入され
た時点から加熱ゾーンZがどのようになっているかをト
ラッキング(追跡)シ、装入詩からの経過時間と相打の
移送態様とにもとづいて、ゾーンZ内に存在する材料の
本数、その位置等を演算する0温度演算装置7は、この
トラッキング演算装置6による演算結果と、温度計3を
介して検出される炉温とから周知の差分法(必要ならば
、昭和46年5月10日、日本鉄鋼協会編1発行、「連
続鋼片加熱炉における伝導実験と計算方法」を参照され
たい。)等を用いて炉壁の表面温度、さらには各材料の
サイズ(断面積)を考慮して各材料の表面温度を算出す
る。プロセス特性演算装置8は、演算装置6,7で演算
されたこれらの値(ゾーン内材料の本数。
That is, FIG. 2 is an example of a continuous heating furnace, in which a portion of the furnace 1 and a corresponding control system are shown. A material 2 such as steel is moved in the direction of the arrow through a heating zone Z within the furnace 1 while being heated by a burner 5 . The tracking calculation device 6 tracks the state of the heating zone Z from the time when the quarry 2 is charged into the furnace 1, and calculates the elapsed time from the charging and the transfer mode of the quarry 2. Based on this, the zero temperature calculation device 7 calculates the number of materials existing in the zone Z, their positions, etc. from the calculation result by the tracking calculation device 6 and the furnace temperature detected via the thermometer 3. Using the well-known difference method (if necessary, please refer to "Conduction Experiments and Calculation Methods in Continuous Billet Reheating Furnaces", May 10, 1970, edited by the Japan Iron and Steel Institute, published 1). The surface temperature of each material is calculated by taking into consideration the surface temperature and further the size (cross-sectional area) of each material. The process characteristic calculation device 8 calculates these values calculated by the calculation devices 6 and 7 (the number of materials in the zone).

炉壁の表面温度、各材料の表面温度)と、材料のサイズ
、温度計3を介して検出される炉温、経路10を介して
供給される燃料の供給量および経路11を介して供給さ
れる予熱空気の温度等から、先の(6)式で近似される
プルセスの伝達量1Gp(S)に関するパラメータに1
 # T1 # T2を(7)〜(9)式を用いて演算
する。なお、燃料供給量および予熱空気温度を検出する
手段は適宜設けられているものとする6制御パラメータ
演算装置9は、前記aa式で表わされる伝達関数に対す
る最適なPIDパラメータを演算し、コントローラ4に
与えるoコントo 54tj、sこの制御パラメータに
よってPID演算を行ない、温度計3を介して検出され
る炉温をその目標値に一致させるべく、経路10および
バーナ5を介して供給する燃料の量をコントロールする
the surface temperature of the furnace wall, the surface temperature of each material), the size of the material, the furnace temperature detected via the thermometer 3, the amount of fuel supplied via the path 10, and the amount of fuel supplied via the path 11. From the temperature of the preheated air, etc., the parameter related to the transmission amount of 1 Gp (S) of the purcess approximated by the above equation (6) is set to 1.
#T1 #T2 are calculated using equations (7) to (9). It is assumed that means for detecting the fuel supply amount and the preheated air temperature are appropriately provided.6 The control parameter calculation device 9 calculates the optimum PID parameter for the transfer function expressed by the aa formula, and sends it to the controller 4. PID calculation is performed using these control parameters, and the amount of fuel supplied via path 10 and burner 5 is adjusted to match the furnace temperature detected via thermometer 3 with its target value. control.

なお、炉壁および各材料の温度は上述の如く、演算によ
ってめるのが一般的であるが、別途センサを設けること
により、これらを検出するようにしてもよいものである
0 〔発明の効果〕 この発明によれば、工業炉の操業条件にかかわらず常に
最適なパラメータを用いてフィード/<ツク制御を行な
うことができるので、安定かつ連応性の良好な制御が実
現され、これによって操業開始11t「の不安定状態ま
たはフル操業時の応答性の悪さも解消されるという利点
がもたらされるものである。
Although the temperature of the furnace wall and each material is generally determined by calculation as described above, it is also possible to detect these by providing a separate sensor. ] According to the present invention, it is possible to always perform feed/<tsuk control using optimal parameters regardless of the operating conditions of the industrial furnace, so stable and well-coordinated control is achieved, and this allows for stable and well-coordinated control. This provides the advantage that the unstable state of 11t'' or poor responsiveness during full operation can be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料供給h(のステップ変化に対する炉温の応
答特性を示す特性図、第2図はこの発明の実施例を示す
構成図である。 符号説明 1・・・・・・炉、2・・・・・・材料、3・・・・・
・ガス温度計、4・・・・・・コントローラ、5・・・
・・・バーナ、6・・・・・・トラッキング演算装置、
7・・・・・・温度演算装置、8・・・・・・プロセス
特性演算装置、9・・・・・・制御パラメータ演算装置
、10・・・・・・燃料供給経路、11・・・・・・予
熱空気供給経路、W・・・・・・炉壁、Z・・・・・・
加熱ゾーン代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎 渭 第1頁の続き
Fig. 1 is a characteristic diagram showing the response characteristic of the furnace temperature to a step change in the fuel supply h (h), and Fig. 2 is a configuration diagram showing an embodiment of the present invention.・・・・・・Materials, 3・・・・・・
・Gas thermometer, 4... Controller, 5...
...burner, 6...tracking calculation device,
7... Temperature calculation device, 8... Process characteristic calculation device, 9... Control parameter calculation device, 10... Fuel supply path, 11... ...Preheated air supply path, W...Furnace wall, Z...
Heating Zone Agent Patent Attorney Akio Namiki Agent Patent Attorney Akira MatsuzakiContinued from page 1

Claims (1)

【特許請求の範囲】[Claims] 燃料と予熱空気とを供給して所定相料を加熱する工業炉
の時々刻々変化する操業条件に対応するプロセス特性を
め、これに対して最適なパラメータを適応させて炉温の
フィードバック制御を行なう工業炉の炉温制御装置であ
って、該炉内に装入される材料をトラッキングして少な
くともその本数を演算するとともに該材料の本数および
サイズならびに別途検出される炉温(検出炉温)とにも
とづいて各相打と4様の各表面温度を演算する第1の1
1110手段と、燃料供給景に対する炉温の動特性を所
定の伝達関数にて近似し該第1演算手段による演算結果
、6拐r1のサイズおよび検出炉温と別途検出される予
熱空気の温度および流量とにもとづいて該伝達関数のパ
ラメータを演算する第2の演算手段と、該伝達関数を含
む制御装置全体の伝達関数に対して最適な制御パラメー
タを演算する第3の演算手段とを備え、該制御パラメー
タにもとづいて炉温の制御を行なうことを!F、!徴と
する工業炉の炉温制御装置。
Feedback control of the furnace temperature is performed by determining the process characteristics that correspond to the ever-changing operating conditions of an industrial furnace that supplies fuel and preheated air to heat a predetermined phase material, and by adapting optimal parameters to these characteristics. A furnace temperature control device for an industrial furnace, which tracks materials charged into the furnace and calculates at least the number of materials, and also calculates the number and size of the materials and a separately detected furnace temperature (detected furnace temperature). The first 1 calculates each phase and each surface temperature of 4 types based on
1110 means, the calculation result by the first calculation means by approximating the dynamic characteristics of the furnace temperature with respect to the fuel supply scene by a predetermined transfer function, the size of 6-kilometer r1, the detected furnace temperature, the separately detected preheating air temperature, and a second calculation means for calculating parameters of the transfer function based on the flow rate; and a third calculation means for calculating an optimal control parameter for the transfer function of the entire control device including the transfer function, Control the furnace temperature based on the control parameters! F,! This is a furnace temperature control device for industrial furnaces.
JP575484A 1984-01-18 1984-01-18 Temperature controller for industrial furnace Granted JPS60151709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP575484A JPS60151709A (en) 1984-01-18 1984-01-18 Temperature controller for industrial furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP575484A JPS60151709A (en) 1984-01-18 1984-01-18 Temperature controller for industrial furnace

Publications (2)

Publication Number Publication Date
JPS60151709A true JPS60151709A (en) 1985-08-09
JPH0565883B2 JPH0565883B2 (en) 1993-09-20

Family

ID=11619902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP575484A Granted JPS60151709A (en) 1984-01-18 1984-01-18 Temperature controller for industrial furnace

Country Status (1)

Country Link
JP (1) JPS60151709A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163107A (en) * 1986-01-14 1987-07-18 Yokogawa Electric Corp Process controller
JPH06128656A (en) * 1992-10-19 1994-05-10 Sumitomo Metal Ind Ltd Method for controlling combustion in heating furnace
EP0851325B1 (en) * 1996-12-23 2003-05-07 Stein Heurtey Method for controlling the heating of a furnace using fuzzy logic techniques
WO2014017378A1 (en) * 2012-07-25 2014-01-30 株式会社Kelk Temperature controller for semiconductor manufacturing equipment, method for calculating pid constants in semiconductor manufacturing, and method for operating temperature controller for semiconductor manufacturing equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110542322B (en) * 2019-08-21 2021-09-21 中国电子科技集团公司第四十八研究所 Material process control method, system, device and medium for continuous sintering furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433813A (en) * 1977-08-22 1979-03-12 Nippon Steel Corp Combustion control device in incandescence furnace
JPS5782426A (en) * 1980-11-08 1982-05-22 Mitsubishi Electric Corp Control method for continuous type heating furnace
JPS57185503A (en) * 1981-05-11 1982-11-15 Seiko Instr & Electronics Ltd Automatic proportional, integral and differential constant setter for calorimeter
JPS5831405A (en) * 1981-08-19 1983-02-24 Hitachi Ltd Temperature controlling system in heating furnace
JPS58140808A (en) * 1981-10-21 1983-08-20 フアウ・エ−・ウイ−センシヤフトリツシエ−テヒニツシエル・ベトリ−プ・ケラミツク Method and apparatus for optimizing disturbance beforehand

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433813A (en) * 1977-08-22 1979-03-12 Nippon Steel Corp Combustion control device in incandescence furnace
JPS5782426A (en) * 1980-11-08 1982-05-22 Mitsubishi Electric Corp Control method for continuous type heating furnace
JPS57185503A (en) * 1981-05-11 1982-11-15 Seiko Instr & Electronics Ltd Automatic proportional, integral and differential constant setter for calorimeter
JPS5831405A (en) * 1981-08-19 1983-02-24 Hitachi Ltd Temperature controlling system in heating furnace
JPS58140808A (en) * 1981-10-21 1983-08-20 フアウ・エ−・ウイ−センシヤフトリツシエ−テヒニツシエル・ベトリ−プ・ケラミツク Method and apparatus for optimizing disturbance beforehand

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163107A (en) * 1986-01-14 1987-07-18 Yokogawa Electric Corp Process controller
JPH06128656A (en) * 1992-10-19 1994-05-10 Sumitomo Metal Ind Ltd Method for controlling combustion in heating furnace
EP0851325B1 (en) * 1996-12-23 2003-05-07 Stein Heurtey Method for controlling the heating of a furnace using fuzzy logic techniques
WO2014017378A1 (en) * 2012-07-25 2014-01-30 株式会社Kelk Temperature controller for semiconductor manufacturing equipment, method for calculating pid constants in semiconductor manufacturing, and method for operating temperature controller for semiconductor manufacturing equipment
JP2014041593A (en) * 2012-07-25 2014-03-06 Kelk Ltd Temperature adjustment device for semiconductor manufacturing device, pid constants calculation method in manufacturing semiconductor, and operation method of temperature adjustment device of semiconductor manufacturing device
CN104508575A (en) * 2012-07-25 2015-04-08 科理克株式会社 Temperature controller for semiconductor manufacturing equipment, method for calculating PID constants in semiconductor manufacturing, and method for operating temperature controller for semiconductor manufacturing equipment
US9484231B2 (en) 2012-07-25 2016-11-01 Kelk Ltd. Temperature controller for semiconductor manufacturing equipment, method for calculating PID constants in semiconductor manufacturing, and method for operating temperature controller for semiconductor manufacturing equipment
CN104508575B (en) * 2012-07-25 2016-12-28 科理克株式会社 PID constant operation method in use in semiconductor manufacturing apparatus temperature adjustment device, semiconductor manufacturing and the method for operation of use in semiconductor manufacturing apparatus temperature adjustment device

Also Published As

Publication number Publication date
JPH0565883B2 (en) 1993-09-20

Similar Documents

Publication Publication Date Title
JPS6111289B2 (en)
JPS60151709A (en) Temperature controller for industrial furnace
JP4975235B2 (en) Material temperature control system in continuous strip material processing line
JP2555116B2 (en) Steel material cooling control method
JPH0663039B2 (en) Temperature control device for heating furnace
CA1085023A (en) Process for manufacturing forge-welding steel pipe
JP2619044B2 (en) Temperature control device
TWI794058B (en) Heating system and method for controlling temperature of a heating furnace
JP2910136B2 (en) Temperature control system for tundish molten steel plasma heating system
JPH0754055A (en) Method for controlling temperature of steel strip in continuous annealing furnace
JPS63307217A (en) Method for controlling temperature of stepped shaft in heating furnace
JPS5831373B2 (en) Temperature control method and device for continuous strip heat treatment furnace
JP3982042B2 (en) Combustion control method for continuous heating furnace
JP2715739B2 (en) Control method of alloying furnace in alloying hot-dip galvanized steel sheet manufacturing facility
JP3007107B2 (en) Material heating curve determination method for heating furnace
JP4306179B2 (en) Steel material heat treatment method and program thereof
JPH0759722B2 (en) Induction heating control method during subsequent induction heating of a slab previously gas-heated
JPH01246322A (en) Apparatus for setting furnace temperature in continuous heating furnace
JPH03140415A (en) Method for determining material heating-up curve in heating furnace
JPS60197825A (en) Method for controlling cooling
JPH0323835B2 (en)
JPH02138420A (en) Combustion control method for heating furnace
JPS61199020A (en) Method for controlling continuous heating furnace
JPH09209044A (en) Operation of continuous type steel cast slab heating furnace
JPH0332605B2 (en)