JPH09296229A - Method for controlling combustion of continuous heating furnace - Google Patents

Method for controlling combustion of continuous heating furnace

Info

Publication number
JPH09296229A
JPH09296229A JP10993496A JP10993496A JPH09296229A JP H09296229 A JPH09296229 A JP H09296229A JP 10993496 A JP10993496 A JP 10993496A JP 10993496 A JP10993496 A JP 10993496A JP H09296229 A JPH09296229 A JP H09296229A
Authority
JP
Japan
Prior art keywords
steel material
temperature
furnace
calculated
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10993496A
Other languages
Japanese (ja)
Other versions
JP3799656B2 (en
Inventor
Kazuhiro Yahiro
和広 八尋
Hiroyasu Shigemori
弘靖 茂森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10993496A priority Critical patent/JP3799656B2/en
Publication of JPH09296229A publication Critical patent/JPH09296229A/en
Application granted granted Critical
Publication of JP3799656B2 publication Critical patent/JP3799656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To suitably execute the combustion control of a continuous heating furnace for a steel material having the projecting and the recessing shapes, such as a beam blank. SOLUTION: At the time of predicting a steel material temp. with a steel material temp. distribution model representing the internal temp. variation of the steel material in a minute time with a non-linear strict equation, a heat load correcting factor as a shape factor for correcting the influence of shadow from the atmosphere on each surface of the steel material having the projecting and the recessing shapes, is calculated (Step S3). The steel material temp. distribution model is calculated by using the heat load corrected with this heat load correcting factor as a boundary condition to predict the steel material temp. having the projecting and the recessing shapes at the high accuracy (Step S6). Then, a centralized constant system flat plate temp. model as a non-linear simple model from this predicted result is used to set a target temp. raising pattern, and the calculation load is reduced while securing the calculation accuracy to execute the combustion control.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ビームブランク等
の凹凸形状を有する鋼材を連続的に加熱する連続式加熱
炉の燃焼制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control method for a continuous heating furnace for continuously heating a steel material having an uneven shape such as a beam blank.

【0002】[0002]

【従来の技術】従来の連続式加熱炉の燃焼制御方法とし
ては、特開昭61−199016号公報(以下、第1従
来例と称す)、特開平2−156017号公報(以下、
第2従来例と称す)及び特開平3−140415号公報
(以下、第3従来例と称す)に記載されているものがあ
る。
2. Description of the Related Art As a conventional combustion control method for a continuous heating furnace, Japanese Patent Application Laid-Open No. 61-199016 (hereinafter referred to as a first conventional example) and Japanese Patent Application Laid-Open No. 2-156017 (hereinafter
The second conventional example) and JP-A-3-140415 (hereinafter, referred to as the third conventional example).

【0003】第1従来例は、目標昇温パターンを決定す
る際に、燃料流量を現状流量のままで加熱を継続した場
合の材料抽出時平均温度、均熱度及び材料通過時の各炉
温を計算し、燃料流量を変化させた場合の材料抽出時平
均温度、均熱度及び材料通過時の各炉温を計算し、その
結果に基づいて現状燃料流量まわりでの線形係数を求
め、材料抽出時平均温度、均熱度に関する制約条件下で
燃料流量が最小となる最適燃料流量を線形計画法を用い
て求めている。この燃料流量から各材料の設定炉温を求
め、各材料に対する重み付き平均値として各帯設定炉温
を決定するようにしている。
In the first conventional example, when determining a target temperature rise pattern, the average temperature during material extraction, the soaking degree, and each furnace temperature during material passage when the fuel flow rate is kept at the current flow rate and heating is continued. Calculate and calculate the average temperature at the time of material extraction when the fuel flow rate is changed, the soaking degree and each furnace temperature during material passage, and based on the results, calculate the linear coefficient around the current fuel flow rate, and at the time of material extraction The optimum fuel flow rate that minimizes the fuel flow rate is obtained by using linear programming method under the constraint conditions of average temperature and soaking degree. The set furnace temperature of each material is obtained from this fuel flow rate, and each zone set furnace temperature is determined as a weighted average value for each material.

【0004】第2従来例は、材料が抽出されるまでの期
間における加熱炉操業を時々刻々の各帯の燃料流量設定
値を変化させながらシミュレーションし、品質確保、省
エネルギ等の操業目的に従って設定された所定の評価関
数を値を求め、燃料流量と材料温度の動的な関係を表現
するモデルを用いて、求めた目標昇温パターンに近づく
ように燃料流量を設定するようにしている。
In the second conventional example, the heating furnace operation during the period until the material is extracted is simulated while changing the fuel flow rate set value of each zone every moment, and the heating furnace operation is set according to the operation purpose such as quality assurance and energy saving. The value of the predetermined evaluation function obtained is obtained, and the fuel flow rate is set so as to approach the obtained target temperature rise pattern using a model expressing the dynamic relationship between the fuel flow rate and the material temperature.

【0005】第3従来例は、オンラインでの計算機負荷
低減を目的として、下記(1)式及び(2)式で表され
る加熱炉内での対流伝熱によって鋼材が加熱されること
を表現した集中定数系の温度モデルを用いて、抽出時の
温度と均熱度が目標値通りとなるような目標昇温パター
ンを決定するようにしている。
The third conventional example expresses that the steel material is heated by the convective heat transfer in the heating furnace represented by the following equations (1) and (2) for the purpose of reducing the computer load on-line. The temperature model of the lumped constant system is used to determine the target temperature rise pattern such that the temperature and the soaking degree at the time of extraction are exactly the target values.

【0006】 θo =θg −(θg −θi )・exp(−α・t/D) ……(1) α=a・σ/(ρ・Cp )・(θg2+θo2)・(θg +θo ) ……(2) ここで、θo はt時間後の鋼材温度、θi は初期の鋼材
温度、θg は炉温、tは加熱時間、Dは鋼材厚み、aは
修正係数、σはステファンボルツマン定数、ρは鋼材の
比重、Cp は比熱である。
Θo = θg− (θg−θi) · exp (−α · t / D) (1) α = a · σ / (ρ · Cp) · (θg 2 + θo 2 ) · (θg + θo) (2) Here, θo is the steel material temperature after t hours, θi is the initial steel material temperature, θg is the furnace temperature, t is the heating time, D is the steel material thickness, a is the correction coefficient, σ is the Stefan-Boltzmann constant, ρ is the specific gravity of the steel material, and Cp is the specific heat.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記第
1従来例にあっては、下記のような未解決の課題があ
る。 燃料流量を、現状流量のままで加熱を継続した場合
と燃料流量を変化させた場合の双方の温度計算を行う必
要があり、目標昇温パターンを求める計算量が膨大なも
のとなる。 この結果、加熱炉抽出順の変化、圧延時間の変化な
どの種々の操業条件の変化に起因する予定加熱時間の変
化に対応して目標昇温パターンを求め直す必要が生じた
場合でも、計算機資源の節約から目標昇温パターンを求
め直す頻度が制約されている。 現状燃料流量のまわりでの線形係数で最適条件を求
めているため、最適な目標昇温パターンを求めた時点と
その材料が実際に加熱された時点での差が小さな場合に
しかその最適性が補償されておらず、本来、非線形な関
係にある加熱炉内の伝熱現象を線形な1次式で近似して
いるため、変化量が大きくなると近似誤差を大きなもの
となってしまう。
However, the first conventional example has the following unsolved problems. It is necessary to calculate the temperature both when the fuel flow rate is kept at the current flow rate and when the heating is continued, and when the fuel flow rate is changed, the calculation amount for obtaining the target temperature rise pattern becomes enormous. As a result, even if it becomes necessary to recalculate the target heating pattern in response to changes in the planned heating time due to changes in various operating conditions such as changes in the heating furnace extraction order and changes in rolling time, computer resources are required. The frequency of re-obtaining the target temperature rise pattern is limited due to the saving of. Since the optimum condition is currently obtained by the linear coefficient around the fuel flow rate, the optimality can be obtained only when the difference between the time when the optimum target heating pattern is obtained and the time when the material is actually heated is small. Since the heat transfer phenomenon in the heating furnace, which is not compensated and originally has a non-linear relationship, is approximated by a linear first-order equation, the approximation error becomes large as the amount of change increases.

【0008】これらの未解決の課題を解決するには、非
線形のままで最適化を実行すれば上記全て解決できる
が、計算量が膨大となり、オンライン制御では実行不可
能となるという新たな課題がある。
In order to solve these unsolved problems, all of the above can be solved by executing the optimization while keeping the nonlinearity, but there is a new problem that the amount of calculation becomes enormous and it cannot be executed by the online control. is there.

【0009】また、前記第2従来例にあっては、非線形
のままで最適化を実行することができるが、一般化予測
制御を利用した技術であり、時々刻々の燃料流量を変化
させながら最適化を行うと共に、温度モデルに加熱時間
と炉温と鋼材温度の関係を表現する非線形な物理現象モ
デルではなく、線形化した動的モデルであるので、パラ
メータが多くなり、加熱炉シミュレータと逐次最小二乗
法とで膨大な計算が必要となり、さらに残り在炉時間
(加熱時間)の変化に対応するために、昇温目標を時間
の関数として定義しており、残り在炉時間が変化した場
合には目標昇温曲線を求め直す必要があるが、その計算
量の制約から目標昇温曲線の計算が十分に行うことがで
きないという未解決の課題がある。
Further, in the second conventional example, the optimization can be executed in a non-linear manner, but it is a technique utilizing generalized predictive control and is optimized while changing the fuel flow rate every moment. A linearized dynamic model is used instead of a nonlinear physical phenomenon model that expresses the relationship between heating time, furnace temperature, and steel temperature in the temperature model. A large amount of calculation is required with the square method, and in order to respond to changes in the remaining in-reactor time (heating time), the temperature rise target is defined as a function of time. Needs to recalculate the target temperature rising curve, but there is an unsolved problem that the target temperature rising curve cannot be sufficiently calculated due to the restriction of the calculation amount.

【0010】さらに、前記第3従来例にあっては、スキ
ッド部とスキッド間部の平均温度のみが最適化できる手
法であり、種々の制約条件を満足できる手法ではないと
共に、実施例で利用している非線形モデルが対流伝熱に
よって鋼材が加熱されことを前提とした下記(3)式を
積分して得られる集中定数系の温度モデルであるが、実
際の加熱炉内での伝熱は輻射伝熱に支配されるので、前
述した(1)式のみでは加熱炉内の現象を表現できない
ため、(1)式中の熱伝達係数αを(2)式の形で輻射
伝熱を考慮した形としなければならず、加熱時間が長く
なると鋼材温度依存性を無視しているので、修正係数a
の推定精度、設定精度によって制御精度が大きく変化す
るという未解決の課題がある。
Further, in the third conventional example, only the average temperature of the skid portion and the portion between skids can be optimized, and it is not a method that can satisfy various constraint conditions. The nonlinear model is a lumped-constant temperature model obtained by integrating the following equation (3) assuming that the steel material is heated by convection heat transfer. However, the actual heat transfer in the heating furnace is radiant. Since it is governed by heat transfer, the phenomenon in the heating furnace cannot be expressed only by the above equation (1). Therefore, the heat transfer coefficient α in the equation (1) is considered in the form of the equation (2). Since the temperature dependence of steel material is ignored when the heating time becomes long, the correction coefficient a
There is an unsolved problem that the control accuracy greatly changes depending on the estimation accuracy and the setting accuracy.

【0011】 Cp ・ρ・D(∂θ/∂t)=2・α・(θg −θ) …………(3) しかも、上記第1従来例〜第3従来例の何れもが鋼板を
対象としたものであり、ビームブランクのような凹凸形
状を有する鋼材には適用することができないという未解
決の課題がある。
Cp · ρ · D (∂θ / ∂t) = 2 · α · (θg−θ) (3) In addition, in any of the above first to third conventional examples, a steel plate is used. This is an object, and there is an unsolved problem that it cannot be applied to a steel material having an uneven shape such as a beam blank.

【0012】そこで、本発明は、上記従来例の未解決の
課題に着目してなされたものであり、ビームブランクの
ような凹凸形状を有する鋼材をの温度演算精度を向上さ
せると共に、計算精度を確保しながら計算負荷を低減す
ることができる連続式加熱炉の燃料制御方法及び装置を
提供することを目的としている。
Therefore, the present invention has been made by paying attention to the unsolved problems of the above-mentioned conventional example, and improves the temperature calculation accuracy of a steel material having a concavo-convex shape such as a beam blank, and the calculation accuracy. An object of the present invention is to provide a fuel control method and apparatus for a continuous heating furnace, which can reduce the calculation load while ensuring the fuel consumption.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る連続式加熱炉の燃料制御方法は、複
数の燃焼帯を有してビームブランク等の凹凸形状を有す
る鋼材を連続的に加熱する連続式加熱炉の燃焼制御方法
において、鋼材の内部温度変化を表現する鋼材温度分布
モデルを前記鋼材の表面形状の形態係数を考慮した熱負
荷の境界条件で演算することにより、凹凸形状を有する
鋼材の内部温度を算出し、算出した鋼材の内部温度に基
づいて目標昇温パターンを設定することを特徴としてい
る。
In order to achieve the above object, a fuel control method for a continuous heating furnace according to a first aspect of the present invention uses a steel material having a plurality of combustion zones and an uneven shape such as a beam blank. In the combustion control method of a continuous heating furnace to continuously heat, by calculating the steel material temperature distribution model expressing the internal temperature change of the steel material in the boundary condition of the heat load considering the form factor of the surface shape of the steel material, It is characterized in that the internal temperature of a steel material having an uneven shape is calculated, and a target temperature rise pattern is set based on the calculated internal temperature of the steel material.

【0014】また、請求項2に係る連続式加熱炉の燃焼
制御方法は、複数の燃焼帯を有してビームブランク等の
凹凸形状を有する鋼材を連続的に加熱する連続式加熱炉
の燃焼制御方法において、鋼材の内部温度変化を表現す
る鋼材温度分布モデルを前記鋼材の表面形状の形態係数
を考慮した熱負荷の境界条件で演算することにより、凹
凸形状を有する鋼材の内部温度を算出し、当該鋼材の断
面内平均温度の昇温特性が、集中定数系と仮定した平板
の昇温特性と一致するものと仮定し、その当該集中定数
系平板温度モデルを用いて目標昇温パターンを設定する
ようにしたことを特徴としている。
A combustion control method for a continuous heating furnace according to a second aspect of the present invention is a combustion control method for a continuous heating furnace for continuously heating a steel material having a plurality of combustion zones and having an uneven shape such as a beam blank. In the method, by calculating the steel material temperature distribution model expressing the internal temperature change of the steel material under the boundary condition of the heat load in consideration of the view factor of the surface shape of the steel material, the internal temperature of the steel material having the uneven shape is calculated, It is assumed that the temperature rise characteristics of the average temperature in the cross section of the steel material match the temperature rise characteristics of the flat plate assumed to be a lumped constant system, and the target temperature rise pattern is set using the lumped constant plate temperature model. It is characterized by doing so.

【0015】さらに、請求項3に係る連続式加熱炉の燃
焼制御方法は、請求項2の発明において、前記代表位置
温度モデルは、炉温をθg 、特定時間後代表位置鋼材温
度をθo 、現在代表位置鋼材温度をθi 、特定時間範囲
をt、鋼材代表厚みをD、総括熱吸収率をΦcg、ステフ
ァンボルツマン定数をσ、比熱をCp 、比重をρとした
とき、加熱時間と炉温と鋼材温度との関係を表す関係式
Further, in the combustion control method for a continuous heating furnace according to claim 3, in the invention of claim 2, the representative position temperature model is the furnace temperature θg, the representative position steel material temperature after a specific time is θo, and Representative position Steel temperature is θi, specific time range is t, steel representative thickness is D, total heat absorption rate is Φcg, Stefan Boltzmann constant is σ, specific heat is Cp, specific gravity is ρ, heating time, furnace temperature and steel material Relational expression expressing the relationship with temperature

【0016】[0016]

【数2】 [Equation 2]

【0017】を使用することを特徴としている。Is characterized in that

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は本発明の一実施形態を示す
概略構成図であって、図中、1は例えばウォーキングビ
ームによって連続的に搬送されるブルームBM1 〜BM
11、ビームブランクBB1 〜BB17等の鋼材4を所定間
隔を保って搬送して連続的に加熱する連続式加熱炉であ
って、鋼材4を左側から装入し、予熱帯5、第1加熱帯
6、第2加熱帯7及び均熱帯8を順次通過して加熱さ
れ、加熱を終了した鋼材4が右側から抽出されて次工程
に搬送される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention, in which 1 is a bloom BM 1 to BM continuously conveyed by a walking beam, for example.
11. A continuous heating furnace that conveys steel materials 4 such as beam blanks BB 1 to BB 17 at predetermined intervals and continuously heats them. The steel material 4 which has been heated by passing through the heating zone 6, the second heating zone 7 and the soaking zone 8 in sequence, and which has finished heating is extracted from the right side and conveyed to the next step.

【0019】第1加熱帯6、第2加熱帯7及び均熱帯8
には、夫々燃焼バーナが配設され、これら燃焼バーナへ
の供給燃料を連続式加熱炉1の全体を統括するプロセス
コンピュータに接続されたコントローラで構成される制
御手段11によって制御される。
First heating zone 6, second heating zone 7 and soaking zone 8
Combustion burners are provided in each of the combustion burners, and the fuel supplied to these combustion burners is controlled by the control means 11 composed of a controller connected to a process computer that controls the entire continuous heating furnace 1.

【0020】この制御手段11は、予熱帯5、第1加熱
帯6、第2加熱帯7及び均熱帯8の各実績炉温を読込む
と共に、対象鋼材の残り在炉時間(残り加熱時間)、炉
温、鋼材温度に基づいて代表位置鋼材温度変化モデルに
従って伝熱パラメータとしての総括熱吸収率Φcgを各第
1加熱帯6、第2加熱帯7及び均熱帯8の代表位置例え
ばスキッド部及びスキッド間について夫々算出する伝熱
パラメータ演算手段12と、この伝熱パラメータ演算手
段12で算出された総括熱吸収率Φcgと炉温初期値とか
ら帯出鋼材温度θo を算出し、定常燃料流量モデルを用
いて目的関数z(=ΣVgi)を、該当する帯炉温と該当
する帯出平均温度とでなる決定変数の線形結合として表
すと共に、所定の制約条件を定義することにより、制約
条件を満足し且つ評価関数zを最小とする炉温、帯出温
度を線形計画法で算出し、算出された炉温、帯出温度の
収束判定を行い、収束しているときには最適炉温、最適
帯出目標温度が決定されたものと判断する最適昇熱目標
演算手段13と、この最適昇熱目標演算手段13で決定
された最適帯出目標温度に基づいて、燃焼ゾーン毎に鋼
材毎の最適帯出目標温度を満足する必要炉温を代表位置
鋼材温度変化モデルに従って求め、求めた各鋼材毎の必
要最低炉温の最大値を設定炉温として設定する設定炉温
演算手段14とを備えており、設定炉温演算手段14で
設定された設定炉温となるように燃焼バーナへの供給燃
料を制御する。
The control means 11 reads the actual furnace temperatures of the pre-tropical zone 5, the first heating zone 6, the second heating zone 7 and the soaking zone 8, and at the same time, the remaining in-reacting time of the target steel material (remaining heating time). , The representative position based on the furnace temperature and the steel material temperature, the total heat absorption rate Φ cg as a heat transfer parameter is represented according to the steel material temperature change model. The representative position of each of the first heating zone 6, the second heating zone 7 and the soaking zone 8 And the heat transfer parameter calculation means 12 for calculating between the skids respectively, and the cast steel material temperature θo is calculated from the overall heat absorption rate Φ cg calculated by the heat transfer parameter calculation means 12 and the initial value of the furnace temperature, and the steady fuel flow rate is calculated. The objective function z (= ΣVgi) is expressed as a linear combination of the decision variables consisting of the relevant zone furnace temperature and the relevant zoned average temperature using the model, and the prescribed constraint conditions are defined to satisfy the constraint conditions. And evaluation The furnace temperature and the discharge temperature that minimize the number z are calculated by the linear programming method, and the convergence judgment of the calculated furnace temperature and the discharge temperature is performed. When the calculation is completed, the optimum furnace temperature and the optimum discharge target temperature are determined. Based on the optimum heat-up target calculation means 13 that is determined to be the one and the optimum discharge target temperature that is determined by the optimum heat-up target calculation means 13, the necessary furnace temperature that satisfies the optimum discharge target temperature for each steel material for each combustion zone Is set in accordance with the representative position steel material temperature change model, and a set furnace temperature calculation means 14 for setting the maximum value of the obtained minimum required furnace temperature for each steel material as the set furnace temperature is provided and set by the set furnace temperature calculation means 14. The fuel supplied to the combustion burner is controlled so that the set furnace temperature is set as described above.

【0021】具体的には、本実施形態では、以下の鋼材
温度変化モデル、代表位置鋼材温度変化モデル及び燃料
流量モデルの3つの伝熱モデルを使用する。鋼材温度変
化モデルは、鋼材の内部温度θ〔K〕を表現するモデル
であり、下記(4)式で表される。
Specifically, in this embodiment, the following three heat transfer models are used: a steel material temperature change model, a representative position steel material temperature change model, and a fuel flow rate model. The steel material temperature change model is a model expressing the internal temperature θ [K] of the steel material and is represented by the following equation (4).

【0022】[0022]

【数3】 (Equation 3)

【0023】ここで、kは熱伝導率[kcal/mhrK] 、tは
加熱時間[hr]、Cp は比熱[kcal/kg・K]、ρは比重[kg/
m]である。上記(4)式を鋼材表面からの熱負荷の境界
条件で計算することで時々刻々の鋼材温度変化を知るこ
とができる。熱負荷の境界条件としては、下記(5)式
で表される放射伝熱の式を用いる。
Here, k is thermal conductivity [kcal / mhrK], t is heating time [hr], Cp is specific heat [kcal / kg · K], and ρ is specific gravity [kg /
m]. By calculating the above equation (4) under the boundary condition of the heat load from the surface of the steel material, it is possible to know the temporal change of the steel material temperature. As the boundary condition of the heat load, the radiative heat transfer equation represented by the following equation (5) is used.

【0024】 Q=F・Φcg′・σ(θg4−θs4) …………(5) ここで、Fは加熱炉温度θg に対する当該表面点の形態
係数、Qは表面熱負荷[kcal/m2hr] 、Φcg′は総括熱吸
収率(差分計算パラメータ)、σはステファンボルツマ
ン定数[kcal/m2hrK4] 、θg は加熱炉温度[K] 、θs は
鋼材表面温度[K]である。
Q = F · Φcg ′ · σ (θg 4 −θs 4 ) ... (5) where F is the view factor of the surface point with respect to the heating furnace temperature θg, and Q is the surface heat load [kcal / m 2 hr], Φcg ′ is the overall heat absorption rate (differential calculation parameter), σ is the Stefan Boltzmann constant [kcal / m 2 hrK 4 ], θg is the furnace temperature [K], and θs is the steel surface temperature [K]. is there.

【0025】そして、上記(4)式及び(5)式は伝熱
差分計算法によって計算することが可能である外、公知
のADI法によって計算効率を向上させることも可能で
ある。
The equations (4) and (5) can be calculated by the heat transfer difference calculation method, and the calculation efficiency can be improved by the known ADI method.

【0026】また、代表位置鋼材温度変化モデルは、上
記鋼材温度変化モデルにおいて、鋼材加熱を上下2方向
からの熱移動のみと考え、伝熱を平板の集中定数系と仮
定すると、上記(4)式及び(5)式は、 Cp ・ρ・D・(∂θ/∂t)=2・Φcg・σ・(θg4−θ4 )……(6) で表すことができ、この(6)式を加熱時間tで積分す
ることで、加熱時間と炉温と鋼材温度との関係を表現す
る下記(7)式を得ることができる。
In the representative position steel material temperature change model, in the steel material temperature change model, assuming that the heating of the steel material is only heat transfer from the upper and lower two directions and the heat transfer is a lumped constant system of the flat plate, the above (4) The formula and the formula (5) can be expressed by Cp · ρ · D · (∂θ / ∂t) = 2 · Φcg · σ · (θg 4 −θ 4 ) ... (6), and this (6) By integrating the equation with the heating time t, the following equation (7) expressing the relationship between the heating time, the furnace temperature and the steel material temperature can be obtained.

【0027】[0027]

【数4】 (Equation 4)

【0028】ここで、θg は炉温[K] 、θo は特定時間
後代表位置鋼材温度[K] 、θi は現在代表位置鋼材温度
[K] 、tは特定時間範囲[hr]、Dは鋼材代表厚み[m] 、
Φcgは総括熱吸収率、σはステファンボルツマン定数[k
cal/m2hrK4〕、Cp は比熱[kcal/kg・K]、ρは比重[kg/
m]である。
Where θg is the furnace temperature [K], θo is the representative position steel material temperature [K] after a specific time, and θi is the current representative position steel material temperature.
[K], t is a specific time range [hr], D is a steel material representative thickness [m],
Φ cg is the overall heat absorption rate, σ is the Stefan Boltzmann constant [k
cal / m 2 hrK 4 ], Cp is specific heat [kcal / kg · K], ρ is specific gravity [kg /
m].

【0029】この(7)式を利用することで、炉温θg
で加熱時間tだけ加熱した場合の鋼材温度の変化を計算
することができる。さらに、燃料流量モデルは、定常状
態における該当燃焼帯及びそれより抽出側の燃焼帯の燃
料流量、炉温、材料温度などで表現したものである。
By using this equation (7), the furnace temperature θg
It is possible to calculate the change in the steel material temperature when heating is performed for the heating time t. Further, the fuel flow rate model is expressed by the fuel flow rate, the furnace temperature, the material temperature, etc. of the corresponding combustion zone in the steady state and the combustion zone on the extraction side thereof.

【0030】定常状態における該当燃焼帯の熱バランス
は、下記(8)式で表すことができる。 Qai+Qgi+Qei+1=Qei+Qsi+Qpi …………(8) Qai=Ca (θai−θrm)μi A0 Vgi Qgi=Hg Vgi Qei=Ce (θei−θrm){G0 +(μi-1)A0 }Vgi Qsi=SsiΦcgi σ(θfi4−θsmi4) Qpi=αp (θfi−θrm) ここで、Qaiは空気顕熱[kcal/hr] 、Qgiは燃料発熱量
[kcal/hr] 、Qei+1は流入廃ガス流量[kcal/hr] 、Qei
は流出廃ガス流量[kcal/hr] 、Qsiは鋼材への入熱量[k
cal/hr] 、Qpiは炉帯損失熱[kcal/hr] 、Ca は空気比
熱、θaiは予熱空気温度、θrmは室温、μは燃焼空気
比、A0 は理論空気量、Vgiは燃料流量、Hg は燃料ガ
ス発熱量、Ce は廃ガス比熱、θeiは廃ガス温度、G0
は理論廃ガス量、Ssiは鋼材表面積、Φcgi は総括熱吸
収率、θfiは炉温、θsmi は帯代表鋼材温度、αp は炉
外熱通過熱伝達係数である。
The heat balance of the corresponding combustion zone in the steady state can be expressed by the following equation (8). Qai + Qgi + Qei + 1 = Qei + Qsi + Qpi (8) Qai = Ca (θai−θrm) μi A 0 Vgi Qgi = Hg Vgi Qei = Ce (θei−θrm) {G 0 + (μi-1) A 0 } Vgi Qsi = SsiΦcgi σ (θfi 4 −θsmi 4 ) Qpi = αp (θfi−θrm) where Qai is the sensible heat of air [kcal / hr] and Qgi is the calorific value of fuel.
[kcal / hr], Qei + 1 is the inflowing waste gas flow rate [kcal / hr], Qei
Is the flow rate of discharged waste gas [kcal / hr], Qsi is the heat input to steel [k]
cal / hr], Qpi is heat loss from furnace zone [kcal / hr], Ca is air specific heat, θai is preheated air temperature, θrm is room temperature, μ is combustion air ratio, A 0 is theoretical air amount, Vgi is fuel flow rate, Hg is the calorific value of the fuel gas, Ce is the specific heat of the exhaust gas, θei is the exhaust gas temperature, G 0
Is the theoretical amount of waste gas, Ssi is the steel surface area, Φcgi is the overall heat absorption rate, θfi is the furnace temperature, θsmi is the strip representative steel temperature, and αp is the heat transfer coefficient outside the furnace.

【0031】そして、伝熱パラメータ演算手段12で
は、図2に示す伝熱パラメータ演算処理を実行する。こ
の伝熱パラメータ演算処理は、先ずステップS1で、対
象鋼材検索を行う。この対象鋼材検索は、起動タイミン
グに応じて、伝熱パラメータ演算の対象鋼材を決定する
処理であり、第1加熱帯6、第2加熱帯7及び均熱帯8
の各帯に入る直前の鋼材に対しては全て対象鋼材とする
共に、各帯に滞在している鋼材については、該当帯内残
り時間(残り加熱時間)が設定時間X2 分以上の鋼材の
鋼材毎前回計算時刻を読出し、現在時刻との差が設定時
間X1 分以上である鋼材を対象鋼材として決定する。
Then, the heat transfer parameter calculation means 12 executes the heat transfer parameter calculation processing shown in FIG. In this heat transfer parameter calculation process, first, in step S1, a target steel material search is performed. This target steel material search is a process of determining the target steel material of the heat transfer parameter calculation according to the start timing, and includes the first heating zone 6, the second heating zone 7, and the soaking zone 8
All steels immediately before entering each zone are subject steels, and steels staying in each zone are steels with remaining time (remaining heating time) within the set time X 2 minutes or more. Every time the previous calculation time is read out, the steel material with the difference from the current time being the set time X1 minute or more is determined as the target steel material.

【0032】次いで、ステップS2に移行して、対象鋼
材の形状データをプロセスコンピュータから読込み、各
対象鋼材の代表厚みD〔m〕を下記(9)式に従って演
算する。
Next, in step S2, the shape data of the target steel material is read from the process computer, and the representative thickness D [m] of each target steel material is calculated according to the following equation (9).

【0033】 D=G/(ρ・S) …………(9) ここで、Gは単重[kg/m]、ρは比重(=7860)[kg/
m3] 、Sは換算1/2周長[m] である。
D = G / (ρ · S) (9) where G is unit weight [kg / m] and ρ is specific gravity (= 7860) [kg /
m 3 ], S is a converted 1/2 circumference [m].

【0034】そして、換算1/2周長Sは、鋼材が図3
(a)に示すようにビームブランクBBである場合に
は、プロセスコンピュータからウェブ厚a、フランジ幅
b、ウェブ高さc、フランジ先端厚d、フランジ付根厚
eと、隣接するビームブランクBBとの間隔即ち鋼材装
入間隔wを読込み、これらをもとに下記(10)式の演
算を行うことによって求める。
The converted 1/2 circumference S is as shown in FIG.
In the case of the beam blank BB as shown in (a), the web thickness a, the flange width b, the web height c, the flange tip thickness d, the flanged root thickness e, and the adjacent beam blank BB are input from the process computer. It is determined by reading the interval, that is, the steel material charging interval w, and calculating the following equation (10) based on these values.

【0035】 S=α・b+2d+{(b−a)2 +4(e−d)2 1/2 +(c−2e) …………(10) また、鋼材が図4(a)に示すようにブルームBM、フ
ラットバー、Zである場合には、プロセスコンピュータ
から鋼片厚b、鋼片幅c及び鋼材装入間隔wを読込み、
これらをもとに下記(11)式の演算を行うことにより
換算1/2周長Sを算出する。
S = α · b + 2d + {(b−a) 2 +4 (e−d) 2 } 1/2 + (c−2e) (10) Further, the steel material is shown in FIG. 4 (a). In the case of bloom BM, flat bar, and Z, the steel piece thickness b, the steel piece width c, and the steel material charging interval w are read from the process computer,
Based on these, the converted 1/2 circumference S is calculated by performing the calculation of the following formula (11).

【0036】S=α・b+c …………(11) ここで、(10)式及び(11)式のαは次式で与えら
れる。 α=1−{1+(w/b)2 1/2 +(w/b) …………(12) そして、ビームブランクBBについては上記(9)式、
(10)式及び(12)式の演算を行うことにより、図
3(b)に示すようなスラブ形状に換算し、同様にブル
ームBM、フラットバー、Zについては上記(9)式、
(11)式及び(12)式の演算を行うことにより、図
4(b)に示すようなスラブ形状に換算する。
S = αb + c (11) Here, α in the equations (10) and (11) is given by the following equation. α = 1- {1+ (w / b) 2 } 1/2 + (w / b) (12) Then, for the beam blank BB, the above formula (9),
By performing the calculations of the equations (10) and (12), the slab shape as shown in FIG. 3 (b) is converted. Similarly, regarding the bloom BM, flat bar, and Z, the above equation (9),
By performing the calculations of the equations (11) and (12), the slab shape as shown in FIG. 4B is converted.

【0037】次いで、ステップS3に移行して、形態係
数を考慮した熱負荷を算出する。この熱負荷の算出は、
対象鋼材がビームブランクBBである場合には、上面側
凹部及び下面側凹部の双方について任意の点(i,j,
k)の熱負荷QUijk 及びQLijk を算出する。
Next, in step S3, the heat load in consideration of the view factor is calculated. The calculation of this heat load is
When the target steel material is the beam blank BB, an arbitrary point (i, j,
k) The heat loads QUAijk and QLijk are calculated.

【0038】上面側凹部の熱負荷QUijk は、雰囲気か
らの影の影響を受けるので係数補正を考慮して下記(1
3)式に従って算出する。
Since the thermal load QUIijk of the upper surface side recess is affected by the shadow from the atmosphere, the following (1
It is calculated according to the equation 3).

【0039】[0039]

【数5】 (Equation 5)

【0040】ここで、Fwはビームブランク凹部の熱負
荷補正係数、Φcgu は上部総括熱吸収率、θguは鋼材滞
留ゾーンの上部雰囲気温度〔℃〕、θi,j,k は点(i,
j,k)の鋼材温度〔℃〕である。
Here, Fw is the heat load correction coefficient of the beam blank concave portion, Φcgu is the upper overall heat absorption coefficient, θgu is the upper atmosphere temperature [° C.] of the steel material retention zone, and θi, j, k are points (i,
j, k) steel material temperature [° C].

【0041】そして、熱負荷補正係数Fwは、凹部の各
節点ごとに算出し、夫々の値については角関係から底部
即ちウェブ表面については図5に示すように、フランジ
傾斜部の幅をB、ウェブ表面長さをC、ウェブ表面の任
意の点P1での分割長さをC1,C2、フランジ先端か
らウェブまでの長さをE、フランジ先端と点Pとを結ぶ
線L1,L2のウェブ表面とのなす角をβ1,β2とし
たとき、 Fw=(cosβ1+ cosβ2)/2 …………(14) cosβ1=(C1+B)/{(C1+B)2 +E2 )}
1/2 cosβ2=(C2+B)/{(C2+B)2 +E2 )}
1/2 で表され、フランジ傾斜面については図6に示すよう
に、フランジ傾斜面の任意の点P2とウェブ及びフラン
ジ傾斜面の交点との水平方向長さをb、垂直方向長さを
e、他方のフランジ先端と点Pとを結ぶ線とフランジ傾
斜面とのなす角をβとしたとき、 Fw={(1+ cosβ)/2}×〔{(B2 +E2 1/2 }/(B+E)〕 …………(15) cosβ={B(B+C+b)-E(E-e) }/{(B+C+b)2+(E-e)2
1/2(B2+E2)1/2 で表される。なお、上記(14)式の{(B2 +E2
1/2 }/(B+E)は、矩形要素にすることによる表面
積増加を補正するための項である。
Then, the heat load correction coefficient Fw is calculated for each node of the concave portion, and the respective values are based on the angular relationship, and as shown in FIG. 5 for the bottom portion, that is, the web surface, the width of the flange inclined portion is B, The web surface length is C, the division lengths at arbitrary points P1 on the web surface are C1 and C2, the length from the flange tip to the web is E, and the web surfaces of lines L1 and L2 connecting the flange tip and the point P When the angles formed by and are β1 and β2, Fw = (cosβ1 + cosβ2) / 2 (14) cosβ1 = (C1 + B) / {(C1 + B) 2 + E 2 )}
1/2 cos β2 = (C2 + B) / {(C2 + B) 2 + E 2 )}
It is represented by 1/2 , and as for the flange inclined surface, as shown in FIG. 6, the horizontal length b between the arbitrary point P2 of the flange inclined surface and the intersection of the web and the flange inclined surface is e, and the vertical length is e. , Fw = {(1 + cosβ) / 2} × [{(B 2 + E 2 ) 1/2 } /, where β is the angle formed by the line connecting the other flange tip and the point P and the flange inclined surface (B + E)] ………… (15) cos β = {B (B + C + b) -E (Ee)} / {(B + C + b) 2 + (Ee) 2 }
It is represented by 1/2 (B 2 + E 2 ) 1/2 . In addition, {(B 2 + E 2 ) in the above equation (14)
1/2 } / (B + E) is a term for correcting an increase in surface area due to the rectangular element.

【0042】一方、下面側凹部の熱負荷QLijk も、雰
囲気からの影の影響を受けるので係数補正を考慮して下
記(16)式に従って算出する。
On the other hand, the thermal load QLijk of the lower surface side recess is also affected by the shadow from the atmosphere, and is therefore calculated according to the following equation (16) in consideration of coefficient correction.

【0043】[0043]

【数6】 (Equation 6)

【0044】ここで、Fwはビームブランク凹部の熱負
荷補正係数、Φcgl は下部総括熱吸収率、θglは鋼材滞
留ゾーンの下部雰囲気温度〔℃〕、θi,j,k は点(i,
j,k)の鋼材温度〔℃〕である。
Here, Fw is a heat load correction coefficient of the beam blank concave portion, Φcgl is a lower overall heat absorption rate, θgl is a lower atmosphere temperature [° C] of the steel material retention zone, and θi, j, k are points (i,
j, k) steel material temperature [° C].

【0045】そして、熱負荷補正係数Fwは、凹部の各
節点ごとに算出し、夫々の値については角関係から底部
即ちウェブ表面については図7に示すように、フランジ
傾斜部の幅をB、ウェブ表面長さをC、ウェブ表面の任
意の点P1での分割長さをC1,C2、フランジ先端か
らウェブまでの長さをE、フランジ先端と点Pとを結ぶ
線L1,L2のウェブ表面とのなす角をβ1,β2とし
たとき、 Fw=(cosβ1+ cosβ2)/2 …………(17) cosβ1=(C1+B)/{(C1+B)2 +E2 )}
1/2 cosβ2=(C2+B)/{(C2+B)2 +E2 )}
1/2 で表され、フランジ傾斜面については図8に示すよう
に、フランジ傾斜面の任意の点P2とウェブ及びフラン
ジ傾斜面の交点との水平方向長さをb、垂直方向長さを
e、他方のフランジ先端と点Pとを結ぶ線とフランジ傾
斜面とのなす角をβとしたとき、 Fw={(1+ cosβ)/2}×〔{(B2 +E2 1/2 }/(B+E)〕 …………(18) cosβ={B(B+C+b)-E(E-e) }/{(B+C+b)2+(E-e)2
1/2(B2+E2)1/2 で表される。なお、上記(18)式の{(B2 +E2
1/2 }/(B+E)は、矩形要素にすることによる表面
積増加を補正するための項である。
Then, the heat load correction coefficient Fw is calculated for each node of the concave portion, and the respective values are based on the angular relationship, and as shown in FIG. 7 for the bottom portion, that is, the web surface, the width of the flange inclined portion is B, The web surface length is C, the division lengths at arbitrary points P1 on the web surface are C1 and C2, the length from the flange tip to the web is E, and the web surfaces of lines L1 and L2 connecting the flange tip and the point P When the angles formed by and are β1 and β2, Fw = (cosβ1 + cosβ2) / 2 ………… (17) cosβ1 = (C1 + B) / {(C1 + B) 2 + E 2 )}
1/2 cos β2 = (C2 + B) / {(C2 + B) 2 + E 2 )}
As shown in FIG. 8, the flange inclined surface is represented by 1/2 . The horizontal length b between the arbitrary point P2 of the flange inclined surface and the intersection of the web and the flange inclined surface is b, and the vertical length is e. , Fw = {(1 + cosβ) / 2} × [{(B 2 + E 2 ) 1/2 } /, where β is the angle formed by the line connecting the other flange tip and the point P and the flange inclined surface (B + E)] ………… (18) cos β = {B (B + C + b) -E (Ee)} / {(B + C + b) 2 + (Ee) 2 }
It is represented by 1/2 (B 2 + E 2 ) 1/2 . In addition, in the above formula (18), {(B 2 + E 2 ).
1/2 } / (B + E) is a term for correcting an increase in surface area due to the rectangular element.

【0046】また、フランジの凹部以外の上下面での熱
負荷QUijk 及びQLijk は、(13)式及び(16)
式において熱負荷補正係数Fwを1.0として演算すれ
ばよい。
Further, the heat loads QUAijk and QLijk on the upper and lower surfaces other than the concave portion of the flange are expressed by the equations (13) and (16).
In the equation, the heat load correction coefficient Fw may be calculated as 1.0.

【0047】また、隣接する鋼材間でも影の影響を受け
るので、図9に示すように、鋼材の上半部において隣接
する鋼材との対向面上の点P3(i,j,k)と上下端
との長さを夫々a1及びa2とし、点P3と対向する鋼
材の上下端とを結ぶ線L1及びL2と対向面とのなす角
をβ1及びβ2とし、隣接鋼材との間隔をbとしたと
き、上半部及び下半部の熱負荷補正係数Fsu及びFsl
は、下記(19)式及び(20)式で表すことができ
る。
Further, since shadows are also influenced between adjacent steel materials, as shown in FIG. 9, in the upper half of the steel material, the point P3 (i, j, k) on the surface facing the adjacent steel material and the vertical direction The lengths with the ends are a1 and a2, respectively, and the angles formed by the facing surfaces and the lines L1 and L2 connecting the upper and lower ends of the steel material facing the point P3 are β1 and β2, and the distance between the adjacent steel materials is b. Then the heat load correction factors Fsu and Fsl of the upper and lower halves
Can be expressed by the following equations (19) and (20).

【0048】 Fsu=(1− cosβ1)/2 …………(19) Fsl=(1− cosβ2)/2 …………(20) ここで、 cosβ1=a1/(a12 +b2 1/2 cosβ2=a2/(a22 +b2 1/2 次いで、ステップS4に移行して、前記ステップS1で
決定した対象鋼材の1つについて第1の加熱帯6、第2
の加熱帯7及び均熱帯8の各帯iに対する残り在炉時間
ti を将来在炉時間として予測する。
Fsu = (1-cosβ1) / 2 (19) Fsl = (1-cosβ2) / 2 (20) where cosβ1 = a1 / (a1 2 + b 2 ) 1 / 2 cos β2 = a2 / (a2 2 + b 2 ) 1/2 Then, the process proceeds to step S4, and the first heating zone 6 and the second heating zone 6 for the one of the target steel materials determined in step S1 are used.
The remaining in-reactor time ti for each heating zone 7 and each zone i of the soaking zone 8 is predicted as future in-reactor time.

【0049】次いで、ステップS5に移行して、現状の
実績炉温が将来も継続すると仮定して、第1の加熱帯
6、第2の加熱帯7及び均熱帯8の各帯iをn個に分割
した各ゾーンに対する差分計算用炉温θgnを算出する。
Next, in step S5, assuming that the current actual furnace temperature will continue in the future, n zones i of the first heating zone 6, the second heating zone 7 and the soaking zone 8 are set. Calculate the difference calculation furnace temperature θgn for each zone divided into.

【0050】次いで、ステップS6に移行して、現在炉
温計算結果を起点に、ステップS2で算出した在炉時間
ti の時間でステップS3で算出した差分計算用炉温θ
gnで加熱された場合の鋼材温度をステップS2で算出し
た鋼材換算厚D及びステップS3で算出した熱負荷QU
ijk,QLijk 及び対向面の熱負荷補正係数Fsu及びFsl
をもとに前記(4)式及び(5)式に従って演算を行っ
て、各帯i毎の代表位置鋼材温度θoij を演算する。こ
のとき、(5)式における総括熱吸収率(差分計算パラ
メータ)Φcg′も分割ゾーンに応じて変更される。
Next, the process proceeds to step S6, and the difference calculation furnace temperature θ calculated in step S3 is calculated from the current furnace temperature calculation result as the starting point and the in-reactor time ti calculated in step S2.
The steel material temperature when heated by gn and the heat load QU calculated in step S3 and the steel material converted thickness D calculated in step S2
ijk, QLijk and heat load correction factors Fsu and Fsl of the facing surface
Based on equation (4) and equation (5), the representative position steel material temperature θoij for each band i is calculated. At this time, the overall heat absorption rate (difference calculation parameter) Φcg ′ in the equation (5) is also changed according to the divided zones.

【0051】ここで、代表位置鋼材温度θoiとしては、
スキッド部鋼材平均温度、スキッド間部鋼材平均温度、
スキッド部鋼材中心温度、スキッド間部鋼材中心温度を
選択することが好ましい。
Here, as the representative position steel material temperature θoi,
Average skid steel material temperature, average skid steel material temperature,
It is preferable to select the steel material center temperature of the skid portion and the steel material center temperature between the skids.

【0052】次いで、ステップS7に移行して、各ステ
ップS2〜S4で演算した帯内在炉時間ti 、差分計算
用炉温θgn及び代表位置鋼材温度θoij をもとに、前記
(6)式の代表位置鋼材温度変化モデルの演算を行うこ
とにより、各帯iにおける各鋼材の各代表位置jにおけ
る伝熱パラメータとなる総括熱吸収率Φcgijを演算す
る。
Next, the process proceeds to step S7, and based on the in-zone furnace time ti calculated in each of steps S2 to S4, the difference calculation furnace temperature θgn, and the representative position steel material temperature θoij, the representative of the equation (6) is represented. By calculating the position steel material temperature change model, the overall heat absorption coefficient Φcgij which is a heat transfer parameter at each representative position j of each steel material in each band i is calculated.

【0053】次いで、ステップS8に移行して、全ての
対象鋼材について前記ステップS2〜ステップS7の処
理が完了したか否かを判定し、処理を行っていない対象
鋼材があるときには前記ステップS2に戻り、全ての対
象鋼材について処理を完了したときには伝熱パラメータ
演算処理を終了する。
Next, in step S8, it is determined whether or not the processes of steps S2 to S7 have been completed for all target steel products. If there is a target steel product that has not been processed, the process returns to step S2. When the processing is completed for all the target steel materials, the heat transfer parameter calculation processing is ended.

【0054】また、最適昇熱目標演算手段13では、上
記伝熱パラメータ演算手段12で演算した伝熱パラメー
タとしての総括熱吸収率Φcgijを利用して、図10に示
す最適昇熱目標演算処理を対象鋼材毎に実行する。
The optimum heat-up target calculation means 13 uses the overall heat absorption rate Φcgij as the heat-transfer parameter calculated by the heat-transfer parameter calculation means 12 to perform the optimum heat-up target calculation processing shown in FIG. Execute for each target steel.

【0055】この最適昇熱目標演算処理は、先ずステッ
プS11で、現在までの操炉実績から炉温θg の初期値
を決定する。次いで、ステップS12に移行して、上記
ステップS11で決定した炉温θgと、各帯iでの予定
加熱時間(在炉時間ti )と、前記伝熱パラメータ処理
で決定した総括熱吸収率Φcgijをもとに、前述した
(7)式の演算を行って各ゾーンでの予定加熱時間経過
後の代表位置鋼材温度θoij を算出する。
In this optimum heat-up target calculation process, first, in step S11, the initial value of the furnace temperature θg is determined from the actual furnace operation results to date. Next, in step S12, the furnace temperature θg determined in step S11, the planned heating time in each zone i (reacting time ti), and the overall heat absorption rate Φcgij determined in the heat transfer parameter processing are set. Based on the above, the equation (7) is calculated to calculate the representative position steel material temperature θoij after the elapse of the scheduled heating time in each zone.

【0056】次いで、ステップS13に移行して、目的
関数のパラメータ演算を行う。このパラメータ演算は、
前述した(8)式の定常燃料流量モデルを用いて、各帯
の燃料流量Vgiの和を目的関数z(=ΣVgi)として定
義する。
Then, the process proceeds to step S13 to perform the parameter calculation of the objective function. This parameter calculation is
Using the steady-state fuel flow rate model of the above equation (8), the sum of the fuel flow rates Vgi of each zone is defined as the objective function z (= ΣVgi).

【0057】ここでは、目的関数zを該当帯炉温と該当
帯帯出平均温度の線形結合として下記(21)式のよう
に表現する。 z=ΣCfi・θfi+ΣCsi・θoi …………(21) ここで、Cfiは該当帯炉温コスト係数、θfiは炉温、C
siは該当帯鋼材温度コスト係数、θoiは該当帯鋼材温度
であり、該当帯炉温コスト係数Cfi及び該当帯鋼材温度
コスト係数Csiは前記(8)式と燃料流量で整理し、該
当帯炉温、該当帯帯出平均温度に対する偏導関数を求め
ることで陽関数として計算することができる。但し、帯
代表鋼材温度θsmi が未定義となるが、前記ステップS
12で算出した予定加熱時間経過後の代表位置鋼材温度
θoij をもとに下記(22)式の演算を行って求めるよ
うにすればよい。
Here, the objective function z is expressed as the following equation (21) as a linear combination of the relevant zone furnace temperature and the relevant zone discharge average temperature. z = ΣCfi · θfi + ΣCsi · θoi (21) where Cfi is the relevant zone furnace temperature cost coefficient, θfi is the furnace temperature, and C is
si is the corresponding strip steel temperature cost coefficient, θoi is the corresponding strip steel temperature, and the corresponding strip furnace temperature cost coefficient Cfi and the corresponding strip steel temperature cost coefficient Csi are organized by the above equation (8) and the fuel flow rate, , It can be calculated as an explicit function by finding the partial derivative with respect to the average temperature of the zone. However, although the strip representative steel temperature θsmi is undefined, the above step S
It may be determined by calculating the following formula (22) based on the representative position steel material temperature θoij after the scheduled heating time calculated in 12.

【0058】 θsmi =(θo +θi )/2 …………(22) 次いで、ステップS14に移行して、予め定義された制
約条件関数のパラメータを算出する。
Θsmi = (θo + θi) / 2 (22) Next, in step S14, the parameters of the predefined constraint condition function are calculated.

【0059】この制約条件関数は、鋼材温度の関係、抽
出目標温度の条件及び炉温と鋼材温度との条件から、温
度モデル関係式よりの下記(23)式で表される制約条
件関数、抽出目標温度及び均熱度に基づく下記(24)
式で表される制約条件関数並びに炉温制約に基づく下記
(25)式及び(26)式で表される制約条件関数があ
る。
This constraint condition function is a constraint condition function expressed by the following equation (23) from the temperature model relational expression based on the relation between the steel material temperature, the condition of the extraction target temperature and the condition between the furnace temperature and the steel material temperature. The following (24) based on target temperature and soaking degree
There are constraint condition functions represented by the formulas and constraint condition functions represented by the following formulas (25) and (26) based on the furnace temperature constraint.

【0060】 pijθgi+qijθoji =rij …………(23) ここで、θoji はi帯のj番目代表位置の帯出温度であ
って前記(7)式で定義され、pij,qij,rijはi帯
のj番目代表位置に対する前記(7)式の導関数、θgi
はi帯の炉温である。
Pijθgi + qijθoji = rij (23) Here, θoji is the temperature at which the j-th representative position of the i band is taken out and is defined by the equation (7), and pij, qij, and rij are j of the i band. The derivative of the equation (7) with respect to the th representative position, θgi
Is the furnace temperature in the i band.

【0061】 θoUj * >θonj >θoLj * …………(24) ここで、θonj は最終帯のj番目の代表位置の帯出温
度、θoUj * は抽出時のj番目代表位置の目標上限温
度、θoLj * は抽出時のj番目代表位置の目標下限温度
である。
ΘoUj * >θonj> θoLj * (24) where θonj is the temperature of the jth representative position in the final zone, θoUj * is the target upper limit temperature of the jth representative position during extraction, and θoLj * Is the target lower limit temperature of the j-th representative position during extraction.

【0062】 θgi>θoji +βoij …………(25) θgi>θiji +βiij …………(26) ここで、θoji はi帯のj番目代表位置の帯出温度であ
って前記(7)式で定義され、βoij はi帯のj番目代
表位置の帯出温度の補正係数、θiji はi帯のj番目代
表位置の現在温度、βiij はi帯のj番目代表位置の現
在温度の補正係数である。
Θgi> θoji + βoij (25) θgi> θiji + βiij (26) Here, θoji is the temperature at which the j-th representative position of the i band is taken out and is defined by the formula (7). .Beta.oij is a correction coefficient for the temperature of the j-th representative position of the i-band, .theta.iji is a current temperature of the j-th representative position of the i-band, and .beta.iij is a correction coefficient of the current temperature of the j-th representative position of the i-band.

【0063】そして、上記(23)〜(26)式におい
て添字jで定義する代表位置としては、スキッド部鋼材
平均温度、スキッド間部鋼材平均温度、スキッド部鋼材
中心温度、スキッド間部鋼材中心温度を選択することが
好ましい。
The representative positions defined by the subscript j in the above equations (23) to (26) are the average temperature of the steel material in the skid portion, the average temperature of the steel material in the skid portion, the central temperature of the steel material in the skid portion, the central temperature of the steel material in the skid portion. Is preferably selected.

【0064】次いで、ステップS15に移行して、上記
(23)〜(26)式の制約条件を満足し、且つ前記
(21)式の評価関数zを最小とする炉温、帯出温度を
公知の線形計画法によって算出する。
Next, the routine proceeds to step S15, where the furnace temperature and the discharge temperature which satisfy the constraint conditions of the above expressions (23) to (26) and minimize the evaluation function z of the above expression (21) are known. Calculated by linear programming.

【0065】次いで、ステップS16に移行して収束判
定を行う。この収束判定は、ステップS11で定義した
炉温の初期値あるいは前回計算時の炉温算出値と今回線
形計画法で算出した結果を比較し、その差が小さければ
最適炉温、最適帯出目標温度が決定ものと判断して最適
昇熱目標演算処理を終了し、差が大きいときには、前記
ステップS12に戻ってステップS12〜ステップS1
5の処理を繰り返すが、所定回数以上処理を繰り返して
も収束しないときには処理を打切り、該当する鋼材は炉
温計算非対象鋼材として処理する。
Then, the process shifts to step S16 to make a convergence judgment. In this convergence determination, the initial value of the furnace temperature defined in step S11 or the calculated value of the furnace temperature at the previous calculation is compared with the result calculated by the linear programming method this time, and if the difference is small, the optimum furnace temperature and the optimum discharge target temperature are obtained. Is determined to end the optimum heat-up target calculation process, and when the difference is large, the process returns to step S12 and steps S12 to S1.
The process of 5 is repeated, but if the process does not converge even if the process is repeated a predetermined number of times or more, the process is terminated, and the corresponding steel product is processed as a steel product not subject to furnace temperature calculation.

【0066】このようにして、各対象鋼材の全てについ
て最適炉温及び最適帯出目標温度が決定されると、設定
炉温演算手段14で設定炉温演算を行う。この設定炉温
演算は、燃焼ゾーン毎に鋼材毎の最適帯出目標温度を満
足する必要炉温を前記(7)式の演算を行うことにより
算出する。この(7)式では、残り加熱時間、現在鋼材
温度、最適帯出目標温度を与えて炉温を収束計算により
求めることができ、求めた各鋼材についての必要最低炉
温の最大値を設定炉温として決定し、この設定炉温で各
燃焼ゾーンの燃料流量を制御する。
In this way, when the optimum furnace temperature and the optimum discharge target temperature are determined for all the target steel materials, the set furnace temperature calculation means 14 calculates the set furnace temperature. In this set furnace temperature calculation, the necessary furnace temperature that satisfies the optimum discharge target temperature for each steel material for each combustion zone is calculated by calculating the above equation (7). In this formula (7), the remaining heating time, the current steel material temperature, and the optimum stripping target temperature can be given to obtain the furnace temperature by convergent calculation, and the maximum value of the required minimum furnace temperature for each steel material obtained is set as the set furnace temperature. And the fuel flow rate in each combustion zone is controlled by this set furnace temperature.

【0067】次に、上記実施形態の動作を説明する。
今、連続式加熱炉1に、図1に示すように、ビームブラ
ンクBBに続いて部ルームbmが順次装入されて加熱処
理が行われているものとすると、制御手段11の伝熱パ
ラメータ演算手段12で図2の伝熱パラメータ演算処理
が実行されたときに、現時点で第1加熱帯6に入るブル
ームBM2 、第2加熱帯7に入るビームブランクBB14
及び均熱帯8に入るビームブランクBB7 を対象鋼材と
して決定すると共に、残り加熱時間が少ないビームブラ
ンクBB1 及びBB2 を除く各帯に滞在するビームブラ
ンクBB3 〜BB17及びブルームBM1 については、夫
々の前回の伝熱パラメータの演算時刻と現在時刻との差
が設定時間X1 以上であるものが対象鋼材として決定さ
れる。(ステップS1)。
Next, the operation of the above embodiment will be described.
Assuming that, as shown in FIG. 1, the beam blank BB is sequentially charged into the continuous heating furnace 1 and then the room bm is sequentially heated to perform the heat treatment, the heat transfer parameter calculation of the control means 11 is performed. When the heat transfer parameter calculation process of FIG. 2 is executed by the means 12, the bloom BM 2 entering the first heating zone 6 and the beam blank BB 14 entering the second heating zone 7 at the present moment.
And the beam blank BB 7 entering the soaking zone 8 is determined as the target steel material, and the beam blanks BB 3 to BB 17 and the bloom BM 1 staying in each zone except the beam blanks BB 1 and BB 2 with a short remaining heating time are The target steel material is determined to have the difference between the previous calculation time of the heat transfer parameter and the current time being the set time X1 or more. (Step S1).

【0068】この状態で、伝熱パラメータ演算手段12
で、対象鋼材として決定された各ビームブランクBB及
びブルームBMについて、鋼材換算厚Dを算出すると共
に熱負荷補正係数Fwを算出して、これに基づいて熱負
荷QUijk 及びQLijk を算出し(ステップS2,S
3)、各帯6〜8の夫々に対する各鋼材の残り在炉時間
ti を求め(ステップS4)、現状の実績炉温が将来も
継続するものと仮定して、差分計算用炉温θgnを各燃焼
ゾーン毎に求め(ステップS5)、現在温度計算結果を
起点に、前記(4),(5)式の鋼材温度変化モデルの
演算を行うことにより、各帯i毎の代表位置鋼材温度θ
oij を求める(ステップS6)。ここで、鋼材の代表位
置温度としては、スキッド部鋼材平均温度、スキッド間
部鋼材平均温度、スキッド部鋼材中心温度、スキッド間
部鋼材中心温度の4か所が選択されている。
In this state, the heat transfer parameter calculating means 12
Then, for each beam blank BB and bloom BM determined as the target steel material, the steel material converted thickness D is calculated and the heat load correction coefficient Fw is calculated, and the heat loads QUAijk and QLijk are calculated based on this (step S2 , S
3) Obtain the remaining in-furnace time ti of each steel material for each of the zones 6 to 8 (step S4), and assume that the current actual furnace temperature will continue in the future and the difference calculation furnace temperature θgn Obtained for each combustion zone (step S5), and using the current temperature calculation result as a starting point, the steel position temperature change model of each zone i is calculated by calculating the steel temperature change model of the above formulas (4) and (5).
oij is obtained (step S6). Here, as the representative position temperature of the steel material, four locations of the skid portion steel material average temperature, the skid portion steel material average temperature, the skid portion steel material central temperature, and the skid portion steel material central temperature are selected.

【0069】このようにして、代表位置鋼材温度θoij
が求まると、この代表位置鋼材温度θoij 、在炉時間t
i 及び及び炉温θgiに基づいて前記(7)式の演算を行
って、各帯iに対する対象鋼材の代表位置jについての
帯入時又は現在位置から帯出時迄の伝熱パラメータとな
る総括熱吸収率Φcgijを算出する(ステップS7)。こ
れによって、前記(7)式の代表位置鋼材温度変化モデ
ルの演算を行ったときに算出される各対象鋼材の帯出時
目標鋼材温度を前述した(4),(5)式によって演算
される帯出時鋼材温度とを一致させることができる。
In this way, the representative position steel material temperature θoij
Then, the representative position steel temperature θoij and in-reactor time t
Based on i and the furnace temperature θgi, the calculation of the equation (7) is performed, and the general heat as a heat transfer parameter from the current position to the current time of the representative position j of the target steel material for each band i at the time of charging or at the current position. The absorption rate Φcgij is calculated (step S7). As a result, the target steel temperature at the time of stripping of each target steel sheet, which is calculated when the representative position steel sheet temperature change model of the above equation (7) is calculated, is calculated by the above equations (4) and (5). The steel material temperature can be matched.

【0070】次いで、最適昇熱目標演算手段13で、現
在迄の操炉実績から各帯iの炉温の初期値θgiを決定
し、この初期値θgiと予定加熱時間tとをもとに(7)
式の演算を行って各帯iの帯出時における代表位置鋼材
温度θoij を算出し(ステップS12)、その後、定常
燃料流量モデルを用いて、該当帯炉温と該当帯帯出平均
温度の線形結合として(21)式の目的関数zを定義す
ると共に、帯代表鋼材温度θsmi を算出し、且つ制約条
件を定義し、この制約条件を満足し、目的関数を最小と
する炉温θgi及び帯出温度を公知の線形計画法で算出し
(ステップS15)、算出した炉温と炉温の初期値又は
前回計算時の炉温計算値との差が小さいときに最適炉
温、最適帯出目標温度が決定されたものと判断する。
Next, the optimum heat-up target calculating means 13 determines the initial value θgi of the furnace temperature of each zone i from the actual operation results up to the present, and based on this initial value θgi and the planned heating time t ( 7)
By calculating the equation, the representative position steel material temperature θoij at the time of discharging of each zone i is calculated (step S12), and then, using the steady fuel flow rate model, as a linear combination of the relevant zone furnace temperature and the corresponding zone average temperature. The objective function z of equation (21) is defined, the strip representative steel temperature θsmi is calculated, and the constraint conditions are defined. The furnace temperature θgi and the strip temperature that satisfy the constraint conditions and minimize the objective function are known. (Step S15), the optimum furnace temperature and the optimum discharge target temperature were determined when the difference between the calculated furnace temperature and the initial value of the furnace temperature or the calculated value of the furnace temperature at the previous calculation was small. Judge that.

【0071】そして、設定炉温演算手段14で、各対象
鋼材の最適帯出目標温度を満足する必要炉温を(7)式
の関係から求め、各対象鋼材の必要最低炉温の最大値を
設定炉温として設定し、この設定炉温を維持するように
各帯iの燃料流量を制御する。
Then, the set furnace temperature calculation means 14 obtains the necessary furnace temperature satisfying the optimum discharge target temperature of each target steel material from the relation of the equation (7), and sets the maximum value of the minimum required furnace temperature of each target steel material. It is set as a furnace temperature, and the fuel flow rate of each zone i is controlled so as to maintain this set furnace temperature.

【0072】したがって、上記実施形態によれば、凹凸
形状を有するビームブランクBBについて、その厚みを
スラブと同様の矩形厚に換算した鋼材換算厚Dを算出す
ると共に、凹部の形態に応じた熱負荷補正係数Fwを算
出し、これに基づいて非線形厳密方程式でなる鋼材温度
変化モデルにしたがって、ビームブランクBBの鋼材温
度を予測するようにしたので、ビームブランク等の凹凸
形状を有する鋼材であっても、鋼材温度の予測を高精度
で行うことができ、良好な燃焼制御を行うことができ
る。
Therefore, according to the above-described embodiment, for the beam blank BB having the concavo-convex shape, the steel material converted thickness D is calculated by converting the thickness thereof into the rectangular thickness similar to that of the slab, and the heat load according to the shape of the recess is calculated. Since the correction coefficient Fw is calculated and the steel material temperature of the beam blank BB is predicted based on the steel material temperature change model formed by the non-linear exact equation based on the correction coefficient Fw, even if the steel material has an uneven shape such as a beam blank. The steel material temperature can be predicted with high accuracy, and good combustion control can be performed.

【0073】また、伝熱パラメータ演算処理で、高精度
に予測された鋼材温度を使用して、非線形簡易モデルと
しての前記(7)式で表される加熱時間、炉温及び鋼材
温度の関係を表現する代表位置鋼材温度変化モデルの伝
熱パラメータを決定し、最適昇熱目標演算処理におい
て、上記代表位置鋼材温度変化モデルから陽関数として
導関数を求めることを可能として、非線形計画法で昇温
目標値を決定することができるので、前述した第1従来
例に代表される従来例の1/2の計算量で高精度な操業
最適化が可能となる。
Further, the relationship between the heating time, the furnace temperature and the steel material temperature represented by the equation (7) as a non-linear simple model is calculated by using the steel material temperature predicted with high accuracy in the heat transfer parameter calculation processing. It is possible to determine the heat transfer parameter of the representative position steel material temperature change model to be expressed, and to obtain the derivative as an explicit function from the above representative position steel material temperature change model in the optimum heat-up target calculation process, and to raise the temperature by nonlinear programming. Since the target value can be determined, highly accurate operation optimization can be performed with a calculation amount of 1/2 of the conventional example represented by the first conventional example described above.

【0074】このように、計算量を低減することができ
ることにより、従来例より短い時間周期で操業最適化処
理が可能となり、結果として加熱炉抽出順の変化、圧延
時間の変化などの操業条件の変化に対応して随時最適帯
出目標温度を算出することができ、高い最適化を実現す
ることができ、この結果材料抽出温度の確保、材料内偏
熱の防止、燃料原単位の約10%の低減、過加熱防止に
よるスケールロス低減、加熱炉操炉要員の省力等を図る
ことができる。
As described above, since the calculation amount can be reduced, the operation optimization process can be performed in a shorter time cycle than the conventional example, and as a result, the operating conditions such as the change of the heating furnace extraction order and the change of the rolling time can be reduced. The optimum discharge target temperature can be calculated at any time in response to changes, and high optimization can be realized. As a result, the material extraction temperature can be secured, the uneven heat distribution in the material can be prevented, and the fuel consumption rate can be reduced to about 10% of the fuel consumption rate. Reduction, reduction of scale loss due to prevention of overheating, labor saving of heating furnace operating personnel, etc. can be achieved.

【0075】しかも、非線形のままで最適化を行うの
で、従来例のように1次式で近似することにより誤差を
伴うこともないと共に、最適帯出目標温度を算出する場
合に逐次線形計画法による非線形計画法を利用すること
で最適化誤差をより少なくすることができる。
Moreover, since the optimization is performed while remaining nonlinear, no error is caused by approximating with a linear expression as in the conventional example, and the sequential linear programming method is used to calculate the optimum output target temperature. Optimization errors can be reduced by using non-linear programming.

【0076】なお、上記実施形態においては、第1及び
第2の加熱帯6,7を有する場合について説明したが、
これに限定されるものではなく、加熱帯が1つ又は3以
上である場合であっても、各帯について伝熱パラメータ
演算及び最適昇熱目標演算を行うことにより、最適な燃
焼制御を行うことができる。
In the above embodiment, the case where the first and second heating zones 6 and 7 are provided has been described.
The present invention is not limited to this, and even when the number of heating zones is one or three or more, optimal combustion control is performed by performing heat transfer parameter calculation and optimum heat-up target calculation for each zone. You can

【0077】また、上記実施形態では、代表鋼材温度モ
デルとして(7)式を適用した場合について説明した
が、これに限定されるものではなく、特願昭61−19
9016号公報に記載されているように、燃料流量を基
にし、炉内温度、炉壁温度及び材料温度の各要素も考慮
して、各材料につき燃料流量が最小となる最適な昇温曲
線を決定し、この昇温曲線に沿って炉内の様々な材料を
平均的或いはある材料を優先的に焼き上げるために、各
材料の設定炉温に炉温設定用重み係数を乗じ果汁平均し
た値を各制御帯の炉温設定値とするようにした燃焼制御
方法や、特開平3−140415号公報に記載されてい
るような上記実施形態で算出した鋼材温度に基づいて簡
易モデルでなる抽出時平均温度感度式を用いて各帯の炉
温に対する感度を求め、修正炉温計算式で修正炉温を求
め、均熱度が目標温度なるように抽出時スラブ平均温度
感度式を用いて均熱度のスラブ感度を求め、最後に修正
炉温計算式により最終的な各帯制御炉温を求める燃焼制
御方法等の任意の炉温設定方法を適用することができ
る。
Further, in the above-mentioned embodiment, the case where the expression (7) is applied as the representative steel material temperature model has been described, but the present invention is not limited to this, and Japanese Patent Application No. 61-19 is used.
As described in Japanese Patent No. 9016, an optimum temperature rise curve that minimizes the fuel flow rate for each material is determined based on the fuel flow rate and in consideration of each element of the furnace temperature, the furnace wall temperature, and the material temperature. To determine the average of various materials in the furnace along with this temperature rise curve or preferentially bake a certain material along this temperature rising curve, multiply the set furnace temperature of each material by the weight coefficient for setting the furnace temperature Combustion control method in which the furnace temperature set value of each control zone is used, and the extraction average which is a simple model based on the steel material temperature calculated in the above embodiment as described in JP-A-3-140415. Obtain the sensitivity to the furnace temperature of each zone using the temperature sensitivity formula, find the corrected furnace temperature using the corrected furnace temperature calculation formula, and use the average temperature sensitivity formula during slab extraction so that the uniform temperature becomes the target temperature. Find the sensitivity, and finally by the corrected furnace temperature calculation formula Any furnace temperature setting method for such a combustion control method for determining a final specific each band control furnace temperature can be applied.

【0078】[0078]

【発明の効果】以上説明したように、請求項1の発明に
よれば、凹凸形状を有する鋼材を連続的に加熱する際
に、鋼材の内部温度変化を表現する鋼材温度分布モデル
を前記鋼材の表面形状の形態係数を考慮した熱負荷の境
界条件で演算することにより、凹凸形状を有する鋼材の
温度を算出し、算出した鋼材の温度に基づいて目標昇温
パターンを設定するようにしたので、矩形断面でない凹
凸形状を有する鋼材の内部温度を高精度で予測すること
ができ、この結果、従来からの加熱炉計算機制御をビー
ムブランクなどの複雑な形状を有する鋼材に対しても適
用することが可能となり、凹凸形状を有する鋼材の連続
加熱制御を良好に行うことができるという効果が得られ
る。
As described above, according to the invention of claim 1, when the steel material having the uneven shape is continuously heated, the steel material temperature distribution model expressing the internal temperature change of the steel material By calculating the temperature of the steel material having the uneven shape by calculating the boundary conditions of the heat load in consideration of the view factor of the surface shape, the target temperature rising pattern is set based on the calculated temperature of the steel material. It is possible to predict with high accuracy the internal temperature of a steel material having an uneven shape that is not a rectangular cross section, and as a result, conventional heating furnace computer control can be applied to steel materials with complex shapes such as beam blanks. As a result, the effect that the continuous heating control of the steel material having the uneven shape can be performed well can be obtained.

【0079】また、請求項2の発明によれば、凹凸形状
を有する鋼材を連続的に加熱する際に、鋼材の内部温度
変化を表現する鋼材温度分布モデルを前記鋼材の表面形
状の形態係数を考慮した熱負荷の境界条件で演算するこ
とにより、凹凸形状を有する鋼材の内部温度を算出し、
当該鋼材の断面内平均温度の昇温特性が、集中定数系と
仮定した平板の昇温特性と一致するものと仮定し、その
当該集中定数系平板温度モデルを用いて目標昇温パター
ンを設定するようにしたので、従来例よりも少ない計算
量で非線形を確保したままで誤差を生じることなく高精
度の操業最適化が可能となるという効果を有すると共
に、計算量の低減に伴って、従来例よりも短い時間周期
で操業最適化が可能となり、結果としてより加熱炉抽出
順の変化、圧延時間の変化などの操業条件の変化に対応
して随時最適化昇温目標値を算出することができ、高い
最適化を実現することができるという効果が得られる。
According to the second aspect of the invention, when continuously heating the steel material having the uneven shape, the steel material temperature distribution model expressing the internal temperature change of the steel material is calculated by using the form factor of the surface shape of the steel material. By calculating with the boundary conditions of the heat load considered, the internal temperature of the steel material having the uneven shape is calculated,
It is assumed that the temperature rise characteristics of the average temperature in the cross section of the steel material match the temperature rise characteristics of the flat plate assumed to be a lumped constant system, and the target temperature rise pattern is set using the lumped constant plate temperature model. Since this is done, it has the effect that it is possible to optimize the operation with high accuracy without generating errors while securing the nonlinearity with a smaller calculation amount than the conventional example, and with the reduction of the calculation amount, the conventional example It is possible to optimize the operation in a shorter time cycle, and as a result, it is possible to calculate the optimized temperature increase target value at any time in response to changes in the operating conditions such as changes in the heating furnace extraction order and changes in rolling time. The effect that high optimization can be realized is obtained.

【0080】この結果、材料抽出温度の確保、材料内偏
熱の防止、燃料原単位の低減、過加熱防止によるスケー
ルロス低減、加熱炉操炉要員の省力等を図ることが可能
となる。
As a result, it is possible to secure the material extraction temperature, prevent uneven heating in the material, reduce the fuel consumption rate, reduce scale loss by preventing overheating, and save labor of the furnace operating personnel.

【0081】また、請求項3の発明によれば、集中定数
系平板温度モデルとして、連続式加熱炉内の伝熱現象を
表現する非線形なモデル式を適用したので、鋼材温度変
化に対応した伝熱係数の変化を考慮することができ、よ
り高精度の最適化昇温目標値を算出することができると
いう効果が得られる。
According to the third aspect of the present invention, since a non-linear model equation expressing the heat transfer phenomenon in the continuous heating furnace is applied as the lumped constant system flat plate temperature model, the transmission corresponding to the temperature change of the steel material is applied. The effect that the change in the thermal coefficient can be taken into consideration and the more accurate optimized temperature increase target value can be calculated is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.

【図2】伝熱パラメータ演算手段の処理手順の一例を示
すフローチャートである。
FIG. 2 is a flowchart showing an example of a processing procedure of a heat transfer parameter calculation means.

【図3】ビームブランクの鋼材換算厚を算出する場合の
説明図である。
FIG. 3 is an explanatory diagram for calculating a steel material equivalent thickness of a beam blank.

【図4】ブルームの鋼材換算厚を算出する場合の説明図
である。
FIG. 4 is an explanatory diagram for calculating a converted steel material thickness of a bloom.

【図5】ビームブランクの上面側凹部の底部における熱
負荷補正係数を算出する場合の説明図である。
FIG. 5 is an explanatory diagram in the case of calculating a heat load correction coefficient at the bottom of the upper surface side recess of the beam blank.

【図6】ビームブランクの上面側凹部の傾斜部における
熱負荷補正係数を算出する場合の説明図である。
FIG. 6 is an explanatory diagram in the case of calculating a heat load correction coefficient in an inclined portion of a concave portion on the upper surface side of the beam blank.

【図7】ビームブランクの下面側凹部の底部における熱
負荷補正係数を算出する場合の説明図である。
FIG. 7 is an explanatory diagram in the case of calculating a heat load correction coefficient at the bottom of the lower surface side recess of the beam blank.

【図8】ビームブランクの下面側凹部の傾斜部における
熱負荷補正係数を算出する場合の説明図である。
FIG. 8 is an explanatory diagram in the case of calculating a heat load correction coefficient in the inclined portion of the concave portion on the lower surface side of the beam blank.

【図9】隣接鋼材の対向面における熱負荷補正係数を算
出する場合の説明図である。
FIG. 9 is an explanatory diagram in the case of calculating a heat load correction coefficient on the facing surface of an adjacent steel material.

【図10】最適昇熱目標演算手段の処理手順の一例を示
すフローチャートである。
FIG. 10 is a flowchart showing an example of a processing procedure of an optimum heat-up target calculation means.

【符号の説明】[Explanation of symbols]

1 連続式加熱炉 BB1 〜BB17 ビームブランク BM1 〜BM11 ブルーム 5 予熱帯 6 第1加熱帯 7 第2加熱帯 8 均熱帯 11 制御手段 12 伝熱パラメータ演算手段 13 最適昇熱目標演算手段 14 設定炉温演算手段 15 炉温制御装置1 Continuous heating furnace BB 1 to BB 17 Beam blank BM 1 to BM 11 Bloom 5 Pre-tropical zone 6 First heating zone 7 Second heating zone 8 Soaking zone 11 Control means 12 Heat transfer parameter calculation means 13 Optimal heat-up target calculation means 14 set furnace temperature calculation means 15 furnace temperature control device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の燃焼帯を有してビームブランク等
の凹凸形状を有する鋼材を連続的に加熱する連続式加熱
炉の燃焼制御方法において、鋼材の内部温度変化を表現
する鋼材温度分布モデルを前記鋼材の表面形状の形態係
数を考慮した熱負荷の境界条件で演算することにより、
凹凸形状を有する鋼材の内部温度を算出し、算出した鋼
材の内部温度に基づいて目標昇温パターンを設定するこ
とを特徴とする連続式加熱炉の燃焼制御方法。
1. A steel material temperature distribution model for expressing internal temperature change of a steel material in a combustion control method for a continuous heating furnace which continuously heats steel material having a plurality of combustion zones and having an uneven shape such as a beam blank. By calculating the boundary conditions of the heat load considering the form factor of the surface shape of the steel,
A combustion control method for a continuous heating furnace, comprising: calculating an internal temperature of a steel material having an uneven shape, and setting a target heating pattern based on the calculated internal temperature of the steel material.
【請求項2】 複数の燃焼帯を有してビームブランク等
の凹凸形状を有する鋼材を連続的に加熱する連続式加熱
炉の燃焼制御方法において、鋼材の内部温度変化を表現
する鋼材温度分布モデルを前記鋼材の表面形状の形態係
数を考慮した熱負荷の境界条件で演算することにより、
凹凸形状を有する鋼材の内部温度を算出し、当該鋼材の
断面内平均温度の昇温特性が、集中定数系と仮定した平
板の昇温特性と一致するものと仮定し、その当該集中定
数系平板温度モデルを用いて目標昇温パターンを設定す
るようにしたことを特徴とする連続式加熱炉の燃焼制御
方法。
2. A steel material temperature distribution model that represents an internal temperature change of a steel material in a combustion control method for a continuous heating furnace that continuously heats steel material having a plurality of combustion zones and having an uneven shape such as a beam blank. By calculating the boundary conditions of the heat load considering the form factor of the surface shape of the steel,
It is assumed that the internal temperature of the steel material having the uneven shape is calculated, and that the temperature rise characteristics of the average temperature in the cross section of the steel material match the temperature rise characteristics of the flat plate assumed to be the lumped constant system. A combustion control method for a continuous heating furnace, characterized in that a target heating pattern is set using a temperature model.
【請求項3】 前記集中定数系平板温度モデルは、炉温
をθg 、特定時間後代表位置鋼材温度をθo 、現在代表
位置鋼材温度をθi 、特定時間範囲をt、鋼材代表厚み
をD、総括熱吸収率をΦcg、ステファンボルツマン定数
をσ、比熱をCp 、比重をρとしたとき、加熱時間と炉
温と鋼材温度との関係を表す下記の関係式 【数1】 を使用することを特徴とする請求項2記載の連続式加熱
炉の燃焼制御方法。
3. The lumped constant flat plate temperature model includes a furnace temperature θg, a representative position steel material temperature after a specific time θo, a current representative position steel material temperature θi, a specific time range t, a steel material representative thickness D, and a summary. When the heat absorption rate is Φcg, the Stefan Boltzmann constant is σ, the specific heat is Cp, and the specific gravity is ρ, the following relational expression expressing the relationship between the heating time, the furnace temperature, and the steel material temperature is obtained. 3. The combustion control method for a continuous heating furnace according to claim 2, wherein:
JP10993496A 1996-04-30 1996-04-30 Combustion control method for continuous heating furnace Expired - Fee Related JP3799656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10993496A JP3799656B2 (en) 1996-04-30 1996-04-30 Combustion control method for continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10993496A JP3799656B2 (en) 1996-04-30 1996-04-30 Combustion control method for continuous heating furnace

Publications (2)

Publication Number Publication Date
JPH09296229A true JPH09296229A (en) 1997-11-18
JP3799656B2 JP3799656B2 (en) 2006-07-19

Family

ID=14522822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10993496A Expired - Fee Related JP3799656B2 (en) 1996-04-30 1996-04-30 Combustion control method for continuous heating furnace

Country Status (1)

Country Link
JP (1) JP3799656B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073126A (en) * 1998-08-31 2000-03-07 Yokogawa Electric Corp Method for controlling combustion in continuous type heating furnace
KR100706528B1 (en) * 2005-12-26 2007-04-12 주식회사 포스코 Method for predicting atmosphere temperature in heat treatment chamber
CN106868287A (en) * 2016-12-28 2017-06-20 武汉钢铁股份有限公司 The fired heat duty distribution control method of CSP sheet billet roller-bottom types tunnel heating furnace
CN109207712A (en) * 2018-11-02 2019-01-15 北京首钢股份有限公司 A kind of heating furnace level two furnace temperature setting method
CN114134310A (en) * 2020-09-03 2022-03-04 上海梅山钢铁股份有限公司 Steel burning method for forward movement of heat load

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073126A (en) * 1998-08-31 2000-03-07 Yokogawa Electric Corp Method for controlling combustion in continuous type heating furnace
KR100706528B1 (en) * 2005-12-26 2007-04-12 주식회사 포스코 Method for predicting atmosphere temperature in heat treatment chamber
CN106868287A (en) * 2016-12-28 2017-06-20 武汉钢铁股份有限公司 The fired heat duty distribution control method of CSP sheet billet roller-bottom types tunnel heating furnace
CN109207712A (en) * 2018-11-02 2019-01-15 北京首钢股份有限公司 A kind of heating furnace level two furnace temperature setting method
CN114134310A (en) * 2020-09-03 2022-03-04 上海梅山钢铁股份有限公司 Steel burning method for forward movement of heat load
CN114134310B (en) * 2020-09-03 2023-09-05 上海梅山钢铁股份有限公司 Steel burning method with forward heat load

Also Published As

Publication number Publication date
JP3799656B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
CN106636610B (en) A kind of double dimension walking beam furnace heating curve optimal setting methods based on time and furnace superintendent
CN100507027C (en) Method for dynamic setting and control of hot-roll heating furnace temperature
US4255133A (en) Method for controlling furnace temperature of multi-zone heating furnace
CN105018718B (en) Heating furnace process furnace temperature control method based on thermal load distribution
JPS5848011B2 (en) Furnace combustion control method
Yang et al. Optimal set values of zone modeling in the simulation of a walking beam type reheating furnace on the steady-state operating regime
Wong et al. Designing process controller for a continuous bread baking process based on CFD modelling
JPH09296229A (en) Method for controlling combustion of continuous heating furnace
CN106987704B (en) A kind of cold and hot process temperature control method for loading in mixture slab of pulse type heating furnace
JP3796808B2 (en) Combustion control method and apparatus for continuous heating furnace
CN101638717B (en) Method for determining master-slave control proportional factor of hot rolling heating furnace
JP4203275B2 (en) Combustion control method, combustion control apparatus, combustion control program and computer-readable recording medium for continuous steel heating furnace
CN105385843B (en) A kind of hot rolling slab method for heating and controlling based on the last temperature of section
Pedersen et al. On the reheat furnace control problem
JPS5822325A (en) Optimum control means for heating oven for bloom
Banerjee et al. A methodology to control direct-fired furnaces
CN101131572B (en) System for fast cooling temperature control
JP3436841B2 (en) Temperature control device for continuous heating furnace
JPH09316530A (en) Method for controlling combustion of continuous type heating furnace
JPH02156017A (en) Combustion control method for continuous type heating furnace
KR20200118531A (en) Apparatus and method of predicting enegry amount pattern inputting to heatng furnace, and computer readable medium
Kavak et al. The modeling and identification of walking beam type slab reheating furnace based on immersion and invariance disturbance estimation
Shinmura S. Tanifuji”, Y. Morooka", J. Kumayama”, K. Doi”, T. Kawasumi”
Kostúr Control system design for a walking beam furnace
JPH0327608B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Effective date: 20060417

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees