JPH05255762A - Method for controlling furnace temperature of continuous heating furnace - Google Patents

Method for controlling furnace temperature of continuous heating furnace

Info

Publication number
JPH05255762A
JPH05255762A JP5179792A JP5179792A JPH05255762A JP H05255762 A JPH05255762 A JP H05255762A JP 5179792 A JP5179792 A JP 5179792A JP 5179792 A JP5179792 A JP 5179792A JP H05255762 A JPH05255762 A JP H05255762A
Authority
JP
Japan
Prior art keywords
temperature
furnace
predicted
temp
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5179792A
Other languages
Japanese (ja)
Inventor
Shigemasa Nakagawa
繁政 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5179792A priority Critical patent/JPH05255762A/en
Publication of JPH05255762A publication Critical patent/JPH05255762A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Control Of Heat Treatment Processes (AREA)

Abstract

PURPOSE:To restrain skid mark quantity within a prescribed value by controlling a target ejecting temp. and a target soaking degree at the time of ejecting a material in a furnace temp. control of a continuous heating furnace. CONSTITUTION:(i) The present temp. of a material to be heated is found. (S1) (ii) A predicted ejecting time and the remaining stay time in each combustion zone in the continuous heating furnace are found. (S2) (iii) Based on these, a predicted ejecting temp., a predicted temp. difference between inner and outer parts, a predicted temp. difference between front and back surfaces and a predicted skid mark quantity at the time of ejecting are found. (S3) (iv) A relation among the furnace temp. at each combustion zone, the predicted ejecting temp., the predicted temp. difference between the inner and outer parts, the predicted temp. difference between front and back surfaces and the predicted skid mark quantity at the time of ejecting is found from a linear equation and also, an evaluation function for minimizing the heat loss of the furnace body due to exhaust gas is set, and by a linear programming, the set furnace temp. of each combustion zone is found. (S4) (v) The target ejecting temp., the target ejecting temp. difference between the inner and outer parts, the target temp. difference between the front and back surfaces and the target skid mark quantity at the time of ejection designated at each material to be heated are achieved. (S5)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、連続式加熱炉の炉温制
御方法に関する。さらに詳しくは、本発明は、目標抽出
温度および抽出時の目標均熱度の制御を行うことができ
る連続式加熱炉の炉温制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace temperature control method for a continuous heating furnace. More specifically, the present invention relates to a furnace temperature control method for a continuous heating furnace capable of controlling a target extraction temperature and a target soaking degree during extraction.

【0002】[0002]

【従来の技術】通常、連続式加熱炉は予熱帯、加熱帯お
よび均熱帯から構成される。この型の連続式加熱炉の主
目的は、例えばスラブ等の被加熱体を圧延するのに充分
な所定温度にまで加熱することであり、同時に圧延能力
を充分に発揮できるように、すなわち圧延ラインを停止
させることなく被加熱体を圧延機へ供給して操業するこ
とである。
2. Description of the Related Art Usually, a continuous heating furnace is composed of a pretropical zone, a heating zone and a soaking zone. The main purpose of this type of continuous heating furnace is to heat an object to be heated such as a slab to a predetermined temperature sufficient for rolling, and at the same time, so that the rolling ability can be sufficiently exhibited, that is, the rolling line. That is, the object to be heated is supplied to the rolling mill for operation without stopping.

【0003】近年においては、燃費の高騰に対応して燃
料原単位を極力低減するために、大規模な連続式加熱炉
では計算機を用いた燃焼制御が行われている。計算機を
用いた連続式加熱炉の燃焼制御における各被加熱体の目
標抽出温度は、粗圧延および仕上圧延におけるパススケ
ジュールと伝熱特性とを考慮して決定される。なお、抽
出時の目標均熱度の決定は、被加熱体の強度、被加熱体
の寸法さらには圧延機の能力等を考慮し、成品の板厚公
差等によって決定される。
In recent years, in order to reduce fuel consumption as much as possible in response to soaring fuel consumption, combustion control using a computer is performed in a large-scale continuous heating furnace. The target extraction temperature of each object to be heated in combustion control of a continuous heating furnace using a computer is determined in consideration of the pass schedule and heat transfer characteristics in rough rolling and finish rolling. The target soaking degree at the time of extraction is determined by the plate thickness tolerance of the product in consideration of the strength of the object to be heated, the size of the object to be heated, the ability of the rolling mill, and the like.

【0004】例えば、特開昭62−174325号公報には、被
加熱材の現在の平均温度および一定時間経過後の目標平
均温度を演算し、この平均温度および目標平均温度に基
づいて目標平均温度に焼き上げるのに必要な入熱量を演
算し、被加熱材の目標上下表面温度差および演算した入
熱量に基づいて加熱炉の上部炉温基準および下部炉温基
準を演算し、これらの炉温基準との偏差が0となるよう
に前記加熱炉の上部炉温および下部炉温を制御する炉温
制御方法が提案されている。
For example, in Japanese Unexamined Patent Publication No. 62-174325, the current average temperature of a material to be heated and a target average temperature after a lapse of a fixed time are calculated, and the target average temperature is calculated based on the average temperature and the target average temperature. Calculate the heat input required to bake, and calculate the upper furnace temperature standard and lower furnace temperature standard of the heating furnace based on the target upper and lower surface temperature difference of the material to be heated and the calculated heat input amount. A furnace temperature control method has been proposed in which the upper furnace temperature and the lower furnace temperature of the heating furnace are controlled so that the deviation between and becomes zero.

【0005】特開昭63−149319号公報には、被加熱材毎
の平均温度が各制御帯出口目標温度に確保されるととも
に、各被加熱材料の上部及び下部の表面温度が各被加熱
材の上部及び下部表面制限温度以下に保たれるように、
連続式加熱炉の上部炉温および下部炉温を制御する技術
が提案されている。
In Japanese Patent Laid-Open No. 63-149319, the average temperature of each material to be heated is secured at each control zone outlet target temperature, and the surface temperature of the upper and lower parts of each material to be heated is To keep below the upper and lower surface temperature limits of
Techniques for controlling the upper furnace temperature and the lower furnace temperature of a continuous heating furnace have been proposed.

【0006】さらに、特開平3−138319号公報には、加
熱炉内に連続的に装入される各種被加熱材の残在炉時間
及び現在炉温により加熱炉に存在する被加熱材の現在平
均温度及び加熱炉抽出時の予想平均抽出温度を算出し、
これらの値に基づいて被加熱材の抽出時に各被加熱材が
目標抽出温度を達成し、かつ熱損失を最小にする炉温設
定値を、線形計画法を用いて各被加熱材毎に算出し、こ
れらの炉温設定値を各被加熱材の予想抽出温度と目標抽
出温度との偏差の総和が零になるように平滑化して加熱
炉に設定する連続式加熱炉の炉温制御方法において、平
滑化した炉温設定値を現在炉温と仮定して各被加熱材の
予想抽出温度を算出し、予想抽出温度と目標抽出温度と
を比較して予想抽出温度が目標抽出温度の許容下限値を
下回る被加熱材が検出された場合、少なくとも許容下限
値に達するように炉温設定値を修正する連続式加熱炉の
炉温制御方法が提案されている。
Further, Japanese Patent Application Laid-Open No. 3-138319 discloses that the present heating material present in the heating furnace depends on the remaining furnace time of various materials to be continuously charged into the heating furnace and the present furnace temperature. Calculate the average temperature and the expected average extraction temperature during heating furnace extraction,
Based on these values, calculate the furnace temperature setting value for each heated material that achieves the target extraction temperature and minimizes heat loss when extracting the heated material for each heated material using linear programming. However, in the furnace temperature control method of the continuous heating furnace, these furnace temperature set values are smoothed and set in the heating furnace so that the sum of the deviations between the predicted extraction temperature of each heated material and the target extraction temperature becomes zero. Assuming that the smoothed furnace temperature set value is the current furnace temperature, the predicted extraction temperature of each heated material is calculated, and the predicted extraction temperature and the target extraction temperature are compared, and the predicted extraction temperature is the allowable lower limit of the target extraction temperature. There has been proposed a furnace temperature control method for a continuous heating furnace that corrects the furnace temperature set value so as to reach at least an allowable lower limit value when a material to be heated below the value is detected.

【0007】[0007]

【発明が解決しようとする課題】特開昭62−174325号公
報により提案された技術または特開昭63−149319号公報
により提案された技術における目標均熱度は、表裏温度
差あるいは内外温度差として定義され、炉温制御はこの
2つの指標が炉内の各被加熱材全てについて満足される
ように、各被加熱材の残在炉時間より抽出時の被加熱材
温度を予想して各燃焼帯の炉温設定値を決定するもので
ある。したがって、これらの技術では、鋼片の長手方向
の温度偏差を小さくすることができないためにスキッド
マークが発生し、仕上圧延時に板厚・板幅変動が発生す
る主要因となって操業上問題となる。
The target soaking degree in the technology proposed by Japanese Patent Laid-Open No. 62-174325 or the technology proposed by Japanese Patent Laid-Open No. 63-149319 is expressed as a difference between front and back temperatures or a difference between inside and outside temperatures. Defined, the furnace temperature control predicts the temperature of the heated material at the time of extraction from the remaining furnace time of each heated material so that these two indicators are satisfied for all heated materials in the furnace. The furnace temperature set value of the zone is determined. Therefore, in these technologies, since the temperature deviation in the longitudinal direction of the steel slab cannot be reduced, skid marks are generated, which is a main factor causing variations in strip thickness and strip width during finish rolling, which causes operational problems. Become.

【0008】特開平3−138319号公報により提案された
技術では、内外温度差またはスキッドマーク量を均熱度
として用いているが、これらを同時に制御することは考
えられておらず、さらに表裏温度差を制御することはで
きないため、圧延材仕上通板時に被圧延材に形状不良が
生じ操業トラブルを発生しやすくなってしまう。
In the technique proposed in Japanese Patent Laid-Open No. 3-138319, the inside / outside temperature difference or the skid mark amount is used as the soaking degree, but it is not considered to control these at the same time. Since it is not possible to control the rolling, it is easy to cause operational troubles due to the defective shape of the material to be rolled during the finishing of the rolled material.

【0009】本発明は、かかる問題を解消するためにな
されたものであり、被加熱材の板厚方向、長手方向の温
度偏差をともに均熱度 (評価指標) とし、当該材の板厚
方向および長手方向の温度偏差をともに抑制することが
できる連続式加熱炉の炉温制御方法を提供することにあ
る。
The present invention has been made in order to solve such a problem, and the temperature deviations in the plate thickness direction and the longitudinal direction of the material to be heated are both the soaking degree (evaluation index), and It is an object of the present invention to provide a furnace temperature control method for a continuous heating furnace capable of suppressing both temperature deviations in the longitudinal direction.

【0010】[0010]

【課題を解決するための手段】ここに、本発明の要旨と
するところは、加熱炉に被加熱材を連続的に装入して目
標温度に加熱する連続式加熱炉の炉温制御方法であっ
て、(i) 被加熱材の現在温度を求め、(ii)予想抽出時刻
および前記連続式加熱炉の各燃焼帯での残在帯時間を求
め、(iii) これらに基づいて、予想抽出温度、予想内外
温度差、予想表裏温度差および予想抽出時スキッドマー
ク量を求め、(iv)各燃焼帯の炉温と、予想抽出温度、予
想内外温度差、予想表裏温度差および予想抽出時スキッ
ドマーク量との関係を線形式により求めるとともに、排
ガスによる炉体熱損失を最小にする評価関数を設定し、
線形計画法により、各燃焼帯の設定炉温を求めて、(v)
各被加熱材毎に指定される目標抽出温度、目標内外温度
差、目標表裏温度差および目標抽出時スキッドマーク量
を達成することを特徴とする連続式加熱炉の炉温制御方
法である。
The gist of the present invention is to provide a furnace temperature control method for a continuous heating furnace in which a material to be heated is continuously charged into a heating furnace and heated to a target temperature. Therefore, (i) the current temperature of the material to be heated is obtained, (ii) the estimated extraction time and the remaining zone time in each combustion zone of the continuous heating furnace are obtained, and (iii) the estimated extraction based on these Calculate the temperature, the predicted inside and outside temperature difference, the predicted front and back temperature difference, and the predicted skid mark during extraction, and (iv) the furnace temperature of each combustion zone, and the predicted extraction temperature, the predicted inside and outside temperature difference, the predicted front and back temperature difference, and the predicted skid during extraction. The relationship with the mark amount is obtained in a linear form, and an evaluation function that minimizes the furnace heat loss due to exhaust gas is set,
Obtain the set furnace temperature of each combustion zone by linear programming, and (v)
A furnace temperature control method for a continuous heating furnace, wherein a target extraction temperature, a target inside / outside temperature difference, a target front / back temperature difference, and a target skid mark amount at the time of extraction are achieved for each material to be heated.

【0011】[0011]

【作用】以下、本発明を添付図面を参照しながら作用効
果とともに詳述する。図1は、本発明にかかる連続式加
熱炉の炉温制御方法の制御フローチャートである。以
下、本発明をS1工程〜S5工程に分けて説明する。
The present invention will be described in detail below with reference to the accompanying drawings together with its function and effect. FIG. 1 is a control flowchart of a furnace temperature control method for a continuous heating furnace according to the present invention. Hereinafter, the present invention will be described by dividing it into steps S1 to S5.

【0012】〔S1工程〕被加熱材の現在温度を求め
る。被加熱材の現在温度は加熱炉装入時の装入温度を初
期値とし、例えば3分、2分または1.5 分間程度の一定
周期毎に、二次元の非定常熱伝導方程式をオンラインで
差分法により計算することにより求める。例えば、二次
元の非定常熱伝導方程式
[Step S1] The present temperature of the material to be heated is determined. For the current temperature of the material to be heated, the charging temperature at the time of charging the heating furnace is used as the initial value. For example, a two-dimensional unsteady heat conduction equation is calculated online by the difference method at regular intervals of about 3 minutes, 2 minutes or 1.5 minutes. Calculated by For example, the two-dimensional unsteady heat conduction equation

【0013】[0013]

【数1】 [Equation 1]

【0014】ただし、ρ:密度 λ:熱伝導率 C:比熱 θ:温度 x:長手方向の空間座標 y:厚さ方向の空間座標 t:時刻 に基づいて、差分計算However, ρ: density λ: thermal conductivity C: specific heat θ: temperature x: space coordinate in the longitudinal direction y: space coordinate in the thickness direction t: difference calculation based on time

【0015】[0015]

【数2】 [Equation 2]

【0016】で求めることを例示できる(図2参照)。
なお、境界条件は、被加熱材の長手方向を (m−1)分
割するとともに厚さ方向を(n−1)分割し、以下のよ
うに熱流束を与えることにより得られる。ここで、熱流
束qu(i)(上表面) 、ql(i)(下表面) 、qs(j)(側面) はそ
れぞれ次のように与えられる。
It can be illustrated by way of example (see FIG. 2).
The boundary condition is obtained by dividing the longitudinal direction of the material to be heated into (m-1) and the thickness direction into (n-1), and applying a heat flux as follows. Here, heat flux qu (i) (upper surface), ql (i) (lower surface), and qs (j) (side surface) are given as follows, respectively.

【0017】[0017]

【数3】 [Equation 3]

【0018】〔S2工程〕被加熱材の予想抽出時刻と各
燃焼帯での残在帯時間とを求める。すなわち、加熱炉内
の各被加熱材毎に与えられている抽出ピッチより被加熱
材の予想抽出時刻を求めるとともに、被加熱材が予想抽
出ピッチで操業された場合、加熱炉の各燃焼帯を通過す
る予想時刻より、各燃焼帯での残在帯時間を求める。
[Step S2] The expected extraction time of the material to be heated and the remaining zone time in each combustion zone are obtained. That is, the expected extraction time of the material to be heated is obtained from the extraction pitch given for each material to be heated in the heating furnace, and when the material to be heated is operated at the expected extraction pitch, each combustion zone of the heating furnace is The remaining zone time in each combustion zone is calculated from the estimated time of passage.

【0019】〔S3工程〕抽出時の予想抽出温度、予想
内外温度差、予想表裏温度差および予想抽出時スキッド
マーク量を求める。すなわち、被加熱材の現在温度を初
期値として、各燃焼帯での炉温を現在温度のままと仮定
し、各燃焼帯での残在帯時間を与えることにより、被加
熱材の抽出時における内部温度分布を予想する。これよ
り、予想抽出温度、予想内外温度差、予想表裏温度差お
よび予想抽出時スキッドマーク量を求める。
[Step S3] An expected extraction temperature at the time of extraction, an expected inside / outside temperature difference, an expected front / back temperature difference, and an expected skid mark amount at the time of extraction are obtained. That is, assuming that the current temperature of the material to be heated is the initial value, the furnace temperature in each combustion zone is assumed to remain at the current temperature, and the remaining zone time in each combustion zone is given to determine the time of extraction of the material to be heated. Predict the internal temperature distribution. From this, the predicted extraction temperature, the predicted inside / outside temperature difference, the predicted front / back temperature difference, and the predicted skid mark amount during extraction are obtained.

【0020】ここで、予想内外温度差とは被加熱材の上
表面と厚さ方向中央部温度との差を意味し、内部温度分
布とは温度計算対象領域の温度分布を意味し、例えば図
3に示すような温度分布である。また、予想内外温度
差、予想表裏温度差および予想抽出時スキッドマーク量
は、それぞれ
Here, the predicted internal / external temperature difference means the difference between the upper surface of the material to be heated and the temperature in the central portion in the thickness direction, and the internal temperature distribution means the temperature distribution in the temperature calculation target region. The temperature distribution is as shown in 3. In addition, the predicted inside and outside temperature difference, the predicted front and back temperature difference, and the predicted skid mark amount during extraction are

【0021】[0021]

【数4】 [Equation 4]

【0022】[0022]

【数5】 [Equation 5]

【0023】[0023]

【数6】 [Equation 6]

【0024】と表すことができる。 〔S4工程〕各燃焼帯の炉温と、予想抽出温度、予想内
外温度差、予想表裏温度差および予想抽出時スキッドマ
ーク量との関係を線形式により求めるとともに、排ガス
による炉体熱損失を最小にする評価関数を設定し、線形
計画法により、各燃焼帯の設定炉温を求める。各線形式
としては、例えば
It can be expressed as [S4 step] The relationship between the furnace temperature of each combustion zone, the expected extraction temperature, the predicted internal and external temperature difference, the predicted front and back temperature difference, and the predicted skid mark amount during extraction is determined in a linear form, and the furnace heat loss due to exhaust gas is minimized. Set an evaluation function for and set the furnace temperature for each combustion zone by linear programming. For each line format, for example

【0025】[0025]

【数7】 [Equation 7]

【0026】[0026]

【数8】 [Equation 8]

【0027】[0027]

【数9】 [Equation 9]

【0028】を例示できる。すなわち、この工程では、
各燃焼帯の影響係数を求め、排ガスによる熱損失が最小
となるように線形計画法によって燃焼帯の設定炉温を求
める。具体的には、各燃焼帯の炉温を現在炉温より微小
量だけ変動させ、S3工程にて求めた諸量を再計算す
る。これにより、各燃焼帯の炉温の影響係数を (諸量変
動量) / (炉温変動量) として求める。各変数の制約条
件式を示す不等式が
Can be exemplified. That is, in this process,
The influence coefficient of each combustion zone is calculated, and the set furnace temperature of the combustion zone is calculated by linear programming so that the heat loss due to exhaust gas is minimized. Specifically, the furnace temperature of each combustion zone is changed from the present furnace temperature by a small amount, and the various amounts obtained in the step S3 are recalculated. From this, the coefficient of influence of the furnace temperature in each combustion zone is calculated as (variation of various amounts) / (reactor temperature variation). The inequality that shows the constraint expression of each variable is

【0029】[0029]

【数10】 [Equation 10]

【0030】である。図4には、炉温と時間との関係の
一例をグラフで示すが、この際の影響係数は、
It is FIG. 4 is a graph showing an example of the relationship between the furnace temperature and time. The influence coefficient at this time is

【0031】[0031]

【数11】 [Equation 11]

【0032】により与えられる。さらに、評価関数とし
て、各燃焼帯の炉温変更量の一次式、例えば
Is given by Further, as an evaluation function, a linear expression of the furnace temperature change amount of each combustion zone, for example,

【0033】[0033]

【数12】 [Equation 12]

【0034】となる変数Variable

【0035】[0035]

【数13】 [Equation 13]

【0036】を決定し、当該被加熱材に対する最適設定
炉温を
Then, the optimum set furnace temperature for the material to be heated is determined.

【0037】[0037]

【数14】 [Equation 14]

【0038】として求める。排ガスによる熱損失を最小
とするため、炉尻側の重みを極力大きくする。このと
き、炉温変更量は下記、線形計画問題の解として求ま
る。
Is calculated as In order to minimize the heat loss due to exhaust gas, the weight on the bottom side of the furnace is maximized. At this time, the furnace temperature change amount is obtained as a solution of the following linear programming problem.

【0039】AX≦b J=CX → 最小化 ただし、X:炉温変更量を表わすベクトル A:各帯炉温影響係数からなる行列 b:各種諸量の制約より定まるベクトル C:炉温変更量が評価関数Jに与える効果を表わすベク
トル である。
AX ≦ b J = CX → Minimization, where X: vector representing the amount of change in furnace temperature A: matrix of each zone temperature influence coefficient b: vector determined by constraints of various amounts C: amount of change in furnace temperature Is a vector representing the effect given by on the evaluation function J.

【0040】なお、スキッドマーク量の抑制のみを考え
れば、加熱炉の前段から被加熱材を焚き込めばよいが、
燃料原単位的に不利となる。加熱炉前段の炉温が高く設
定されると排ガス温度が上昇し、炉体熱損失が大きくな
り燃料原単位が悪化するからである。そこで、本発明で
は、排ガスによる炉体熱損失を低減できる炉温設定値を
求めるために評価関数を用いる。
If only the amount of skid marks is considered, it is sufficient to heat the material to be heated from the front stage of the heating furnace.
It is disadvantageous in terms of fuel consumption. This is because if the furnace temperature in the first stage of the heating furnace is set high, the exhaust gas temperature rises, the heat loss in the furnace body increases, and the fuel consumption rate deteriorates. Therefore, in the present invention, the evaluation function is used to obtain the furnace temperature set value that can reduce the heat loss of the furnace body due to the exhaust gas.

【0041】〔S5〕炉内の各鋼片毎に求まった最適炉
温を、各鋼片ごとに重みつけて平滑処理することによ
り、最終的な設定炉温とする。平滑処理としては、例え
ば重み付き平均を取ればよい。
[S5] The optimum furnace temperature found for each steel piece in the furnace is weighted for each steel piece and smoothed to obtain the final set furnace temperature. As the smoothing process, for example, a weighted average may be taken.

【0042】このように本発明では、線形計画問題の定
式化の過程において、加熱炉抽出時の平均温度、内外温
度差、表裏温度差、抽出時スキッドマーク量等の諸量に
関する制約をベクトルb中に含んでいるため、各被加熱
材毎に得られる設定炉温は、これらの諸量に関して、与
えられた制約条件を満足し、かつ燃料原単位の観点から
も最適なものとなっており、目標温度と目標均熱度との
2つの指標しか考慮していなかった公知の炉温制御方式
に比較すると、板厚、長手方向の温度偏差を与えられた
所定値以下に抑制することができるとともに、燃料原単
位の向上が図れる等の特徴を有する。さらに、本発明を
他の実施例を参照しながら説明するが、これは本発明の
例示であり、これにより本発明が限定されるものではな
い。
As described above, according to the present invention, in the process of formulation of the linear programming problem, the constraints relating to various values such as the average temperature at the time of extracting the heating furnace, the inside / outside temperature difference, the front / back temperature difference, and the skid mark amount at the time of extraction are expressed by the vector b. Since it is included in the above, the set furnace temperature obtained for each material to be heated satisfies the given constraint conditions regarding these various quantities, and is optimal from the viewpoint of fuel consumption rate. In comparison with a known furnace temperature control method that considers only two indices, the target temperature and the target soaking degree, it is possible to suppress the plate thickness and the temperature deviation in the longitudinal direction to a given value or less. It has features such as improvement of fuel consumption rate. Further, the present invention will be described with reference to other examples, but this is an example of the present invention and the present invention is not limited thereto.

【0043】[0043]

【実施例】前述の本発明の説明においては、炉内の被加
熱材の温度計算モデルを二次元として行っているが、本
実施例では温度計算モデルを三次元で行い、抽出時の温
度管理指標を三次元的に拡張して行った。図5および図
7は、ともに従来の制御方式によるスキッドマーク量の
発生状況を示す略式説明図であるが、この従来の制御方
法では、 スラブ平均温度≧目標抽出温度 スラブ内外温度差≦目標内外温度差 しか満足されない。したがって、この方法では、表裏温
度差および抽出時スキッドマーク量を制御することがで
きない。
[Embodiment] In the above description of the present invention, the temperature calculation model of the material to be heated in the furnace is two-dimensional, but in this embodiment, the temperature calculation model is three-dimensional and the temperature control during extraction is performed. The index was expanded three-dimensionally. FIG. 5 and FIG. 7 are both schematic explanatory views showing the generation state of the skid mark amount by the conventional control method. In this conventional control method, the slab average temperature ≧ the target extraction temperature slab inside / outside temperature difference ≦ the target inside / outside temperature Only the difference is satisfied. Therefore, this method cannot control the front-back temperature difference and the skid mark amount during extraction.

【0044】図6および図8は、ともに本発明にかかる
炉温制御方式によるスキッドマーク量の発生状況を示す
略式説明図であるが、本発明によれば、 スラブ平均温度≧目標抽出温度 スラブ内外温度差≦目標内外温度差 スラブ表裏温度差≦目標表裏温度差 スラブスキッドマーク量≦目標スキッドマーク量 が全て満足される。なお、本発明では、さらに、例えば
抽出時の被加熱材の幅方向温度差を取り入れることも考
えられる。
FIG. 6 and FIG. 8 are both schematic explanatory views showing the generation state of the skid mark amount by the furnace temperature control system according to the present invention. According to the present invention, slab average temperature ≧ target extraction temperature slab inside / outside Temperature difference ≦ Target inside / outside temperature difference Slab front / back temperature difference ≦ Target front / back temperature difference Slab Skid mark amount ≦ Target skid mark amount are all satisfied. Note that, in the present invention, it is also conceivable to incorporate the temperature difference in the width direction of the material to be heated during extraction, for example.

【0045】[0045]

【発明の効果】以上詳述したように、本発明によれば、
被加熱材が在炉している期間に、その平均温度を目標温
度以上に確保でき、且つ、内外温度差、表裏温度差、ス
キッドマーク量を所定の値以下に維持できるという効果
がある。かかる効果を有する本発明の意義は極めて著し
い。
As described in detail above, according to the present invention,
While the material to be heated is in the furnace, there is an effect that the average temperature can be secured above the target temperature and the inside and outside temperature difference, the front and back temperature difference, and the skid mark amount can be maintained below a predetermined value. The significance of the present invention having such effects is extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる連続式加熱炉の炉温制御方法の
制御フローチャートである。
FIG. 1 is a control flowchart of a furnace temperature control method for a continuous heating furnace according to the present invention.

【図2】スラブ内の座標系を示す説明図である。FIG. 2 is an explanatory diagram showing a coordinate system in a slab.

【図3】内部温度分布の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of an internal temperature distribution.

【図4】炉温と時間との関係の一例を示すグラフであ
る。
FIG. 4 is a graph showing an example of the relationship between furnace temperature and time.

【図5】従来の制御方式によるスキッドマークの発生状
況を示す略式説明図である。
FIG. 5 is a schematic explanatory view showing a situation of generation of skid marks by a conventional control method.

【図6】本発明にかかる炉温制御方式によるスキッドマ
ークの発生状況を示す略式説明図である。
FIG. 6 is a schematic explanatory view showing a situation of generation of skid marks by the furnace temperature control system according to the present invention.

【図7】従来の制御方式によるスキッドマークの発生状
況を示す略式説明図である。
FIG. 7 is a schematic explanatory view showing a situation of generation of skid marks by a conventional control method.

【図8】本発明にかかる炉温制御方式によるスキッドマ
ークの発生状況を示す略式説明図である。
FIG. 8 is a schematic explanatory view showing a situation of generation of skid marks by the furnace temperature control method according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加熱炉に被加熱材を連続的に装入して目
標温度に加熱する連続式加熱炉の炉温制御方法であっ
て、(i) 被加熱材の現在温度を求め、(ii)予想抽出時刻
および前記連続式加熱炉の各燃焼帯での残在帯時間を求
め、(iii) これらに基づいて、予想抽出温度、予想内外
温度差、予想表裏温度差および予想抽出時スキッドマー
ク量を求め、(iv)各燃焼帯の炉温と、予想抽出温度、予
想内外温度差、予想表裏温度差および予想抽出時スキッ
ドマーク量との関係を線形式により求めるとともに、排
ガスによる炉体熱損失を最小にする評価関数を設定し、
線形計画法により、各燃焼帯の設定炉温を求めて、(v)
各被加熱材毎に指定される目標抽出温度、目標内外温度
差、目標表裏温度差および目標抽出時スキッドマーク量
を達成することを特徴とする連続式加熱炉の炉温制御方
法。
1. A furnace temperature control method for a continuous heating furnace in which a material to be heated is continuously charged into a heating furnace to heat it to a target temperature, comprising: (i) determining a current temperature of the material to be heated; ii) Obtain the estimated extraction time and the remaining zone time in each combustion zone of the continuous heating furnace, and (iii) based on these, the estimated extraction temperature, the estimated internal and external temperature difference, the estimated front and back temperature difference, and the estimated extraction skid. The mark amount is calculated, and (iv) the relationship between the furnace temperature in each combustion zone and the predicted extraction temperature, the predicted internal / external temperature difference, the predicted front / back temperature difference, and the predicted skid mark amount during extraction is calculated in a linear format, and the furnace body caused by the exhaust gas Set the evaluation function that minimizes heat loss,
Obtain the set furnace temperature of each combustion zone by linear programming, and (v)
A furnace temperature control method for a continuous heating furnace, wherein a target extraction temperature, a target inside / outside temperature difference, a target front / back temperature difference, and a target skid mark amount during extraction are achieved for each material to be heated.
JP5179792A 1992-03-10 1992-03-10 Method for controlling furnace temperature of continuous heating furnace Pending JPH05255762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5179792A JPH05255762A (en) 1992-03-10 1992-03-10 Method for controlling furnace temperature of continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5179792A JPH05255762A (en) 1992-03-10 1992-03-10 Method for controlling furnace temperature of continuous heating furnace

Publications (1)

Publication Number Publication Date
JPH05255762A true JPH05255762A (en) 1993-10-05

Family

ID=12896926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5179792A Pending JPH05255762A (en) 1992-03-10 1992-03-10 Method for controlling furnace temperature of continuous heating furnace

Country Status (1)

Country Link
JP (1) JPH05255762A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867918A (en) * 1994-06-20 1996-03-12 Kobe Steel Ltd Method for deciding furnace temperature in continuous type heating furnace
JP2006274421A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Combustion control method of continuous heating furnace
JP2013194311A (en) * 2012-03-22 2013-09-30 Nippon Steel & Sumitomo Metal Corp Method for controlling furnace temperature in continuous-type heating furnace, and method for producing steel material
JP2015193917A (en) * 2014-03-28 2015-11-05 Jfeスチール株式会社 Refining high tension thick steel and production method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867918A (en) * 1994-06-20 1996-03-12 Kobe Steel Ltd Method for deciding furnace temperature in continuous type heating furnace
JP2006274421A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Combustion control method of continuous heating furnace
JP2013194311A (en) * 2012-03-22 2013-09-30 Nippon Steel & Sumitomo Metal Corp Method for controlling furnace temperature in continuous-type heating furnace, and method for producing steel material
JP2015193917A (en) * 2014-03-28 2015-11-05 Jfeスチール株式会社 Refining high tension thick steel and production method thereof

Similar Documents

Publication Publication Date Title
CN106636610B (en) A kind of double dimension walking beam furnace heating curve optimal setting methods based on time and furnace superintendent
JPS5848011B2 (en) Furnace combustion control method
JPH05255762A (en) Method for controlling furnace temperature of continuous heating furnace
JP3561401B2 (en) State estimation method for manufacturing process
CN112139261B (en) Target tapping temperature prediction control method for hot rolling heating furnace
JP2809925B2 (en) Sheet temperature control method for continuous annealing furnace
JPH1088236A (en) Apparatus for controlling heating furnace
JPS6051535B2 (en) Optimal control device for billet heating furnace
Andreev et al. Evaluation of constraints influence on optimal control of billet heating before rolling
JPS61261433A (en) Method for controlling temperature of heating furnace
JPH0160530B2 (en)
JP2581832B2 (en) Temperature control method for continuous heating furnace
JP2607016B2 (en) Hot rolled steel sheet manufacturing method
JP3796808B2 (en) Combustion control method and apparatus for continuous heating furnace
JP3982042B2 (en) Combustion control method for continuous heating furnace
JP3297741B2 (en) Furnace temperature control method for continuous heating furnace
Cook et al. Algorithms for on-line computer control of steel ingot processing
JP2001269702A (en) Method for estimating temperature of hot steel
JPH0377851B2 (en)
JPH03140415A (en) Method for determining material heating-up curve in heating furnace
JPS6033169B2 (en) Heating furnace control device
JPH076001B2 (en) Furnace temperature setting device for continuous heating furnace
JPS5893818A (en) Optimum controller for ingot heating furnace
Lally et al. Prediction of optimal operating parameters for continuous casting of billets
JPH09209044A (en) Operation of continuous type steel cast slab heating furnace

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030107