JPS6022049B2 - Furnace temperature setting control method for multi-zone heating furnace - Google Patents

Furnace temperature setting control method for multi-zone heating furnace

Info

Publication number
JPS6022049B2
JPS6022049B2 JP1967278A JP1967278A JPS6022049B2 JP S6022049 B2 JPS6022049 B2 JP S6022049B2 JP 1967278 A JP1967278 A JP 1967278A JP 1967278 A JP1967278 A JP 1967278A JP S6022049 B2 JPS6022049 B2 JP S6022049B2
Authority
JP
Japan
Prior art keywords
furnace
temperature
furnace temperature
slab
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1967278A
Other languages
Japanese (ja)
Other versions
JPS54112709A (en
Inventor
真也 谷藤
泰男 諸岡
耕三 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1967278A priority Critical patent/JPS6022049B2/en
Publication of JPS54112709A publication Critical patent/JPS54112709A/en
Publication of JPS6022049B2 publication Critical patent/JPS6022049B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Description

【発明の詳細な説明】 本発明は、多帯式加熱炉の炉温設定に係り、特にスラブ
の抽出温度の精度を向上するに適する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to furnace temperature setting for a multi-zone heating furnace, and is particularly suitable for improving accuracy of slab extraction temperature.

近年省エネルギの観点から多帯式加熱炉の計算機制御が
種々試みられている。例えば侍公昭49一2凶03号で
は現在のスラブ温度と目標値の偏差に基づいて炉温を修
正する方式が提示されており、また侍公昭51−305
26号では各炉帯出口のスラブ温度の予測値を目標温度
とするように炉温修正する方式が提示されている。これ
らの方法では、炉温設定暦が時間遅れ無く炉溢に反映す
るとか、炉帯間の干渉は無いとか、炉温の過度的応答は
ないということは暗目のうちに仮定しており、実際の炉
温の変化とは異なる。このため、求めた炉温修正量が正
しいかどうかの保証はなく、抽出温度の制度、炉温制御
系の安定性に欠ける点がある。本発明の目的は、かかる
従来方式の欠点に鑑み、各炉帯の炉温の動的変化を考慮
して最適の炉温設定値を与えることができるようにした
ものである。本発明は、各炉帯の燃料投入及び隣接炉体
からのガス流入による炉帯温度の変化を求め、この炉帯
温度に基づいてスラブ温度を予測し、該予測値があらか
じめ与えられた目標温度となるように制御することに特
徴がある。
In recent years, various attempts have been made to computer control multi-zone heating furnaces from the viewpoint of energy conservation. For example, Samurai Kosho No. 49-2 Aku No. 03 proposes a method for correcting the furnace temperature based on the deviation between the current slab temperature and the target value, and Samurai Kosho No. 51-305
No. 26 proposes a method for correcting the furnace temperature so that the predicted value of the slab temperature at the outlet of each furnace zone becomes the target temperature. These methods implicitly assume that the furnace temperature setting calendar will be reflected in the furnace overflow without any time delay, that there will be no interference between furnace zones, and that there will be no transient response of the furnace temperature. This differs from the actual change in furnace temperature. For this reason, there is no guarantee that the determined furnace temperature correction amount is correct, and the accuracy of the extraction temperature and the stability of the furnace temperature control system are lacking. In view of the drawbacks of the conventional method, an object of the present invention is to make it possible to provide an optimal furnace temperature setting value by taking into account dynamic changes in the furnace temperature of each furnace zone. The present invention calculates changes in furnace zone temperature due to fuel injection into each furnace zone and gas inflow from adjacent furnace bodies, predicts slab temperature based on this furnace zone temperature, and sets the predicted value to a target temperature given in advance. The feature is that it is controlled so that

第1図は本発明を3帯式加熱炉に適用した例を示してお
り、図中の1は加熱炉本体、2a〜2cは炉温検出装置
、3は炉温制御装置、4は本発明になる炉温設定装置を
表わしており、5は現在の炉温設定値の記憶部、6はス
ラブ温度予測計算部7は炉温設定の評価計算部、8は炉
温設定の修正計算部、9は炉温ダイナミック計算部、1
0‘ま炉温設定値の出力部、11はスラブ温度の現在地
の計算部を表わす。
FIG. 1 shows an example in which the present invention is applied to a three-zone heating furnace, in which 1 is the heating furnace main body, 2a to 2c are furnace temperature detection devices, 3 is a furnace temperature control device, and 4 is the invention of the present invention. 5 represents a storage unit for the current furnace temperature setting value, 6 a slab temperature prediction calculation unit 7 a furnace temperature setting evaluation calculation unit, 8 a furnace temperature setting correction calculation unit, 9 is a furnace temperature dynamic calculation section, 1
0' represents the output part of the furnace temperature set value, and 11 represents the calculation part of the current position of the slab temperature.

炉温設定装置4は炉温検出装置2a〜2cで検出された
炉温現在値を一定時間毎に入力する。
The furnace temperature setting device 4 inputs the current furnace temperature values detected by the furnace temperature detection devices 2a to 2c at regular intervals.

スラブ温度計算部11は炉内の各スラブについて、前回
のスラブ温度計算値から現在までのスラブ温度の変化を
該炉温検出値をもとに計算する。この現在のスラブ温度
の計算を熱伝導方程式によって行なうことができるのは
前記公知例に示されてし、.るのでここでは省略する。
スラブ温度計算部6は現在のスラブ炉温が続くものとし
て、一定時間後のスラブ温度を予測計算する。すなわち
スラブ現在温度計算部11で計算されたスラブ温度を0
(x)(xはスラブ厚み方向にとった距離)としたとき
、これを初期値として一定時間7o間のスラブ温度の次
の熱伝導式により計算する。a0 a26
…(1’aケ一aX2境界条件 鷺=4.88.◇CG{(T牛幹)4‐(鮎洋273)
4} .・・【2’燐=4.雛.cCG
{(T牛幹)4‐(岬器73)4}
…【3’ここで求めたi番目のスラブのでo時間後のス
ラブ温度の平均値を8,とする。
The slab temperature calculation unit 11 calculates, for each slab in the furnace, the change in slab temperature from the previous calculated slab temperature value to the present value based on the detected furnace temperature value. It is shown in the above-mentioned known example that the current slab temperature can be calculated using the heat conduction equation. Therefore, it is omitted here.
The slab temperature calculation unit 6 predicts and calculates the slab temperature after a certain period of time, assuming that the current slab furnace temperature continues. In other words, the slab temperature calculated by the slab current temperature calculation unit 11 is set to 0.
(x) (x is the distance taken in the thickness direction of the slab), using this as an initial value, calculate the slab temperature for a certain period of time 7o using the following heat conduction formula. a0 a26
...(1'a ke 1 a
4}. ... [2' phosphorus = 4. chick. cCG
{(T beef trunk) 4-(Misakiki 73) 4}
...[3' Assume that the average value of the slab temperature after o hours for the i-th slab obtained here is 8.

炉温設定の評価計算部7は各スラブの温度予測値8iを
入力する。
The furnace temperature setting evaluation calculation section 7 inputs the predicted temperature value 8i of each slab.

各スラブの昇温パターンopは位置の関数としてあらか
じめ評価計算部に与えられている。ここで図示していな
い炉内スラブのトラッキング制御装置よりトラッキング
の速度vを入力し、炉帯1にあるN,本のスラブに関し
、7。時間後の位暦ヶ。/vを求める。,このとき与え
られた昇温パターンより丁。時間後のスラブ温度8pi
が決まる。ここでJ,,A,を次式で定義する。J,=
も1■i−すpi)2 ..・{41i白・A.
=吉i≧1.(すi−8M) ‐‐‐‘5}評価計算
部ではJ,が目標の値ごより小となるかどうかをチェッ
クし、もし小なる場合は炉温設定は現在のままとし計算
を終了する。
The temperature increase pattern op of each slab is given to the evaluation calculation section in advance as a function of position. Here, the tracking speed v is inputted from a tracking control device for in-furnace slabs (not shown), and 7 is obtained for N slabs in the furnace zone 1. Time later. Find /v. , from the given temperature increase pattern. Slab temperature after hours 8pi
is decided. Here, J,,A, is defined by the following equation. J,=
1■i-spi)2. ..・{41i white・A.
=Kichii≧1. (Sui-8M) ---'5} The evaluation calculation section checks whether J is smaller than the target value, and if it is, the furnace temperature setting remains as it is and the calculation ends. .

もしごより大なる場合は以下に述べる炉温設定の手続き
をこの条件を満足するまでくりかえす。炉温設定修正計
算部8は、該評価計算部7で計算されたJ,,A,を入
力し次の炉温設定の修正量△TPIを計算する。△TP
・={千王三 途≦8≧ ただしりはあらかじめ定められた正の定数である。
If the condition is greater than that, repeat the furnace temperature setting procedure described below until this condition is satisfied. The furnace temperature setting correction calculation section 8 inputs J,,A, calculated by the evaluation calculation section 7 and calculates the next correction amount ΔTPI for the furnace temperature setting. △TP
・={Thousands of Kings ≦8≧ The proviso is a predetermined positive constant.

もし、TP,十△TP,が炉帯温度の最大値を越えると
きにはTPI十△TPIを最大値にする。燃料流量及び
炉温ダイナミック計算部9はこの炉温設定の修正量量△
TP,(1=1〜3)を入力し、炉温および燃料流量の
時間変化を計算する。この計算のフローを第2図に示す
。この図ではGd(s)は炉温制御の調節系の伝達関数
、Gp,(s)は燃料流量の変化に対する炉温の応答伝
達関数、Kは単位燃料燃焼に伴なう排ガス発生率、Cr
は第1炉帯から流出する排ガス額熱の計算定数GP,(
s)は隣接炉帯から流入するガスから炉溢への影響を表
わす伝達関数である。すなわち第1図に示した炉温ダイ
ナミック計算部は炉の近似シュミレータに相当する。各
伝達関数の例を次に示す。Gq(S)=藷も KP, GM(s)=▽霜市 KI=Cs Cx=(T,一TRM)・Cg Cb,=VG(1).Cg G町=.十等〜 ただしSはラプラス変数を表わちておりKc,,Tcl
,KP1,TP1,Cs,Cg,Kql,Tqlは炉構
造、燃料の種類で決まる定数であらかじめ実験的に決め
た値を用いる。
If TP, +ΔTP, exceeds the maximum value of the furnace zone temperature, TPI +ΔTPI is set to the maximum value. The fuel flow rate and furnace temperature dynamic calculation unit 9 calculates the amount of correction △ for this furnace temperature setting.
Input TP, (1=1 to 3) and calculate the temporal change in furnace temperature and fuel flow rate. The flow of this calculation is shown in FIG. In this figure, Gd(s) is the transfer function of the adjustment system for controlling the furnace temperature, Gp,(s) is the response transfer function of the furnace temperature to changes in fuel flow rate, K is the exhaust gas generation rate associated with unit fuel combustion, and Cr
is the calculation constant GP of the exhaust gas amount heat flowing out from the first furnace zone, (
s) is a transfer function representing the influence of gas flowing from the adjacent furnace zone onto the furnace overflow. That is, the furnace temperature dynamic calculation section shown in FIG. 1 corresponds to an approximate furnace simulator. Examples of each transfer function are shown below. Gq(S)=Kimo KP, GM(s)=▽Shimoichi KI=Cs Cx=(T, 1 TRM)・Cg Cb,=VG(1). Cg G town=. 10th magnitude ~ However, S represents a Laplace variable, and Kc,, Tcl
, KP1, TP1, Cs, Cg, Kql, and Tql are constants determined by the reactor structure and fuel type, and values determined experimentally in advance are used.

またT,としては炉温現在地を用い、VG(1)は炉帯
1から流出する排ガス流量の現在地である。このダイナ
ミック計算部に炉温設定修正計算部8で決められた炉温
修正量(△TF,,△TP2,△TF3)を入力すれば
、該炉温修正に対する炉温変化を予測することができる
。この時間変化を炉温の予測パターンと呼ぶことにする
。スラブ温度予測計算部6はダイナミック計算部9で計
算された炉温の予測パターンを入力し、そのパターンに
関し、現在のスラブ温度を初期値として一定時間↑。
Further, as T, the current position of the furnace temperature is used, and VG(1) is the current position of the exhaust gas flow rate flowing out from the furnace zone 1. By inputting the furnace temperature correction amount (△TF,, △TP2, △TF3) determined by the furnace temperature setting correction calculation unit 8 into this dynamic calculation unit, it is possible to predict the furnace temperature change in response to the furnace temperature correction. . This time change will be referred to as a predicted furnace temperature pattern. The slab temperature prediction calculation unit 6 inputs the furnace temperature prediction pattern calculated by the dynamic calculation unit 9, and uses the current slab temperature as an initial value for that pattern for a certain period of time ↑.

後のスラブ温度を計算する。炉温設定の評価計算部7で
は再び{4:式により炉温設定(TP,十△TP,,T
P2十△TP2,TP3十△TP3)が妥当かどうか評
価する。以上の操り返し‘こより妥当な炉温設定が得ら
れたとき、これを炉温設定値の出力部101こ記憶し、
しかるべきタイミングで炉温制御装置3a〜3cに出力
する。
Calculate the subsequent slab temperature. The furnace temperature setting evaluation calculation unit 7 calculates the furnace temperature setting (TP, △TP, , T
Evaluate whether P20△TP2, TP30△TP3) is appropriate. When a reasonable furnace temperature setting is obtained through the above manipulation, this is stored in the furnace temperature setting value output section 101,
It is output to the furnace temperature control devices 3a to 3c at appropriate timing.

炉温制御装置3a〜3cでは、炉温検出器2a〜2cで
検出された炉帯温度を該炉温設定値に制御すべく炉に供
給する燃料の流量を制御する。本実施例によれば炉の応
答を考慮して炉温設定を行なうのでスラブの温度を精度
良く目標値に制御することができる。
The furnace temperature control devices 3a to 3c control the flow rate of fuel supplied to the furnace in order to control the furnace zone temperature detected by the furnace temperature detectors 2a to 2c to the furnace temperature set value. According to this embodiment, since the furnace temperature is set in consideration of the response of the furnace, the temperature of the slab can be accurately controlled to the target value.

また本実施例で使用したスラブ昇温パタ−ンとして燃料
最小となるような昇温パターンを用いれば、本実施例は
該昇溢パターンにそってスラブを加熱するという特徴を
持つので、燃料原単位を改善することができる。本実施
例は3帯式加熱炉に関するものであるが、帯数に関数な
く適用することができる。また本実施例では設定炉温の
評価を一定時間7。の後のスラブ温度の予測値から行な
ったが、炉内の適当な位置に達する時点のスラブ温度を
炉温のダイナミツクスを考慮して求め、この値から炉温
設定を評価しても良い。さらに本実施例では設定炉温の
評価としてN,本のスラブに関しその平均温度予測値の
目標値からの自乗偏差を用いたが、そのかわりに次のも
のを用いてもよりJ蔓〉〇 ただし、J;=Min{8i−opili=1,…,N
q}あるいは、平均温度にかわつてスラブ表面温度を用
いてもよく、次の抽出スラブ内外温度差△8iに関する
次の評価関数のいずれかと併用しその両者を満す設定炉
温を探索するようにしても良い。
Furthermore, if the slab temperature increase pattern used in this example is a temperature increase pattern that minimizes the fuel, this example has the characteristic of heating the slab along the overflow pattern, so that the fuel source is Units can be improved. Although this embodiment relates to a three-zone heating furnace, it can be applied regardless of the number of zones. In addition, in this example, the set furnace temperature is evaluated for a certain period of time 7. Although this was done from the predicted value of the slab temperature after , the slab temperature at the time when it reaches a suitable position in the furnace may be determined by taking into consideration the dynamics of the furnace temperature, and the furnace temperature setting may be evaluated from this value. Furthermore, in this example, the square deviation of the average temperature prediction value from the target value was used for N slabs as an evaluation of the set furnace temperature, but the following can also be used instead. , J;=Min{8i-opili=1,...,N
q} Alternatively, the slab surface temperature may be used instead of the average temperature, and it may be used in conjunction with one of the following evaluation functions regarding the temperature difference between the inside and outside of the extraction slab Δ8i to search for a set furnace temperature that satisfies both. Also good.

J′≦△8, (定数) ただしJ′=△ai (iは時間T。J′≦△8, (constant) However, J′=△ai (i is time T.

間に抽出されると予測されるスラブの番号)本発明によ
ればスラブの炉温をきわめて精度良く制御でき、かつ燃
料原単位を改善するとができる。
According to the present invention, the furnace temperature of the slab can be controlled with extremely high accuracy, and the fuel consumption rate can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、本発明を3帯式加熱炉に適用した例、第2図、
本発明の実施例で用いる炉温の勤特性を計算するための
ブロック図を示す。 1・・・・・・加熱炉本体、2a〜c・・・・・・炉温
検出器、3・・…・炉温制御装贋、4・・・・・・炉温
設定装置、5・・・・・・現在の炉温設定値記憶部、6
・・・・・・スラブ温度予測計算部、9・・・・・・炉
温ダイナミック計算部。 努′図豹Z図
Fig. 1: An example of applying the present invention to a three-zone heating furnace; Fig. 2:
FIG. 2 shows a block diagram for calculating the furnace temperature characteristic used in the embodiment of the present invention. 1... Heating furnace main body, 2a-c... Furnace temperature detector, 3... Furnace temperature control device, 4... Furnace temperature setting device, 5. ...Current furnace temperature set value storage section, 6
... Slab temperature prediction calculation section, 9 ... Furnace temperature dynamic calculation section. Tsutomu's Leopard Z

Claims (1)

【特許請求の範囲】[Claims] 1 各炉体の炉温を検出しあらかじめ定められている炉
温目標温度に炉温を制御する炉温制御装置を備えた炉温
設定制御方法において、 あらかじめ定められたスラブ
昇温パターンに基づいて各炉帯温度を設定し、 設定さ
れた炉温に対する実際の炉温を該炉温制御装置および炉
帯の応等特性からきまる燃料流量と、隣接炉体からの排
ガス流入量と、当該炉体の動特性から炉の近似シミユレ
ータを用いて炉温の時間変化を予測し、 該予測された
炉温で加熱された場合のスラブ温度を予測し、 該予測
されたスラブ温度を用いて該炉帯の該炉温設定値を修正
し、 スラブの加熱をおこなうことを特徴とする多帯式
加熱炉の炉温設定制御方法。
1. In a furnace temperature setting control method equipped with a furnace temperature control device that detects the furnace temperature of each furnace body and controls the furnace temperature to a predetermined target furnace temperature, The temperature of each furnace zone is set, and the actual furnace temperature relative to the set furnace temperature is determined by the fuel flow rate determined from the corresponding characteristics of the furnace temperature control device and the furnace zone, the amount of exhaust gas inflow from the adjacent furnace body, and the furnace temperature. predict the temporal change in furnace temperature using an approximate furnace simulator from the dynamic characteristics of the furnace, predict the slab temperature when heated at the predicted furnace temperature, and use the predicted slab temperature to A furnace temperature setting control method for a multi-zone heating furnace, comprising: correcting the furnace temperature setting value and heating a slab.
JP1967278A 1978-02-24 1978-02-24 Furnace temperature setting control method for multi-zone heating furnace Expired JPS6022049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1967278A JPS6022049B2 (en) 1978-02-24 1978-02-24 Furnace temperature setting control method for multi-zone heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1967278A JPS6022049B2 (en) 1978-02-24 1978-02-24 Furnace temperature setting control method for multi-zone heating furnace

Publications (2)

Publication Number Publication Date
JPS54112709A JPS54112709A (en) 1979-09-03
JPS6022049B2 true JPS6022049B2 (en) 1985-05-30

Family

ID=12005720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1967278A Expired JPS6022049B2 (en) 1978-02-24 1978-02-24 Furnace temperature setting control method for multi-zone heating furnace

Country Status (1)

Country Link
JP (1) JPS6022049B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159939A (en) * 1983-03-02 1984-09-10 Kobe Steel Ltd Method for determining heat-up pattern of material in heating furnace
CN111814402B (en) * 2020-07-13 2023-10-17 重庆赛迪热工环保工程技术有限公司 Heating furnace temperature control method

Also Published As

Publication number Publication date
JPS54112709A (en) 1979-09-03

Similar Documents

Publication Publication Date Title
JPS5947324A (en) Controlling method of heating in heating furnace
CN103506406B (en) A kind of heating-furnace method for controlling temperature inner of fast automatic adaptation milling train rhythm
US4394121A (en) Method of controlling continuous reheating furnace
JPS6022049B2 (en) Furnace temperature setting control method for multi-zone heating furnace
JPH05209233A (en) In-furnace temperature control device of heating furnace
JPS6036452B2 (en) Control method for continuous heating furnace
JPH08121704A (en) Steam temperature control apparatus for boiler
JP3796808B2 (en) Combustion control method and apparatus for continuous heating furnace
JPH032213B2 (en)
JPS6411691B2 (en)
JPS61199020A (en) Method for controlling continuous heating furnace
JPS58210119A (en) Method for estimating temperature of billet in heating furnace
JPS5825731B2 (en) Furnace temperature control method
JPS5818401B2 (en) Continuous heating furnace control method
JPH0565883B2 (en)
JPS61199019A (en) Method for controlling continuous heating furnace
JPS6051536B2 (en) Optimal control device for billet heating furnace
JPS6140053B2 (en)
JPS581174B2 (en) The world of science and technology
JPH0327608B2 (en)
JPS5812325B2 (en) Control method for continuous heating furnace
JPS609087B2 (en) Heating control method for continuous heating furnace
JPS61170508A (en) Method for erasing skid mark in continuous heating furnace
JPS5847453B2 (en) Method of controlling billet temperature in heating furnace
JPH0360887B2 (en)