JP2910136B2 - Temperature control system for tundish molten steel plasma heating system - Google Patents

Temperature control system for tundish molten steel plasma heating system

Info

Publication number
JP2910136B2
JP2910136B2 JP7866690A JP7866690A JP2910136B2 JP 2910136 B2 JP2910136 B2 JP 2910136B2 JP 7866690 A JP7866690 A JP 7866690A JP 7866690 A JP7866690 A JP 7866690A JP 2910136 B2 JP2910136 B2 JP 2910136B2
Authority
JP
Japan
Prior art keywords
molten steel
temperature
heating chamber
time constant
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7866690A
Other languages
Japanese (ja)
Other versions
JPH03281044A (en
Inventor
正毅 斎木
裕則 山本
順一 庄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP7866690A priority Critical patent/JP2910136B2/en
Publication of JPH03281044A publication Critical patent/JPH03281044A/en
Application granted granted Critical
Publication of JP2910136B2 publication Critical patent/JP2910136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、タンディッシュ溶鋼プラズマ加熱装置の
温度制御装置に係り、さらに詳しくは、タンディッシュ
内溶鋼加熱のように加熱空間において、被加熱物の蓄積
量および通過速度が変動する条件下における加熱空間出
側の被加熱物温度のPID制御装置に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to a temperature control device for a tundish molten steel plasma heating apparatus, and more particularly, to an object to be heated in a heating space, such as the heating of molten steel in a tundish. The present invention relates to a PID control device for controlling the temperature of an object to be heated on the exit side of a heating space under a condition in which the accumulation amount and the passing speed of the air fluctuate.

[従来の技術] タンディッシュ溶鋼プラズマ加熱装置において、製鋼
温度の制御は従来PID温度調節器によるフィードバック
制御が行われている。第4図はこのダンディッシュ溶鋼
プラズマ加熱装置における温度制御系の構成を示す説明
図である。
[Prior Art] In a tundish molten steel plasma heating apparatus, the steelmaking temperature is conventionally controlled by feedback control using a PID temperature controller. FIG. 4 is an explanatory diagram showing a configuration of a temperature control system in the dundish molten steel plasma heating apparatus.

図において、(1)はプラズマトーチ、(2)はプラ
ズマ、(3)は注入室(タンディッシュ)、(4)は加
熱室、(5)は鋳込室、(6)はプラズマ電源、(7)
は炉底電極、(8)は温度調節器、(9)は溶鋼温度検
出器、(10)は溶鋼温度設定器、(14)は取鍋、(15)
はモールドである。
In the figure, (1) is a plasma torch, (2) is plasma, (3) is an injection chamber (tundish), (4) is a heating chamber, (5) is a casting chamber, (6) is a plasma power source, and ( 7)
Is a furnace bottom electrode, (8) is a temperature controller, (9) is a molten steel temperature detector, (10) is a molten steel temperature setter, (14) is a ladle, (15)
Is a mold.

取鍋(14)で受け入れられた溶鋼は、注入室(3)に
注入され、次いで加熱室(4)に流れる。ここではプラ
ズマトーチ(1)によってプラズマ(2)が発生し、溶
鋼を所定温度まで過熱する。溶鋼はその後鋳込室(5)
からモールド(15)に鋳込まれる。ここで加熱室(4)
における溶鋼の昇温特性は次の伝達関数で示される。
The molten steel received in the ladle (14) is injected into the injection chamber (3) and then flows into the heating chamber (4). Here, plasma (2) is generated by the plasma torch (1), and the molten steel is heated to a predetermined temperature. The molten steel is then cast into the casting room (5)
From the mold (15). Here heating room (4)
The temperature rise characteristic of the molten steel at is expressed by the following transfer function.

ここでKは加熱室の比例ゲイン[℃/Kw]、Tは応答
時定数[分]、Lは制御むだ時間[分]、Sはラプラス
演算子である。
Here, K is a proportional gain [° C./Kw] of the heating chamber, T is a response time constant [min], L is a control dead time [min], and S is a Laplace operator.

[1]式で示される制御対象の制御量は加熱室(4)
の出側の温度Taであり、温度Taは溶鋼温度検出器(9)
により検出される。温度調節器(8)はこのTaの値を温
度設定器(10)で与えられる目標温度Trと比較し、温度
Taが目標温度Trと等しくなるよう過熱装置のプラズマ電
源(6)を操作してフィードバック制御が行われる。
The controlled variable of the controlled object represented by the equation [1] is the heating chamber (4)
The temperature T a of the exit side of the temperature T a is the molten steel temperature detector (9)
Is detected by Temperature controller (8) is compared with the target temperature T r, given the value of this T a temperature setter (10), the temperature
T a feedback control is performed by operating the plasma source (6) of the heating device to be equal to the target temperature T r.

第5図はこのフィードバック制御系の信号フローを示
すブロック図であり、(4)は加熱室、(8)は温度調
節器としてのPID調節器、(32)は過熱器である。過熱
器(32)は第4図におけるプラズマ給電線を含む電源
(6)、プラズマトーチ(1)及び炉底電極(7)で構
成されるが、その伝達関数Hは次式で定義し、定数とし
て表される。
FIG. 5 is a block diagram showing a signal flow of this feedback control system, wherein (4) is a heating chamber, (8) is a PID controller as a temperature controller, and (32) is a superheater. The superheater (32) is composed of a power source (6) including a plasma feed line in FIG. 4, a plasma torch (1), and a bottom electrode (7), and its transfer function H is defined by the following equation, It is expressed as

[発明が解決しようとする課題] 従来の装置においては、温度調節器(8)におけるゲ
インKp、積分時定数Ti、微分時定数Tdの各PID値は、あ
る特定の状態下の加熱室昇温特性、すなわち特定のK1,
T,Lの値の組合わせにおける昇温特性に適合するように
設定された後は、そのままの一定値で制御を行ってい
る。
[Problems to be Solved by the Invention] In the conventional apparatus, the PID values of the gain K p , the integration time constant T i , and the differentiation time constant T d in the temperature controller (8) are determined by heating under a specific condition. Room heating characteristics, that is, specific K 1 ,
After the temperature is set so as to conform to the temperature rising characteristic in the combination of the values of T and L, the control is performed with a constant value as it is.

しかしながら、この昇温特性は一定でなく、加熱室溶
鋼流量F[Kg/分]、加熱室貯鋼量W[Kg]によって変
動し、特にタンディッシュ溶鋼過熱装置では、溶鋼鋳込
速度の増減、取鍋の交換などによって、前記F,Wの値を
一定に保持することは操業実態にそぐわず、特性の変化
は避けることができない。したがって、PID調節器のKp,
Ti,Tdの各値が固定されるときは、K,T,Lのある一部の組
み合わせ領域では適切な制御が行われても、これが変化
して他の領域に移った場合は制御がうまく行われないと
いう問題がある。
However, this temperature rise characteristic is not constant, and fluctuates depending on the flow rate of the molten steel in the heating chamber F [Kg / min] and the storage amount of the steel in the heating chamber W [Kg]. Keeping the values of F and W constant by replacing a ladle or the like is inconsistent with the actual operation, and changes in characteristics cannot be avoided. Therefore, the K P ,
When the values of T i and T d are fixed, appropriate control is performed in some combination areas of K, T, and L, but if this changes and the control moves to another area, control is performed. Is not successful.

この発明は以上の課題を解決するためになされたもの
で、過熱特性が変化してもこれに対応して調節器のPID
常数を自動的に調整することにより、常に安定した制御
が得られる温度制御装置を得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and the PID of the controller can respond to the change in overheating characteristics.
It is an object of the present invention to obtain a temperature control device capable of always obtaining stable control by automatically adjusting a constant.

[課題を解決するための手段] この発明に係るタンディッシュ溶鋼プラズマ加熱装置
の温度制御装置は、加熱室出側溶鋼温度検出器と、目標
とする溶鋼温度値を設定する溶鋼温度設定器と、前記加
熱室出側溶鋼温度検出器より入力される検出温度値が前
記溶鋼温度設定器より入力される設定温度値に等しくな
るようにプラズマ電源を操作するPID動作機能を備え各P
ID動作のゲイン、微分時定数、積分時定数が外部信号に
より可変設定される温度調節器と、加熱室溶鋼流量検出
器と、加熱室貯鋼重量検出器と、前記加熱室溶鋼流量検
出器より入力される溶鋼流量値と前記加熱室貯鋼重量検
出器より入力される貯鋼重量値を所定の演算式で演算し
て得られたゲイン、微分時定数、積分時定数の値を前記
温度調節器のゲイン、微分時定数、積分時定数の設定信
号として出力するPID常数演算器とを備えたものであ
る。
[Means for Solving the Problems] A temperature control device for a tundish molten steel plasma heating apparatus according to the present invention includes a heating chamber exit side molten steel temperature detector, a molten steel temperature setter for setting a target molten steel temperature value, A PID operation function for operating a plasma power supply so that a detected temperature value input from the heating chamber exit side molten steel temperature detector is equal to a set temperature value input from the molten steel temperature setter is provided.
From the temperature controller, the heating chamber molten steel flow detector, the heating chamber steel storage weight detector, and the heating chamber molten steel flow detector, the gain, the differential time constant, and the integration time constant of the ID operation are variably set by an external signal. The gain, differential time constant, and integration time constant obtained by calculating the input molten steel flow value and the stored steel weight value input from the heating chamber stored steel weight detector by a predetermined arithmetic expression are used for the temperature control. And a PID constant calculator which outputs the gain, differential time constant, and integration time constant of the device as setting signals.

[作用] タンディッシュ内の溶鋼の加熱装置による昇温特性
は、加熱室溶鋼流量及び加熱室貯鋼重量の変化により大
きく変動する。この発明では、溶鋼流量と貯鋼重量の検
出値により、その状態における加熱室の昇温特性に最適
なPID調節器のゲイン、微分時定数、積分時定数を演算
し、PID調節器の各常数を演算器出力によってこの値に
可変設定することにより、常に安定した最適の制御動作
を維持することができる。
[Operation] The temperature rising characteristics of the molten steel in the tundish by the heating device greatly fluctuate due to changes in the flow rate of the molten steel in the heating chamber and the weight of the steel storage in the heating chamber. According to the present invention, the gain, differential time constant, and integration time constant of the PID controller, which are optimal for the heating characteristics of the heating chamber in that state, are calculated based on the molten steel flow rate and the detected value of the stored steel weight, and each constant of the PID controller is calculated. Is variably set to this value in accordance with the output of the arithmetic unit, whereby a stable and optimal control operation can always be maintained.

[実施例] 第1図はこの発明の一実施例を示すタンディッシュ溶
鋼プラズマ加熱装置の温度制御系の構成図である。図に
おいて、(1)〜(10),(14),(15)の各要素は第
4図に示した従来のものと同等である。さらに、(11)
はPID常数演算器、(12)は溶鋼流量検出器、(13)は
貯鋼重量検出器である。
Embodiment FIG. 1 is a configuration diagram of a temperature control system of a tundish molten steel plasma heating apparatus showing an embodiment of the present invention. In the figure, each element of (1) to (10), (14) and (15) is equivalent to the conventional one shown in FIG. In addition, (11)
Is a PID constant calculator, (12) is a molten steel flow rate detector, and (13) is a steel storage weight detector.

ここで加熱室(4)の出側温度Taは溶鋼温度検出器
(9)により検出される。温度調節器(8)はこのTa
値と、温度設定器(10)で与えられた目標温度Trとを比
較し、TaがTrに等しくなるよう加熱装置のプラズマ電源
(6)を操作する。このPID制御動作におけるゲイン
Kp、積分時定数Ti、微分時定数Tdの各常数は、PID常数
演算器(11)によって与えられる。
Here delivery temperature T a of the heating chamber (4) is detected by the molten steel temperature detector (9). Temperature controller (8) is the value of this T a, temperature setter compares the target temperature T r given in (10), T a is equal as heating device T r plasma power source (6) Operate. Gain in this PID control operation
Each constant of K p , integration time constant T i , and differentiation time constant T d is given by a PID constant calculator (11).

溶鋼流量検出器(12)及び貯鋼重量検出器(13)は、
それぞれ加熱室(4)内の加熱溶鋼流量F[Kg/分]及
び貯鋼重量W[Kg]を検出し、PID常数演算器(11)に
この検出信号を供給する。PID常数演算器(11)はこの
F,Wの値により、このF,Wのプロセス変数によって変動す
る加熱室(4)の昇温特性に対して最適なPID常数のKp,
Td,Ti値を演算し、PID調節計の当該常数を設定する。
Molten steel flow detector (12) and steel storage weight detector (13)
The flow rate F [Kg / min] and the stored steel weight W [Kg] in the heating chamber (4) are detected, and the detection signals are supplied to the PID constant calculator (11). The PID constant arithmetic unit (11)
According to the values of F and W, the PID constant K p , which is optimal for the temperature rising characteristic of the heating chamber (4), which varies depending on the process variables of F and W,
Calculate the T d and T i values to set the constants of the PID controller.

第2図はこの温度制御系の信号フローを示すブロック
図であり、第5図のフロー図に加えてPID常数演算器(1
1)によるKp,Td,Tiの設定信号のフローが示されている
が、このPID常数演算器(11)の演算は次の説明による
事項を基として行われるものである。
FIG. 2 is a block diagram showing a signal flow of this temperature control system. In addition to the flow diagram of FIG. 5, a PID constant calculator (1
The flow of the setting signal of K p , T d , and T i according to 1) is shown, but the operation of the PID constant number arithmetic unit (11) is performed based on the following description.

加熱室(4)の伝達関数に含まれる係数[K1,T,L]
は、加熱室溶鋼流量F[Kg/分]、加熱室貯鋼量W[K
g]の変動に対して、K1はFに反比例し、TはW/Fに比例
し、LはW/Fに比例することが確かめられており、した
がって T=αL …[3] である。ここでαはタンディッシュ設備毎に異なる固有
の定数で、1.5〜2.5の値をとる。
Coefficients [K 1 , T, L] included in the transfer function of the heating chamber (4)
Is the flow rate of the molten steel in the heating chamber F [Kg / min] and the amount of steel stored in the heating chamber W [K
for variations in g], K 1 is inversely proportional to F, T is proportional to W / F, L is is ascertained which is proportional to W / F, therefore is T = αL ... [3] . Here, α is a unique constant that differs for each tundish facility, and takes a value of 1.5 to 2.5.

よく知られているZiegler・Nicholsの限界感度法で
は、プロセス制御におけるPID調節器の最適の制御動作
を実現するKp,Td,Ti値の調整値を K2=0.6Kc …[4] Td=0.125Pc …[5] Ti=0.5Pc …[6] としており、ここでK2=KpH(第5図参照)でありKc
ハンチングゲイン、Pcはハンチング周期である。
In the well-known Ziegler-Nichols limit sensitivity method, the adjustment values of K p , T d , and T i for realizing the optimal control operation of the PID controller in the process control are represented by K 2 = 0.6 K c . ] T d = 0.125P c ... [ 5] T i = 0.5P c ... is the [6], where K 2 = K p H a (first reference 5 Figure) K c is hunting gain, P c is hunting It is a cycle.

K2は第5図のPID調節器(8)のTd項とTiを含む項を
消去し、K2のみで制御した場合、K2を小さい値から次第
に大きくして制御系にハンチングが始まるときのK2の値
をKcとし、これに0.6を乗じて([4]式参照)得られ
る。こときのハンチング周期がPcである。
K 2 erases the terms involving T d term and T i of FIG. 5 of the PID regulator (8), the case of controlling only K 2, hunting increasingly greater to the control system of K 2 from a small value the value of K 2 when starting the K c, (see [4] type) which is multiplied by 0.6 to obtain. Hunting period of Kotoki is P c.

ハンチング角周波数ωとKc,Pcの間には Pc=2π/ω …[8] の関係がある。また、ω,L,Tの関係は Tan-1ωT+ωL=π …[9] である。θ=ωTとし、[3]式及び[9]式から Tan-1θ=π−1/α・θ …[10] が得られる。[10]式のθの解は第3図の図解で示され
る左辺を表す曲線と右辺を表す直線の交点のθ座標とし
て得られ、αの通常取り得る範囲(α:1.5〜2.5)内で
は近似的に次式となる。
Between the hunting angular frequency ω c and K c , P c P c = 2π / ω c [8] The relationship between ω c , L, and T is Tan −1 ω c T + ω c L = π (9). Assuming that θ = ω c T, Tan −1 θ = π−1 / α · θ (10) is obtained from the expressions [3] and [9]. The solution of θ in the equation [10] is obtained as the θ coordinate of the intersection of the curve representing the left side and the straight line representing the right side shown in the illustration of FIG. 3, and within the normal range of α (α: 1.5 to 2.5) Approximately:

θ=1.6α+0.4 …[11] 但し、1.5<α<2.5 [4]〜[8]式及びωT=θの関係から となり、K2,Td,Tiが計算できる。θ = 1.6α + 0.4 (11) where 1.5 <α <2.5 [4] to [8] and the relationship of ω c T = θ And K 2 , T d and T i can be calculated.

前記K2,K1及びTは、K2=KpH、K1=k1/F、T=t W/F
(Kp,k,tは定数)で置き換えられるので、 [12]〜[14]はPID調節器に与えるべき3つの可変
常数を下記により設定できることを示している。
K 2 , K 1 and T are as follows: K 2 = K pH , K 1 = k 1 / F, T = t W / F
( Kp , k, t are constants), [12] to [14] indicate that three variable constants to be given to the PID controller can be set as follows.

ここで、Kp,td,tiは定数である。 Here, K p , t d and t i are constants.

この[15],[16],[17]式は第1図において被制
御対象である加熱室(4)の伝達関数がF,Wの値と共に
変動する場合、PIDフィードバック制御が最適な制御性
を維持するのには、この式に従ってKp,Td,Tiを可変制御
すればよいことを示している。これは第2図に示すよう
にPID常数演算器(11)が[15],[16],[17]式の
演算によって、3つの常数を制御対象特性に対して常に
最適に更新、維持することにより達成できる。
Equations [15], [16], and [17] show that the PID feedback control has the optimal controllability when the transfer function of the heating chamber (4) to be controlled in FIG. 1 varies with the values of F and W. It is shown that K p , T d , and T i can be variably controlled in accordance with this equation in order to maintain. As shown in FIG. 2, the PID constant calculator (11) always updates and maintains the three constants optimally with respect to the control target characteristic by the calculation of the formulas [15], [16], and [17]. This can be achieved by:

[発明の効果] この発明によれば、被加熱溶鋼の流量および溶鋼蓄積
量の大巾な変動に対して、常に安定した温度のPIDフィ
ードバック制御が可能であるので、その制御の適用領域
を格段に拡大することができる効果がある。
[Effects of the Invention] According to the present invention, PID feedback control at a stable temperature can always be performed with respect to large fluctuations in the flow rate of molten steel to be heated and the accumulated amount of molten steel. There is an effect that can be expanded.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例を示すタンディッシュ溶鋼
プラズマ加熱装置の温度制御系の構成図、第2図はこの
発明の一実施例の温度制御系の信号フローを示すブロッ
ク図、第3図は方程式の解を求めるための線図、第4図
は従来のタンディッシュ溶鋼プラズマ加熱装置の温度制
御系の一例を示す構成図、第5図は従来の温度制御系の
信号フローを示すブロック図である。 (4)……加熱室、(6)……プラズマ電源、(8)…
…温度調節計、(9)……溶鋼温度検出器、(10)……
溶鋼温度設定器、(11)……PID常数演算器、(12)…
…溶鋼流量検出器、(13)……貯鋼重量検出器。
FIG. 1 is a configuration diagram of a temperature control system of a tundish molten steel plasma heating apparatus showing one embodiment of the present invention, FIG. 2 is a block diagram showing a signal flow of the temperature control system of one embodiment of the present invention, and FIG. Fig. 4 is a diagram for obtaining a solution of the equation, Fig. 4 is a block diagram showing an example of a temperature control system of a conventional tundish molten steel plasma heating apparatus, and Fig. 5 is a block diagram showing a signal flow of the conventional temperature control system. FIG. (4) ... heating room, (6) ... plasma power supply, (8) ...
... temperature controller, (9) ... molten steel temperature detector, (10) ...
Molten steel temperature setting device, (11)… PID constant value calculator, (12)…
… Molten steel flow detector, (13)… Steel storage weight detector.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−178353(JP,A) 特開 平3−124351(JP,A) 特開 平3−174957(JP,A) 特開 平3−285746(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22D 11/10 B22D 41/01 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-178353 (JP, A) JP-A-3-124351 (JP, A) JP-A-3-174957 (JP, A) JP-A-3-17851 285746 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) B22D 11/10 B22D 41/01

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】タンディッシュ溶鋼プラズマ加熱装置にお
いて、加熱室出側溶鋼温度検出器と、目標とする溶鋼温
度値を設定する溶鋼温度設定器と、前記加熱室出側溶鋼
温度検出器より入力される検出温度値が前記溶鋼温度設
定器より入力される設定温度値に等しくなるようにプラ
ズマ電源を操作するPID動作機能を備え各PID動作のゲイ
ン、微分時定数、積分時定数が外部信号により可変設定
される温度調節器と、加熱室溶鋼流量検出器と、加熱室
貯鋼重量検出器と、前記加熱室溶鋼流量検出器より入力
される溶鋼流量値と前記加熱室貯鋼重量検出器より入力
される貯鋼重量値を所定の演算式で演算して得られたゲ
イン、微分時定数、積分時定数の値を前記温度設節器の
ゲイン、微分時定数、積分時定数の設定信号として出力
するPID常数演算器とを備えたことを特徴とするタンデ
ィッシュ溶鋼プラズマ加熱装置の温度制御装置。
In a tundish molten steel plasma heating apparatus, a molten steel temperature detector on the exit side of a heating chamber, a molten steel temperature setter for setting a target molten steel temperature value, and an input from the molten steel temperature detector on the exit side of the heating chamber are provided. PID operation function to operate the plasma power supply so that the detected temperature value becomes equal to the set temperature value input from the molten steel temperature setting device.The gain, differential time constant, and integration time constant of each PID operation can be changed by an external signal. A temperature controller to be set, a heating chamber molten steel flow detector, a heating chamber storage steel weight detector, a molten steel flow value input from the heating chamber molten steel flow detector, and an input from the heating chamber storage steel weight detector. The gain, differential time constant, and integral time constant obtained by calculating the stored steel weight value by a predetermined arithmetic expression are output as gain, differential time constant, and integral time constant setting signals of the temperature setting device. PID constant calculator and Temperature controller tundish molten steel plasma heating apparatus characterized by comprising.
JP7866690A 1990-03-29 1990-03-29 Temperature control system for tundish molten steel plasma heating system Expired - Lifetime JP2910136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7866690A JP2910136B2 (en) 1990-03-29 1990-03-29 Temperature control system for tundish molten steel plasma heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7866690A JP2910136B2 (en) 1990-03-29 1990-03-29 Temperature control system for tundish molten steel plasma heating system

Publications (2)

Publication Number Publication Date
JPH03281044A JPH03281044A (en) 1991-12-11
JP2910136B2 true JP2910136B2 (en) 1999-06-23

Family

ID=13668189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7866690A Expired - Lifetime JP2910136B2 (en) 1990-03-29 1990-03-29 Temperature control system for tundish molten steel plasma heating system

Country Status (1)

Country Link
JP (1) JP2910136B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005284828A (en) * 2004-03-30 2005-10-13 Omron Corp Controller, method for tuning control parameter, program, and recording medium

Also Published As

Publication number Publication date
JPH03281044A (en) 1991-12-11

Similar Documents

Publication Publication Date Title
JP2647217B2 (en) Composite control method
JPH0549453B2 (en)
US4323763A (en) Parametric power controller
JPS5951133A (en) Electronic governor
JP2910136B2 (en) Temperature control system for tundish molten steel plasma heating system
JPH0822306A (en) Automatic adjusting device for arithmetic control parameter
JP2004086858A (en) Controller, thermoregulator and thermal treatment equipment
JP3269894B2 (en) Control method for control device of semiconductor manufacturing apparatus and control device therefor
JP3267841B2 (en) Controller with phase compensation function
JPS60151709A (en) Temperature controller for industrial furnace
JPS62168652A (en) Molten metal surface level control method in continuous casting machine
JP2619044B2 (en) Temperature control device
JP2001265448A (en) Temperature controller and heat treating device
JP3277484B2 (en) PID controller
SU877490A1 (en) Device for inertial object temperature program adjustment
JP2740618B2 (en) Looper control device
SU974083A1 (en) Method and device for controlling furnace thermal mode
JPH0323835B2 (en)
JPH03120320A (en) Sheet temperature control method for continuous annealing furnace
JP3071300B2 (en) Looper height control device
JPH10312201A (en) Process controller for closed loop system including pid adjuster
JPH05207772A (en) Servo controller for motor
JPS63282268A (en) Vapor deposition controller
SU925585A1 (en) Method of automatic control of high frequency welding process
JPH0757858A (en) Method for controlling power of melting furnace