JPS5847453B2 - Method of controlling billet temperature in heating furnace - Google Patents

Method of controlling billet temperature in heating furnace

Info

Publication number
JPS5847453B2
JPS5847453B2 JP10133379A JP10133379A JPS5847453B2 JP S5847453 B2 JPS5847453 B2 JP S5847453B2 JP 10133379 A JP10133379 A JP 10133379A JP 10133379 A JP10133379 A JP 10133379A JP S5847453 B2 JPS5847453 B2 JP S5847453B2
Authority
JP
Japan
Prior art keywords
temperature
billet
flow rate
heating furnace
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10133379A
Other languages
Japanese (ja)
Other versions
JPS5625933A (en
Inventor
正誠 鎌田
達夫 倉石
史敏 村上
康治 楠本
捷文 藪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP10133379A priority Critical patent/JPS5847453B2/en
Publication of JPS5625933A publication Critical patent/JPS5625933A/en
Publication of JPS5847453B2 publication Critical patent/JPS5847453B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Description

【発明の詳細な説明】 この発明は、加熱炉の鋼片温度制御方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the temperature of a steel billet in a heating furnace.

鋼片用連続加熱炉の鋼片温度制御においては、以下の2
点が重要な問題となる。
In controlling the billet temperature in a continuous heating furnace for billets, the following two methods are required:
The point becomes an important issue.

すなわち、■ 鋼片の抽出温度の適中率を向上させるこ
と。
In other words, ■ Improving the accuracy of the extraction temperature of the steel billet.

■ 熱効率を向上させること。■ Improving thermal efficiency.

上記のは、鋼片の抽出温度をいかに目標値に近づけるか
の問題であり、抽出温変を目標値に近づけることにより
、製品の品質の安定化のみならず不要な加熱がなくなる
ので、燃料原単位の低減にも結びつく。
The above is a problem of how to bring the extraction temperature of the steel billet closer to the target value.By bringing the extraction temperature change closer to the target value, not only will the quality of the product be stabilized, but unnecessary heating will be eliminated, and the fuel source This also leads to a reduction in units.

また、上記■は、投入した燃料の発熱量と抽出した鋼片
の含熱量との比の問題であり、燃料原単位の低減に直接
結びつき、これは各帯(ゾーン)における燃料流量(以
下、単に流量という)の配分を適切にすることにより改
善される。
In addition, the above item (■) is a problem of the ratio of the calorific value of the input fuel to the heat content of the extracted steel billet, which is directly linked to the reduction of the fuel consumption rate. This can be improved by appropriately distributing the flow rate (simply referred to as flow rate).

従来、上記の及び■を目的とした加熱炉の鋼片温度制御
方法には種々あるが、大別すると以下の2つの方法に分
けられる。
Conventionally, there are various methods of controlling the temperature of a steel billet in a heating furnace for the purposes of (1) and (2) above, but they can be roughly divided into the following two methods.

すなわち、■ 炉温制御を基本とする方法、 ■ 流量制御を基本とする方法。In other words, ■ a method based on furnace temperature control; ■ A method based on flow control.

しかし、前記■及び■の方法とも上記■及び■の目的を
同時に満すことはできなかった。
However, neither of the above methods (1) and (2) could simultaneously satisfy the objectives (1) and (2) above.

すなわち、前記■の方法は炉温かある設定値になるよう
に流量をフィードバック制御することにより操作する方
法で、上記■の目的達或のためには理論的には優れた方
法といえるが、上記■の目的を達或することは必らずし
もできなかった。
In other words, method (2) above operates by feedback controlling the flow rate so that the furnace temperature reaches a certain set value, and although it can be said to be theoretically an excellent method for achieving the purpose (2) above, (2) It was not always possible to achieve the objective.

この理由は、炉温と流量との関係をいわばブランクボッ
クス的扱いをしているため、フィードバック制御で静定
した流量が各アンバラススな配分になることがあるから
である。
The reason for this is that since the relationship between furnace temperature and flow rate is treated like a blank box, the flow rate that has been statically determined by feedback control may be distributed unbalancedly.

また、制御上にも問題がある。すなわち、設備上の制約
により設定した炉温か実現できなかったり、各帯の制御
ループが干渉する場合がある。
There are also problems in control. That is, due to equipment constraints, it may not be possible to achieve the set furnace temperature, or the control loops of each zone may interfere.

次に、上記■の方法は、前記■の熱効率を最適にするよ
うに流量を配分する方法であるが、流量そのものは経験
により得た式をもとにして算出しており、炉温と流量と
の関係を明確にしていないため前記■の目的達成には必
らずしも良い結果は得られない。
Next, method (■) above is a method of distributing the flow rate so as to optimize the thermal efficiency of (■) above, but the flow rate itself is calculated based on a formula obtained from experience, and the furnace temperature and flow rate are calculated based on the formula obtained from experience. Since the relationship with

この発明は、前記の及び■の目的を同時に満足させるこ
とができる。
This invention can simultaneously satisfy the above objects and (2).

すなわち、鋼片の抽出温度の適中率の向上及び熱効率の
向上を計ることができる加熱炉の鋼片温度制御方法を提
供するものであって、 加熱炉により鋼片を加熱するに際して、加熱炉に装入す
る鋼片の寸法、鋼片温変の推定値、予定鋼片抽出ピッチ
および予定投入燃料流量等から加熱炉における各帯の鋼
片出口温度を予測計算し、前記各帯の鋼片出口温度と各
帯の鋼片出口目標温度との偏差を求め、前記偏差に応じ
て前記予定投入燃料流量を修正し、鋼片抽出温度を鋼片
目標抽出温度に一致させるようにすることに特徴を有す
る。
That is, the present invention provides a method for controlling the temperature of a steel billet in a heating furnace that can improve the accuracy rate of the extraction temperature of the steel billet and improve the thermal efficiency. The billet exit temperature of each zone in the heating furnace is predicted and calculated based on the dimensions of the billet to be charged, the estimated value of billet temperature change, the planned billet extraction pitch, the planned input fuel flow rate, etc. The method is characterized in that the deviation between the temperature and the target temperature at the exit of the steel billet of each zone is determined, and the planned input fuel flow rate is corrected according to the deviation, so that the billet extraction temperature is made to match the billet target extraction temperature. have

以下、この発明を第4のフローチャートを参照しながら
説明する。
The present invention will be explained below with reference to the fourth flowchart.

鋼片用連続加熱炉の一般的な構造は、鋼片抽出側から均
熱帯、第2加熱帯、第1加熱帯、予熱帯でなっている。
The general structure of a continuous heating furnace for steel billets includes, from the billet extraction side, a soaking zone, a second heating zone, a first heating zone, and a preheating zone.

この種の加熱炉では、鋼片とガスの移動方向とが逆にな
っているため鋼片抽出側に近い帯よりできるだけ多く燃
焼させることにより鋼片装入側の排ガスの温度を下げ、
これにより熱効率を上げることができる。
In this type of heating furnace, the moving direction of the billet and gas is opposite, so by burning as much as possible from the band near the billet extraction side, the temperature of the exhaust gas on the billet charging side is lowered.
This can increase thermal efficiency.

但し、この場合、均熱帯については均熟度、すなわら、
鋼片の表面と内部との温度差を圧延及び製品の品質上、
ある範囲に納める必要があるため、流量はそれによって
決まる値に制限される。
However, in this case, for the soaking zone, the degree of evenness, that is,
The temperature difference between the surface and inside of the billet is important for rolling and product quality.
Since it has to be within a certain range, the flow rate is limited to a value determined by that range.

従って、第2加熱帯の流量をできるだけ設備的に最犬に
近づける流量配分法が熱効率を向上させる上で最適とな
る。
Therefore, a flow rate distribution method that brings the flow rate of the second heating zone as close as possible to the maximum in terms of equipment is optimal for improving thermal efficiency.

この発明では、熱効率を決めるのは炉温の分布ではなく
流量の配分であることから、第1図に示されるような流
量制御を基本とする鋼片温度制御方法をとる。
In this invention, since it is not the furnace temperature distribution but the flow rate distribution that determines the thermal efficiency, a billet temperature control method based on flow rate control as shown in FIG. 1 is used.

尚、図において、1は加熱炉で1ay1b,1c及び1
bは予熱帯、第1加熱帯、第2加熱帯及び均熱帯である
In the figure, 1 is a heating furnace, 1ay1b, 1c and 1
b is a preheating zone, a first heating zone, a second heating zone, and a soaking zone.

2は流量調節装置、3は演算装置、4は鋼片装入検出器
、5は鋼片抽出検出器、6は鋼片温度計である。
2 is a flow rate adjustment device, 3 is a calculation device, 4 is a billet charging detector, 5 is a billet extraction detector, and 6 is a billet thermometer.

ここで問題となるのは、第2加熱帯では設備的に最犬に
近い流量となっているので、制御範囲が狭くなることで
ある。
The problem here is that the second heating zone has a flow rate that is close to the lowest in terms of equipment, so the control range becomes narrower.

すなわち、第1加熱帯の流量が誤まって正規の流量より
大巾に低いと、第2加熱帯でそれを修正しようとしても
設備的制約により不可能になる。
That is, if the flow rate in the first heating zone is erroneously lower than the normal flow rate, it will be impossible to correct it in the second heating zone due to equipment constraints.

このように、熱効率と制約の容易さとは相反するもので
あり、両者をうまく折衷させることが必要であるが、こ
れを決めるのが設定流量計算の精度である。
As described above, thermal efficiency and ease of restriction are contradictory, and it is necessary to achieve a good compromise between the two, but this is determined by the accuracy of the calculation of the set flow rate.

特に、第1加熱帯では将来その帯に存在する鋼片が第2
加熱帝まで移動した時、第2加熱帝の流量が実現可能な
値になるようにしなければならず、長期にわたる将来か
ら逆算する必要がある。
In particular, in the first heating zone, the steel slab that will exist in that zone in the future will become the second heating zone.
When moving to the heating station, the flow rate of the second heating station must be set to a feasible value, and it is necessary to calculate backwards from a long-term future.

この設定流量計算を正確に行なうには、熱収支の関係を
扱う必要があり、ステファンボルンマンの熱輻射の公式
を扱うため4乗の項を含む非線形方程式を解くことにな
る。
In order to accurately calculate the set flow rate, it is necessary to handle the heat balance relationship, and in order to handle Stefan Bornmann's thermal radiation formula, a nonlinear equation including a fourth power term must be solved.

これは解析的に解くことは不可能であるので数値的に近
似解を求める。
Since this cannot be solved analytically, an approximate solution is found numerically.

ここで用いる方法は、まず大まかな流量を将来にわたり
決めておき、大きな非線形性を取り除き、次にその流量
の微少変化に対し線形化して正確な解を求める方法であ
る。
The method used here is to first determine a rough flow rate for the future, remove large nonlinearities, and then linearize minute changes in the flow rate to obtain an accurate solution.

次に、この発明における予測計算方法を更に具体的に説
明する。
Next, the prediction calculation method according to the present invention will be explained in more detail.

先づ、加熱炉により鋼片を加熱するに際して、鋼片の寸
法、予定鋼片抽出ピンチ、鋼片温度推定値等からおおよ
その各帯における予定投入燃料流量値V1(t) t
V2(tJ , V3(t)・・・を決める。
First, when heating a steel billet in a heating furnace, the planned fuel injection flow rate value V1(t) t in each zone is approximately determined from the dimensions of the steel billet, the planned steel billet extraction pinch, the estimated value of the steel billet temperature, etc.
Determine V2(tJ, V3(t)...).

前記予定投入燃料流量値は余り精度を要求しないので、
一般的に行なわれている方法で良い。
Since the planned fuel flow rate value does not require much accuracy,
Any commonly used method is fine.

但し、前記予定投入燃料流量は無意味な大巾な変更や振
動的な変動に留意する必要がある。
However, it is necessary to pay attention to meaningless wide-ranging changes and oscillatory fluctuations in the scheduled fuel injection flow rate.

この理由は以下の通りである。The reason for this is as follows.

■ 空燃比制御系の追従性によっては、前記流量設定値
を変更する際に一時的に空燃比が悪くなるので、前記変
動巾は極力小さく、頻度も少ない方が良い。
(2) Depending on the followability of the air-fuel ratio control system, the air-fuel ratio may temporarily deteriorate when changing the flow rate set value, so it is better that the range of fluctuation is as small as possible and the frequency is infrequent.

■ 前記流量を大巾に変更しても炉温はゆっくりとしか
変化せず、また一つの帯には多数の鋼片が存在している
ため、近接する鋼片の温度を大巾に異なった目標値に設
定することは不可能であり、平均的な温度しか制御する
ことができな0b次に、現時点での鋼片温度の推定値を
初期値として、鋼片の寸法、鋼片抽出ピンチおよび前記
予定投入燃料流量等に基づき熱収支計算から加熱炉にお
ける各帯の鋼片出口温度を予測計算する。
■ Even if the flow rate is changed over a wide range, the furnace temperature changes only slowly, and since there are many slabs in one band, it is difficult to change the temperature of adjacent slabs by a wide range. It is impossible to set the target value, and only the average temperature can be controlled.Next, the estimated value of the billet temperature at the present time is used as the initial value, and the dimensions of the billet, billet extraction pinch Based on the planned input fuel flow rate, etc., the billet outlet temperature of each zone in the heating furnace is predicted and calculated from the heat balance calculation.

次に、前記各帯の鋼片出口温度と各帯の鋼片出口目標温
度との偏差を予測計算する。
Next, the deviation between the billet outlet temperature of each band and the billet outlet target temperature of each strip is predicted and calculated.

前記各帯の鋼片出口目標値において、均熱帯の鋼片出口
目標値は、鋼片抽出目標温度を考慮して、また、第2加
熱帯の鋼片出口目標値は均熱帯における均熟度を考慮し
て鋼片抽出目標温度より逆算した値、または経験的な値
として、それぞれ偏差e,(t) , e2(t)を求
める。
In the billet exit target values for each zone, the billet exit target value in the soaking zone takes into account the billet extraction target temperature, and the billet exit target value in the second heating zone takes into account the degree of uniformity in the soaking zone. The deviations e,(t) and e2(t) are respectively calculated as values calculated backward from the target temperature for extraction of the steel billet, or as empirical values, taking into account the following.

ここで、上記鋼片出口温度の予測計算法の一例を説明す
る。
Here, an example of a predictive calculation method for the steel billet outlet temperature will be explained.

加熱炉を第2図に示されるようにモデル化する。The heating furnace is modeled as shown in FIG.

すなわち、 ■.加熱炉雰囲気ガス側は、n個のブロックに分ける。That is, ■. The heating furnace atmosphere gas side is divided into n blocks.

■.炉壁は、加熱炉雰囲気ガスと同様なブロ゛ノクに分
け、更に、m個のメ゛ノシュに区切り、一次元伝熱モデ
ルとする。
■. The furnace wall is divided into blocks similar to the heating furnace atmosphere gas, and further divided into m meshes to form a one-dimensional heat transfer model.

■.鋼片はその厚み方向にβ個のメ゛ノシュに区切り、
一次元上下対称伝熱モデルとする。
■. The steel slab is divided into β pieces in the thickness direction,
A one-dimensional vertically symmetrical heat transfer model is used.

■.鋼片と加熱炉雰囲気ガス、炉壁と加熱炉雰囲気ガス
の間の熱伝達は、輻射によるものとし、1番目の加熱炉
雰囲気ガスのブロックと、j番目の鋼片との輻射率Φs
ijを鋼片の位置xjによって決めて鋼片の移動をモデ
ル化する。
■. The heat transfer between the steel slab and the furnace atmosphere gas, and between the furnace wall and the furnace atmosphere gas, is due to radiation, and the emissivity of the first furnace atmosphere gas block and the j-th steel slab is Φs.
The movement of the steel piece is modeled by determining ij based on the position xj of the steel piece.

上記■の時間積分については、まず、現時点の鋼片と炉
壁の表面温度により熱収支をOにする加熱炉雰囲気ガス
温度を求める。
Regarding the time integration in (2) above, first, the heating furnace atmosphere gas temperature that makes the heat balance O is determined from the current surface temperatures of the steel billet and the furnace wall.

次に、鋼片と炉壁の温度を差分式により積分する。Next, the temperatures of the steel slab and the furnace wall are integrated using a differential equation.

以下、上記■の計算方法を具体的に説明する。Hereinafter, the method of calculating the above item (2) will be explained in detail.

i番目の雰囲気ガスのブロックについて、熱収支のアン
バランス分Hiは次式で求まる。
For the i-th atmospheric gas block, the unbalanced heat balance Hi is determined by the following equation.

g(T ):熱損失。g(T): heat loss.

上記(1)式は各ブロックについて或り立ち、本来熱収
支はOであるので、H1−HnはOである。
The above equation (1) holds true for each block, and since the heat balance is originally O, H1-Hn is O.

ところが、これらはTGについて非線形連立方程式とな
っているため、ニュートン法の反復計算で解く。
However, since these are nonlinear simultaneous equations for TG, they are solved by repeated calculations using Newton's method.

これにより、加熱炉雰囲気ガス温度が求まるので、次式
で鋼片の温度を積分する。
As a result, the heating furnace atmosphere gas temperature is determined, and the temperature of the steel piece is integrated using the following equation.

上式において、 ξ(T8):T5の温度の鋼片の含熱量。In the above formula, ξ(T8): Heat content of the steel billet at the temperature of T5.

炉壁の温度も上記と同様な差分式で積分する。The temperature of the furnace wall is also integrated using the same differential equation as above.

次に、上記のようにして求めた各帯の鋼片出口温度と各
帯の鋼片出口目標温度との偏差を平均的に小さくし、し
かも熱効率的に最適にするため、前記偏差に応じて前述
の予定投入燃料流量を修正する。
Next, in order to averagely reduce the deviation between the billet exit temperature of each band and the billet exit target temperature of each band, which were determined as above, and to optimize the thermal efficiency, Modify the above-mentioned scheduled fuel injection flow rate.

すなわち、まず、前記偏差e1ft) , e2ft)
に対し、重みづけ関数h 1(L) ,h 2(t)
,h 3(tJを乗じて積分し、均熱帯、第2加熱帯及
び第1加熱帯に対する以下の一次修正量Jvl(tJ
,Jv2(t)及びJva(tJを計算する。
That is, first, the deviation e1ft), e2ft)
, the weighting functions h 1(L) , h 2(t)
, h 3 (tJ) and integrate to obtain the following primary correction amount Jvl(tJ
, Jv2(t) and Jva(tJ).

平均的な偏差を小さくするだけであれば、各帯の設定値
をVl (Ql+ A u 1 (0) , V2(0
)+ l u2((J))及びV 3(0)+ 11
v 3(0)にすれば良いが、さらに熱効率を向上させ
るために、第1加熱帯に存在する鋼片が、第2加熱帯を
通過する時の第2加熱帯の流量の予測値V2(t)+
A u2(t)の最大値と第2加熱帯の設備的上限との
差εに応じて、第1加熱帯の流量を修正する。
If you only want to reduce the average deviation, set the setting value for each band as Vl (Ql+ A u 1 (0), V2(0
) + l u2 ((J)) and V 3 (0) + 11
v 3 (0), but in order to further improve the thermal efficiency, the predicted value of the flow rate of the second heating zone when the steel slab existing in the first heating zone passes through the second heating zone V2 ( t)+
The flow rate of the first heating zone is corrected according to the difference ε between the maximum value of A u2(t) and the equipment upper limit of the second heating zone.

従って、各帯の予定投入燃料流量はV 1 (OJ +
A ut(Q ,V2(0) +l u2(Q及びV
3((] + 11 v 3 (0) 十β・εとなる
Therefore, the planned fuel flow rate for each zone is V 1 (OJ +
A ut(Q , V2(0) + l u2(Q and V
3(() + 11 v 3 (0) 10β・ε.

ここで、h,(t) , h2(t) , h3(t)
,α1,α2,α3,βを決めるには、前述した各帯
における鋼片出口温度の計算方法で加熱炉を数値的にシ
ュミレーションし、平均的な操業条件における流量の微
少変化に対する各帯における鋼片出口温度の応答を求め
、従来の線形理論を適用すれば良い。
Here, h, (t), h2(t), h3(t)
, α1, α2, α3, and β, a heating furnace is numerically simulated using the calculation method of the billet outlet temperature in each zone as described above, and the steel billet temperature in each zone is calculated based on the slight change in flow rate under average operating conditions. All you have to do is find the response of the single outlet temperature and apply the conventional linear theory.

たとえば、h1(t) , h2(t) , h3(t
)を求めるには、先づ、流量に対する各帝出口の鋼片温
度偏差eI(tJ , e2(t)のインパルス応答p
t(t) , p2(t) , p3(t)を求める。
For example, h1(t), h2(t), h3(t
), first, the impulse response p of the steel billet temperature deviation eI(tJ, e2(t)) at each outlet with respect to the flow rate is calculated.
Find t(t), p2(t), and p3(t).

すなわち、 pl(t) :均熱帯にインパルス流量を入力した時 のe1(t)、 p2(t) ’第2加熱帯にインパルス流量を入力し
た時のe2(t)、 p3(t) ’第1加熱帯にインパルス流量を入力し
た時のe3(0、 である。
That is, pl(t): e1(t), p2(t) when the impulse flow rate is input to the soaking zone; e2(t), p3(t) when the impulse flow rate is input to the second heating zone; When the impulse flow rate is input to 1 heating zone, e3(0, is.

第3図には、線形化した制御系のブロック図が示されて
いるが、誤差の予測ei(tJ ( i=1〜3)に対
して制御人力ηi(t)を加えることにより誤差e′.
(t)(i=1〜3)を小さくするフイードフォワード
制御となるので、制御系と加熱炉を含めたインパルス応
答qi(t) なる式を満足し、かつqi(t)がインパルスに近くな
るように、hi(t)を選ぶ。
FIG. 3 shows a block diagram of the linearized control system, and the error e' ..
(t) (i = 1 to 3) is a feedforward control, so the impulse response including the control system and the heating furnace satisfies the equation qi(t), and qi(t) is close to the impulse. Choose hi(t) such that.

この際、ei(t)の変動に対し、制御人力ηi(t)
が大きく変動しないようにhi (t)は滑らかなある
巾をもった、つまり誤差を平均化するような関数にする
At this time, control human power ηi(t)
In order to prevent large fluctuations, hi (t) is made a smooth function with a certain width, that is, a function that averages out the errors.

次に、前述の各帯の鋼片出口温度の予測計算の精度を保
つために熱収支計算でのパラメータを実績値に基づいて
修正する。
Next, in order to maintain the accuracy of the predicted calculation of the steel billet outlet temperature of each band mentioned above, the parameters for the heat balance calculation are corrected based on the actual values.

この例で示した計算方法では輻射率と熱損失を修正する
The calculation method shown in this example modifies emissivity and heat loss.

輻射率は加熱炉より抽出した鋼片の温度の実績値と、予
測計算上の温度との偏差を求め、この偏差の移動平均に
応じ、輻射率ΦSijに一律に係数を乗じて修正する。
The emissivity is corrected by finding the deviation between the actual value of the temperature of the steel slab extracted from the heating furnace and the predicted temperature, and uniformly multiplying the emissivity ΦSij by a coefficient according to the moving average of this deviation.

熱損失は、前諺1)式において、加熱炉雰囲気ガスTG
に実線値を代入し、熱収支のアンバランスHiを求め、
この移動平均に応じた量を熱損失.(T2)に加えるこ
とにより修正する。
Heat loss is determined by the heating furnace atmosphere gas TG in the previous equation 1).
Substitute the solid line value into , find the heat balance imbalance Hi,
The amount of heat loss corresponds to this moving average. Correct by adding to (T2).

尚、前記(1’) . (2) , (3)式及び第2
図に関する記号の意味は以下の通りである。
Note that (1') above. (2), (3) and the second
The meanings of symbols related to the figures are as follows.

Toi:i番目のブロックの加熱炉雰囲気ガス温度、 Tsjk :j 番目の鋼片のk番目のメッシュの温度
、Twik:i番目の炉壁のk番目のメッシュの温度、
Vi :i番目の加熱炉雰囲気ガスのブロックの燃料流
量、 Φw1:i番目の加熱炉雰囲気ガスのブロックとi番目
の炉壁の輻射率、 Φsij”番目の加熱炉雰囲気ガスのブロックとj番目
の鋼片との輻射率、 Xy ”J番目の鋼片の炉長方向の位置、Ssj:j
番目の鋼片の断面積、 Swi:i番目の炉壁の面積、 W81,゜j番目の鋼片のi番目のメッシュの質量、σ
:ステファンボルツマン定数、 C,:排ガスの比熱、 K :鋼片の熱伝導率、 At :時間刻み、 hs :鋼片の厚み方向のメッシュ間隔、AH :燃料
発熱量、 r :燃料と排ガスの体積比、 n :加熱炉雰囲気ガスのブロック数、 l :鋼片1個当りのメッシュの数、 m :炉壁1ブロック当りのメッシュの数、h8 :鋼
片数。
Toi: heating furnace atmosphere gas temperature of the i-th block, Tsjk: temperature of the k-th mesh of the j-th steel billet, Twik: temperature of the k-th mesh of the i-th furnace wall,
Vi: fuel flow rate of the i-th block of heating furnace atmosphere gas, Φw1: emissivity of the i-th block of heating furnace atmosphere gas and the i-th furnace wall, Φsij'' block of furnace atmosphere gas and the emissivity of the Emissivity with steel billet, Xy ” Position of J-th steel billet in furnace length direction, Ssj:j
Cross-sectional area of the th steel billet, Swi: Area of the ith furnace wall, W81, ゜ Mass of the ith mesh of the j-th billet, σ
: Stefan Boltzmann constant, C, : specific heat of exhaust gas, K : thermal conductivity of steel slab, At : time step, hs : mesh spacing in thickness direction of steel slab, AH : fuel calorific value, r : volume of fuel and exhaust gas ratio, n: number of blocks of heating furnace atmosphere gas, l: number of meshes per one steel slab, m: number of meshes per one block of furnace wall, h8: number of steel slabs.

以上説明したように、この発明によれば、加熱炉に抽け
る各帯の流量配分を熱効率のよい配分比に近づけること
ができる結果、平均的に熱効率をあげることができ、し
かも、各鋼片の温度と、炉温及び流量、すなわち、熱収
支の関係とを定量的に把握し、精度よく予測計算するこ
とにより、鋼片の抽出温度の適中率を向上させることが
できるといった工業上極めて有用な効果がもたらされる
As explained above, according to the present invention, it is possible to bring the flow rate distribution of each zone drawn into the heating furnace closer to the distribution ratio with good thermal efficiency, and as a result, it is possible to increase the thermal efficiency on average, and furthermore, each steel billet By quantitatively understanding the relationship between the temperature, furnace temperature and flow rate, that is, heat balance, and performing accurate predictive calculations, it is possible to improve the accuracy rate of the extraction temperature of steel billets, which is extremely useful in industry. effect is brought about.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の構或を示す図、第2図は、予測計
算モデルを示す図、第3図は、線形化した制御系のブロ
ック図、第4図は、この発明のフローチャートである。 図面において、1・・・・・・加熱炉、1a・・・・・
・予熱帯、1b・・・・・・第1加熱帯、1c・・・・
・・第2加熱帯、1d・・・・・・均熱帯、2・・・・
・・流量調節装置、3・・・・・・演算装置、4・・・
・・・鋼片装入検出器、5・・・・・・鋼片抽出検出器
、6・・・・・・鋼片温度計。
FIG. 1 is a diagram showing the structure of this invention, FIG. 2 is a diagram showing a predictive calculation model, FIG. 3 is a block diagram of a linearized control system, and FIG. 4 is a flowchart of this invention. be. In the drawings, 1...Heating furnace, 1a...
・Pre-heating zone, 1b...First heating zone, 1c...
...Second heating zone, 1d... Soaking zone, 2...
...Flow rate adjustment device, 3...Arithmetic device, 4...
... Steel billet charging detector, 5... Steel billet extraction detector, 6... Steel billet thermometer.

Claims (1)

【特許請求の範囲】[Claims] 1 加熱炉により鋼片を加熱するに際して、加熱炉に装
入する鋼片の寸法、鋼片温度の推定値、予定鋼片抽出ピ
ンチおよび予定投入燃料流量等から加熱炉における各帯
の鋼片出口温度を予測計算し、前記各帯の鋼片出口温度
と各帯の鋼片出口目標温度との偏差を求め、前記偏差に
応じて前記予定投入燃料流量を修正し、鋼片抽出温度を
鋼片目標抽出温度に一致させるようにすることを特徴と
する加熱炉の鋼片温度制御方法。
1. When heating billets in a heating furnace, determine the billet outlet of each belt in the heating furnace based on the dimensions of the billet charged into the heating furnace, estimated value of billet temperature, planned billet extraction pinch, planned fuel input flow rate, etc. Predictively calculate the temperature, find the deviation between the billet outlet temperature of each zone and the billet outlet target temperature of each zone, correct the planned input fuel flow rate according to the deviation, and adjust the billet extraction temperature to the billet exit temperature. A method for controlling the temperature of a steel billet in a heating furnace, characterized by making the temperature match a target extraction temperature.
JP10133379A 1979-08-10 1979-08-10 Method of controlling billet temperature in heating furnace Expired JPS5847453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10133379A JPS5847453B2 (en) 1979-08-10 1979-08-10 Method of controlling billet temperature in heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10133379A JPS5847453B2 (en) 1979-08-10 1979-08-10 Method of controlling billet temperature in heating furnace

Publications (2)

Publication Number Publication Date
JPS5625933A JPS5625933A (en) 1981-03-12
JPS5847453B2 true JPS5847453B2 (en) 1983-10-22

Family

ID=14297900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10133379A Expired JPS5847453B2 (en) 1979-08-10 1979-08-10 Method of controlling billet temperature in heating furnace

Country Status (1)

Country Link
JP (1) JPS5847453B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102865752B (en) * 2012-08-15 2014-07-16 北京世纪隆博科技有限责任公司 Branch temperature balancing and load controlling method for heating furnace
CN105042627A (en) * 2015-07-24 2015-11-11 中国石油化工股份有限公司 Closed-loop regulation method and system for gas consumption of heating furnace of transfer station
CN113522990B (en) * 2021-06-25 2022-07-01 武汉钢铁有限公司 Method for accurately regulating and controlling spinning temperature of 70-grade cord steel

Also Published As

Publication number Publication date
JPS5625933A (en) 1981-03-12

Similar Documents

Publication Publication Date Title
CN101429592B (en) Fuzzy control method for temperature distribution of inner steel bloom of heating stove
CN106636606B (en) A kind of method for controlling furnace temperature of heating furnace based on simulation model
CN101751051A (en) Cement decomposing furnace temperature control method based on constraint smith GPC
KR101956365B1 (en) System for control temperature pattern of strip in continuous annealing line and the method of the same
Hu et al. Nonlinear dynamic simulation and control of large-scale reheating furnace operations using a zone method based model
CN106119520A (en) A kind of cold rolling hot dip galvanizing annealing furnace plate temperature coordinated control system and method
Steinboeck et al. Model-based trajectory planning, optimization, and open-loop control of a continuous slab reheating furnace
Wang et al. A hybrid approach for supervisory control of furnace temperature
CN100372950C (en) Process for controlling temperature of strip steel
JPS5847453B2 (en) Method of controlling billet temperature in heating furnace
CN109046021A (en) A kind of SCR system of strong adaptive ability accurately sprays ammonia control method
Kelly et al. Application of modern control to a continuous anneal line
Yoshitani et al. Optimal slab heating control with temperature trajectory optimization
Tian et al. Mathematical model of a continuous galvanizing annealing furnace
CN109522677A (en) A method of for the temperature controlled strip cross section layered method of hot-strip
Gevelber et al. Modelling requirements for development of an advanced Czochralski control system
JPH066735B2 (en) Combustion control method for continuous heating furnace
Kostúr Control system design for a walking beam furnace
JPH08311567A (en) Device for controlling temperature in heating furnace
Pepe et al. Energy saving and environmental impact decreasing in a walking beam reheating furnace
Kazarinov et al. Distributed predictive process control in metallurgy
JPS6036452B2 (en) Control method for continuous heating furnace
CN112016198B (en) Heating furnace tapping temperature prediction method based on coupling iteration
Roberts et al. Hierarchical Optimisation for a Reheat Furnace and Rolling Mill System
Ganesh Modeling, control, and optimization of an industrial austenitization furnace