JP2006274421A - Combustion control method of continuous heating furnace - Google Patents

Combustion control method of continuous heating furnace Download PDF

Info

Publication number
JP2006274421A
JP2006274421A JP2005099122A JP2005099122A JP2006274421A JP 2006274421 A JP2006274421 A JP 2006274421A JP 2005099122 A JP2005099122 A JP 2005099122A JP 2005099122 A JP2005099122 A JP 2005099122A JP 2006274421 A JP2006274421 A JP 2006274421A
Authority
JP
Japan
Prior art keywords
furnace
temperature
rolled
continuous heating
combustion control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005099122A
Other languages
Japanese (ja)
Other versions
JP4815837B2 (en
Inventor
Yoshitada Kita
由忠 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005099122A priority Critical patent/JP4815837B2/en
Publication of JP2006274421A publication Critical patent/JP2006274421A/en
Application granted granted Critical
Publication of JP4815837B2 publication Critical patent/JP4815837B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the combustion control method of a continuous heating furnace adaptable to the change of an operational mode of a hot rolling equipment. <P>SOLUTION: In the combustion control method of the continuous heating furnace, firstly, the temperature rise of a work to be rolled in a soaking zone is determined in accordance with the operational mode of hot rolling equipment. Secondly, the furnace temperature in the soaking zone is determined by the determined temperature rise of the work in the soaking zone and the in-furnace time of the work. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炉内の被圧延材を装入側から抽出側へ順次搬送しつつ、加熱帯で昇温量だけ加熱し、次いで均熱帯で昇温量だけ均熱する連続式加熱炉の燃焼制御方法に関する。   The present invention is a combustion in a continuous heating furnace in which the material to be rolled in the furnace is sequentially conveyed from the charging side to the extraction side, heated in a heating zone by a heating amount, and then in a soaking zone, soaking by a heating amount. It relates to a control method.

熱間圧延設備の圧延機に加熱した被圧延材を連続して供給するため、加熱帯と均熱帯を有する連続式加熱炉が一般に用いられている。かかる連続式加熱炉では、燃焼量を制御しつつ燃料を燃焼させて、順次搬送される被圧延材を、加熱帯で昇温量だけ加熱し、次いで均熱帯で昇温量だけ均熱し、被圧延材の温度を装入温度から抽出目標温度に上昇させる連続式加熱炉の燃焼制御を実施している。   In order to continuously supply a heated material to be rolled to a rolling mill of a hot rolling facility, a continuous heating furnace having a heating zone and a soaking zone is generally used. In such a continuous heating furnace, fuel is burned while controlling the amount of combustion, and the materials to be sequentially conveyed are heated in the heating zone by the temperature rise amount, and then in the soaking zone, the temperature rises by the temperature rise amount. Combustion control is performed in a continuous heating furnace that raises the temperature of the rolled material from the charging temperature to the extraction target temperature.

近年、加熱能力が高く、表面品質に優れた熱延鋼板を製造できる炉としてウォーキングビーム装置を具備した連続式加熱炉が熱間圧延ラインに設置されている(特許文献1)。 特許文献1に記載の連続式加熱炉は、図5に示されるように、ウォーキングビーム装置が鋼片Sの搬送方向に少なくとも2分割以上に分割され、それぞれ独立に駆動することのできる駆動機構と、ウォーキングビーム2間に鋼片Sを移載する移載装置3を炉体1に具備してなる。なお、図5中、4は、燃料の流量から各帯の炉温を計算する温度演算装置を示す。また5は、装入ピッチ、抽出ピッチ、鋼片Sの温度および炉温等の情報から各ウォーキングビーム2上の鋼片Sの間隔を決定する間隔演算装置、6は各ウォーキングビーム2の移動量を測定する移動量検出器、7は各ウォーキングビーム2の移動量からその上の鋼片Sの位置を求めるトラッキング装置、9は移載装置3の位置を制御する移載位置制御装置をそれぞれ示す。   In recent years, a continuous heating furnace equipped with a walking beam apparatus has been installed in a hot rolling line as a furnace capable of producing a hot-rolled steel sheet having high heating capacity and excellent surface quality (Patent Document 1). As shown in FIG. 5, the continuous heating furnace described in Patent Document 1 includes a driving mechanism in which the walking beam device is divided into at least two parts in the conveying direction of the steel piece S and can be driven independently. The furnace body 1 includes a transfer device 3 for transferring the steel piece S between the walking beams 2. In FIG. 5, reference numeral 4 denotes a temperature calculation device for calculating the furnace temperature of each zone from the fuel flow rate. Further, 5 is an interval calculation device that determines the interval of the steel slabs S on each walking beam 2 from information such as the charging pitch, the extraction pitch, the temperature of the steel slab S and the furnace temperature, and 6 is the amount of movement of each walking beam 2. 7 is a tracking device for determining the position of the steel piece S on the basis of the moving amount of each walking beam 2, and 9 is a transfer position control device for controlling the position of the transfer device 3. .

この連続式加熱炉には、装入扉3Aに近接して鋼片Sの炉内への装入ピッチを計測する装入検出器11と装入スラブの温度を検出する温度計13が設置され、抽出扉3Bに近接して抽出ピッチを計測する抽出検出器12が設置されている。
この鋼片を加熱する連続式加熱炉では、鋼片Sの加熱精度を向上させ、また熱片装入等に対しても熱損失の減少を図ることを目的とし、各帯間で鋼片Sの間隔dを、鋼片温度や燃料の燃焼量および抽出ピッチ、装入ピッチにより可変にすることでウォーキングビーム2上の鋼片搬送速度を制御するようにしている。
In this continuous heating furnace, a charging detector 11 for measuring the charging pitch of the steel slab S into the furnace and a thermometer 13 for detecting the temperature of the charging slab are installed in the vicinity of the charging door 3A. An extraction detector 12 for measuring the extraction pitch is provided in the vicinity of the extraction door 3B.
In the continuous heating furnace for heating the steel slab, the steel slab S is formed between the strips for the purpose of improving the heating accuracy of the steel slab S and reducing the heat loss with respect to the charging of the hot slab. Is made variable by the billet temperature, the combustion amount of fuel, the extraction pitch, and the charging pitch, so that the billet conveyance speed on the walking beam 2 is controlled.

最近益々、連続式加熱炉を設置した熱間圧延設備の圧延能率向上に対する要求が強まっており、このような熱間圧延設備の操業形態の変化に対応した操炉を行うことが必要とされる。
ここで、熱間圧延設備に設置した連続式加熱炉では、普通、コンピュータを用いて各帯の炉温を計算によって決定し、決定した炉温をコンピュータに設定値として記憶させ、連続式加熱炉の燃焼制御を実行するようになっている。
特開昭61−279615号公報
Recently, there is an increasing demand for improving the rolling efficiency of a hot rolling facility equipped with a continuous heating furnace, and it is necessary to operate the furnace in response to the change in the operation mode of such a hot rolling facility. .
Here, in a continuous heating furnace installed in a hot rolling facility, the furnace temperature of each belt is usually determined by calculation using a computer, and the determined furnace temperature is stored as a set value in the computer, and the continuous heating furnace The combustion control is executed.
JP-A 61-279615

しかし、従来の連続式加熱炉の燃焼制御は、ランニングコストに占める割合が大きい燃料原単位を低減するため、被圧延材を抽出する側の均熱帯での被圧延材の昇温量を考慮せず、後段高負荷型のヒートパターンでのみ操炉が可能となっていた。
このため、例えば燃料原単位より圧延能率を優先させたくとも、熱間圧延設備に設置した連続式加熱炉では、そのような操炉設定が成されておらず、熱間圧延設備の操業形態の変化に対応できていため、コンピュータを用いた連続式加熱炉の燃焼制御使用率が低くなっていた。
However, the conventional combustion control of continuous heating furnaces reduces the fuel consumption rate, which accounts for a large proportion of the running cost, so consider the temperature rise of the rolled material in the soaking zone on the side where the rolled material is extracted. However, it was possible to operate the furnace only with the latter high-load heat pattern.
For this reason, for example, even if it is desired to prioritize the rolling efficiency over the basic unit of fuel, in the continuous heating furnace installed in the hot rolling facility, such an operation setting is not made, and the operation mode of the hot rolling facility is not Since it was able to cope with the change, the combustion control usage rate of the continuous heating furnace using a computer was low.

本発明は、上記従来技術の問題点を解消し、熱間圧延設備の操業形態の変化に対応することができる連続式加熱炉の燃焼制御方法を提供することを目的とする。   It is an object of the present invention to provide a combustion control method for a continuous heating furnace that can solve the problems of the prior art and can cope with changes in the operation mode of hot rolling equipment.

本発明者は、コンピュータを用いた連続式加熱炉の燃焼制御使用率が低い原因について鋭意検討し、その結果、一つには、定常部に対するスキッドマーク部の温度低下が通板性に悪影響を及ぼし、圧延能率に支障をきたす場合があることを知見して、本発明を成すに至った。
本発明は、以下のとおりである。
1.炉内の被圧延材を装入側から抽出側へ順次搬送しつつ、加熱帯で昇温量だけ加熱し、次いで均熱帯で昇温量だけ均熱する連続式加熱炉の燃焼制御方法において、まず、熱間圧延設備の操業形態に対応させて前記均熱帯での被圧延材の昇温量を決定し、次いで前記均熱帯の炉温を、決めた前記均熱帯での被圧延材の昇温量と被圧延材の在炉時間から決定するようにしたことを特徴とする連続式加熱炉の燃焼制御方法。
2.前記均熱帯での被圧延材の昇温量を、予め解析して求めた前記被圧延材を安定して圧延可能とする影響因子との関係を考慮して決定することを特徴とする請求項1に記載の連続式加熱炉の燃焼制御方法。
3.前記被圧延材を安定して圧延可能とする影響因子を、前記被圧延材の温度が抽出目標温度に到達したときの、定常部に対するスキッドマーク部の温度低下量とすることを特徴とする請求項2に記載の連続式加熱炉の燃焼制御方法。
The present inventor has intensively studied the reason why the combustion control usage rate of the continuous heating furnace using a computer is low, and as a result, the temperature drop of the skid mark part with respect to the steady part has an adverse effect on the plate passing property. Thus, the present inventors have found that the rolling efficiency may be hindered.
The present invention is as follows.
1. In the combustion control method of a continuous heating furnace in which the material to be rolled in the furnace is sequentially conveyed from the charging side to the extraction side, heated by the heating temperature in the heating zone, and then heated by the temperature increase in the soaking zone. First, the temperature increase amount of the material to be rolled in the soaking zone is determined in accordance with the operation mode of the hot rolling facility, and then the furnace temperature in the soaking zone is set to the determined temperature rise of the material to be rolled in the soaking zone. A combustion control method for a continuous heating furnace, characterized in that it is determined from the amount of heat and the in-furnace time of the material to be rolled.
2. The temperature increase amount of the material to be rolled in the soaking zone is determined in consideration of a relationship with an influence factor that enables the material to be rolled to be stably rolled, which is obtained by analyzing in advance. The combustion control method of the continuous heating furnace as described in 1.
3. The influential factor that enables stable rolling of the material to be rolled is defined as a temperature drop amount of the skid mark portion with respect to the steady portion when the temperature of the material to be rolled reaches the extraction target temperature. Item 3. A combustion control method for a continuous heating furnace according to Item 2.

本発明によれば、熱間圧延設備の操業形態の変化に対応して、燃料原単位を優先とした均熱帯での被圧延材の昇温量が大きくなるような後段高負荷型のヒートパターンで被圧延材を加熱することもできるし、あるいは、熱間圧延設備の操業形態の変化に対応して、圧延能率を優先とした均熱帯での被圧延材の昇温量が小さくなるような後段低負荷型のヒートパターンで被圧延材を加熱することもできる。   According to the present invention, in response to a change in the operation mode of the hot rolling facility, the latter-stage high-load heat pattern in which the temperature rise of the material to be rolled is increased in the soaking zone with priority on the fuel intensity. It is possible to heat the material to be rolled at the same time, or in response to changes in the operation mode of the hot rolling equipment, the temperature rise of the material to be rolled in the soaking zone with priority on rolling efficiency is reduced. It is also possible to heat the material to be rolled with a subsequent low load type heat pattern.

本発明にかかる連続式加熱炉の燃焼制御方法によれば、コンピュータを用いた連続式加熱炉の燃焼制御使用率を高めることができる。   According to the combustion control method for a continuous heating furnace according to the present invention, the combustion control usage rate of the continuous heating furnace using a computer can be increased.

以下本発明を、鋼片Sを加熱する連続式加熱炉に適用した場合について説明する。
図1には、本発明を適用した加熱帯と均熱帯を有する連続式加熱炉の構成を模式的に示した。図1中、θ1,1は、第1加熱帯の炉温、θ1,2は、第2加熱帯の炉温、θは均熱帯の炉温をそれぞれ示す。炉温θ1,1、θ1,2、及びθは、図示しない操炉用コンピュータを用い、計算によって決定される。
Hereinafter, the case where this invention is applied to the continuous heating furnace which heats the steel piece S is demonstrated.
In FIG. 1, the structure of the continuous heating furnace which has the heating zone and soaking zone to which this invention is applied was shown typically. In FIG. 1, θ 1,1 indicates the furnace temperature in the first heating zone, θ 1,2 indicates the furnace temperature in the second heating zone, and θ 2 indicates the soaking zone furnace temperature. The furnace temperatures θ 1,1 , θ 1 , 2 , and θ 2 are determined by calculation using a furnace operating computer (not shown).

この鋼片Sを加熱する連続式加熱炉は、所定の温度に加熱した鋼片を連続して熱間圧延機に供給するため、加熱帯として第1加熱帯と第2加熱帯を有する。また、炉体1はウォーキングビーム装置を具備し、各帯のウォーキングビーム2によって、装入扉3Aから加熱帯に装入した炉内の鋼片Sを装入側から抽出側へ順次搬送するように構成されている。
その際に、図示しない操炉用コンピュータが、順次搬送される鋼片Sを、加熱帯で昇温量だけ加熱し、次いで均熱帯で昇温量だけ均熱し、鋼片Sの温度を装入温度Tinから抽出目標温度Toutに上昇させる連続式加熱炉の燃焼制御を実施している。
The continuous heating furnace for heating the steel slab S has a first heating zone and a second heating zone as heating zones in order to continuously supply the steel slab heated to a predetermined temperature to the hot rolling mill. Moreover, the furnace body 1 is provided with a walking beam device, and the steel beam S in the furnace charged in the heating zone from the charging door 3A is sequentially conveyed from the charging side to the extraction side by the walking beam 2 of each band. It is configured.
At that time, a computer for operating the furnace (not shown) heats the steel slabs S that are sequentially transported by the heating amount in the heating zone, and then heats the steel slab S by the temperature increase in the soaking zone. Combustion control of a continuous heating furnace that increases the temperature T in to the extraction target temperature T out is performed.

以下、炉温θ1,1、θ1,2、及びθの決定法について順に説明する(図3参照)。
ここで、均熱帯に鋼片Sが入ってから抽出されるまでの温度上昇量(すなわち、均熱帯での鋼片Sの昇温量という)をΔTとすると、均熱帯での鋼片Sの昇温量ΔTと、在炉時間(鋼片Sを加熱炉に装入してから抽出までの時間)の関係(S11)に基づき、 ADI法を用いた2次元伝熱差分のモデルで、均熱帯の炉温θを決定することができる(S12)。
Hereinafter, a method for determining the furnace temperatures θ 1,1 , θ 1 , 2 , and θ 2 will be described in order (see FIG. 3).
Here, the temperature rise amount of up are extracted from contains steel slab S to the soaking zone (i.e., that temperature Yutakaryou billet S in soaking zone) a When [Delta] T 2, the steel strip in soaking zone S Is a model of a two-dimensional heat transfer difference using the ADI method, based on the relationship (S11) between the temperature rise amount ΔT 2 and the in-furnace time (time from charging the steel slab S to the heating furnace until extraction) The soaking zone furnace temperature θ 2 can be determined (S12).

残る、第1加熱帯の炉温θ1,1及び第2加熱帯の炉温θ1,2は、次のようにして決定する(S13〜S16)。
第1、第2加熱帯での鋼片Sの温度上昇量をそれぞれΔT1,1、ΔT1,2とすると、鋼片Sを在炉時間の間に温度上昇させる量は、Tout−Tinに等しいから、式(1)より、第1、第2加熱帯での鋼片Sの合計温度上昇量(ΔT1,1+ΔT1,2)が求まる。
The remaining furnace temperatures θ 1,1 of the first heating zone and furnace temperatures θ 1,2 of the second heating zone are determined as follows (S13 to S16).
Assuming that the temperature rise amount of the steel slab S in the first and second heating zones is ΔT 1,1 and ΔT 1,2 , respectively, the amount of temperature rise of the steel slab S during the in-furnace time is T out −T Since it is equal to in, the total temperature rise amount (ΔT 1,1 + ΔT 1,2 ) of the steel slab S in the first and second heating zones is obtained from the equation (1).

ΔT1,1+ΔT1,2+ΔT=Tout−Tin・・・・・・・(1)
そして、第1、第2加熱帯での鋼片Sの昇温量ΔT1,1、ΔT1,2は、帯毎の加熱能力から第1加熱帯と第2加熱帯との昇温量比率ΔT1,2/ΔT1,1(=k:一定値)が決定されるから、計算できる。
第1加熱帯での鋼片Sの昇温量ΔT1,1が求まれば、第1加熱帯昇温量と、第1加熱帯在炉時間とに基づき、ADI法を用いた2次元伝熱差分のモデルで、第1加熱帯の炉温θ1,1を決定することができる。同様に、第2加熱帯での鋼片Sの昇温量ΔT1,2が求まれば、第2加熱帯昇温量と、第2加熱帯在炉時間とに基づき、ADI法を用いた2次元伝熱差分のモデルで、第2加熱帯の炉温θ1,2を決定することができる。
ΔT 1,1 + ΔT 1,2 + ΔT 2 = T out −T in (1)
And the temperature increase amount ΔT 1,1 , ΔT 1 , 2 of the steel slab S in the first and second heating zones is the ratio of the temperature increase between the first heating zone and the second heating zone from the heating capacity of each zone. Since ΔT 1,2 / ΔT 1,1 (= k: constant value) is determined, it can be calculated.
If the heating rate ΔT 1,1 of the steel slab S in the first heating zone is obtained, the two-dimensional transmission using the ADI method is performed based on the first heating zone heating rate and the first heating zone furnace time. The furnace temperature θ 1,1 of the first heating zone can be determined by the model of the thermal difference. Similarly, if the temperature increase ΔT 1, 2 of the steel slab S in the second heating zone is obtained, the ADI method is used based on the second heating zone temperature increase and the second heating zone in-furnace time. The furnace temperature θ 1 , 2 of the second heating zone can be determined using a two-dimensional heat transfer difference model.

ただし、均熱帯での被圧延材の昇温量ΔTを、予め解析して求めた鋼片Sを安定して圧延可能とする影響因子との関係を考慮して決定する。例えば、図2に示すような、鋼片Sの温度が抽出目標温度に到達したときの、定常部に対するスキッドマーク部の温度低下量と均熱帯での被圧延材の昇温量ΔTとの関係を考慮して、均熱帯での被圧延材の昇温量ΔTを決める。 However, the temperature rise ΔT 2 of the material to be rolled in the soaking zone is determined in consideration of the relationship with the influence factor that enables the steel slab S obtained by analysis in advance to be stably rolled. For example, as shown in FIG. 2, when the temperature of the steel slab S reaches the extraction target temperature, the temperature drop amount of the skid mark portion relative to the steady portion and the temperature rise amount ΔT 2 of the material to be rolled in the soaking zone In consideration of the relationship, the temperature rise ΔT 2 of the material to be rolled in the soaking zone is determined.

図2は、上記の鋼片Sを加熱する連続式加熱炉において、均熱帯での鋼片Sの昇温量を種々変化させ、鋼片Sの温度が抽出目標温度Toutに到達したとき、鋼片Sを加熱炉から熱間圧延ラインに抽出してその温度を測定して得た結果である。
その際、均熱帯での鋼片Sの昇温量ΔTを小さくして、後段低負荷型のヒートパターンで操炉した場合、後段高負荷型のヒートパターンとした場合に比べ、スキッドマーク部の温度低下量が小さくなり、熱間圧延機での通板性が安定し、その結果、圧延能率が向上することがわかったのである。また定常部に対するスキッドマーク部の温度低下量は、均熱帯での鋼片Sの昇温量とよい相関がある。
FIG. 2 shows various changes in the temperature rise of the steel slab S in the soaking zone in the continuous heating furnace for heating the steel slab S, and when the temperature of the steel slab S reaches the extraction target temperature Tout , It is the result obtained by extracting the steel slab S from the heating furnace to the hot rolling line and measuring its temperature.
At that time, when the temperature rise ΔT 2 of the steel slab S in the soaking zone is reduced and the furnace is operated with the latter-stage low-load heat pattern, the skid mark portion is compared with the case where the latter-stage high-load type heat pattern is used It has been found that the amount of decrease in the temperature of the steel sheet is reduced, the plate-passability in the hot rolling mill is stabilized, and as a result, the rolling efficiency is improved. Further, the temperature decrease amount of the skid mark portion with respect to the steady portion has a good correlation with the temperature increase amount of the steel slab S in the soaking zone.

なお、均熱帯での鋼片Sの昇温量ΔTを熱間圧延設備の操業形態に対応させて決定するには、テーブル値とするのが好ましい(S10)。この理由は、鋼片Sの寸法、材質、成分などによって、区分してコンピュータ内に保存するのが容易であり、しかもその後の変更が容易にできるからである。
以上のように各帯の炉温θ1,1、θ1,2、及びθを決定するに際し、本発明に係る連続式加熱炉の燃焼制御方法は、まず、熱間圧延設備の操業形態に対応させて均熱帯での鋼片Sの昇温量ΔTを決定し、次いで均熱帯の炉温θを、決めた均熱帯での鋼片Sの昇温量ΔTと、鋼片Sの在炉時間から決定する。
In order to determine the temperature increase ΔT 2 of the steel slab S in the soaking zone in correspondence with the operation mode of the hot rolling facility, it is preferable to use a table value (S 10). This is because it is easy to classify and store in the computer according to the size, material, component, etc. of the steel slab S, and to make subsequent changes easily.
As described above, when determining the furnace temperatures θ 1,1 , θ 1,2 , and θ 2 of each zone, the combustion control method of the continuous heating furnace according to the present invention first operates the hot rolling facility operation mode. The temperature increase amount ΔT 2 of the steel slab S in the soaking zone is determined in accordance with the above, and then the furnace temperature θ 2 in the soaking zone is set to the temperature rising amount ΔT 2 of the steel slab S in the soaking zone and the steel slab Determined from the in-furnace time of S

すなわち、従来の連続式加熱炉の燃焼制御方法のように、燃料原単位を優先とした熱間圧延設備の操業形態に対応させて操炉を行う場合には、均熱帯での鋼片Sの昇温量ΔTを大きくして、後段高負荷型のヒートパターンとする。一方、圧延能率を優先とした熱間圧延設備の操業形態に対応させて操炉を行う場合には、均熱帯での鋼片Sの昇温量ΔTを小さくして、後段低負荷型のヒートパターンとする。 That is, when the furnace is operated in accordance with the operation mode of the hot rolling facility that prioritizes the fuel intensity as in the conventional combustion control method of the continuous heating furnace, the steel slab S in the soaking zone is used. The temperature increase amount ΔT 2 is increased to obtain a post-stage high load type heat pattern. On the other hand, when the furnace is operated in accordance with the operation mode of the hot rolling facility with priority on the rolling efficiency, the temperature increase ΔT 2 of the steel slab S in the soaking zone is reduced, and the latter low load type Use a heat pattern.

以上説明した本発明にかかる連続式加熱炉の燃焼制御フロー図を図3に示した。これに対して、本発明を適用する前の鋼片を加熱する連続式加熱炉の燃焼制御フロー図を図4に示した。
本発明を適用する前の鋼片を加熱する連続式加熱炉の燃焼制御は、まず、均熱帯での熱負荷が最大となるように均熱帯での鋼片の昇温量ΔTを決定した後、均熱帯の炉温を決定していたため、圧延操業形態に対応したヒートパターンで被圧延材を加熱することができず、コンピュータを用いた連続式加熱炉の燃焼制御使用率が15%と低くなっていた。
FIG. 3 shows a combustion control flowchart of the continuous heating furnace according to the present invention described above. On the other hand, the combustion control flowchart of the continuous heating furnace which heats the steel piece before applying this invention was shown in FIG.
In the combustion control of the continuous heating furnace for heating the steel slab before applying the present invention, first, the temperature rise ΔT 2 of the steel slab in the soaking zone is determined so that the heat load in the soaking zone is maximized. Later, since the furnace temperature in the soaking zone was determined, the material to be rolled could not be heated with a heat pattern corresponding to the rolling operation mode, and the combustion control usage rate of the continuous heating furnace using a computer was 15%. It was low.

一方、本発明にかかる連続式加熱炉の燃焼制御によれば、熱間圧延設備の操業形態に対応させて均熱帯での被圧延材の昇温量を決定するようにしたため、コンピュータを用いた連続式加熱炉の燃焼制御使用率が35%に向上した。   On the other hand, according to the combustion control of the continuous heating furnace according to the present invention, since the temperature rise amount of the material to be rolled in the soaking zone is determined according to the operation mode of the hot rolling equipment, a computer is used. The combustion control usage rate of the continuous heating furnace has been improved to 35%.

本発明を適用した鋼片を加熱する連続式加熱炉の構成を示す模式図である。It is a schematic diagram which shows the structure of the continuous heating furnace which heats the steel piece to which this invention is applied. 本発明にかかる連続式加熱炉の燃焼制御に用いて好適な鋼片を安定して圧延可能とする影響因子を例示した特性図である。It is a characteristic view which illustrated the influence factor which makes it suitable for the combustion control of the continuous heating furnace concerning this invention, and can roll a suitable steel piece stably. 本発明にかかる鋼片を加熱する連続式加熱炉の燃焼制御フロー図である。It is a combustion control flowchart of a continuous heating furnace which heats the steel piece concerning this invention. 本発明を適用する前の鋼片を加熱する連続式加熱炉の燃焼制御フロー図である。It is a combustion control flowchart of the continuous heating furnace which heats the steel piece before applying this invention. 従来の連続式加熱炉の構成を示す模式図である。It is a schematic diagram which shows the structure of the conventional continuous heating furnace.

符号の説明Explanation of symbols

1 炉体
2 ウォーキングビーム
3 移載装置
3A 装入扉
3B 抽出扉
4 温度演算装置
5 間隔演算装置
6 移動量検出器
7 トラッキング装置
9 移載位置制御装置帯の炉温
11 装入検出器
12 抽出検出器
13 温度計
θ1,1 第1加熱帯の炉温
θ1,2 第2加熱帯の炉温
θ均熱帯の炉温
DESCRIPTION OF SYMBOLS 1 Furnace 2 Walking beam 3 Transfer device 3A Loading door 3B Extraction door 4 Temperature calculation device 5 Space calculation device 6 Movement amount detector 7 Tracking device 9 Furnace temperature 11 of the transfer position control device zone Extraction detector 12 Extraction Detector 13 Thermometer θ 1,1 Furnace temperature θ of the first heating zone 1, 2 Furnace temperature of the second heating zone θ 2

Claims (3)

炉内の被圧延材を装入側から抽出側へ順次搬送しつつ、加熱帯で昇温量だけ加熱し、次いで均熱帯で昇温量だけ均熱する連続式加熱炉の燃焼制御方法において、
まず、熱間圧延設備の操業形態に対応させて前記均熱帯での被圧延材の昇温量を決定し、次いで前記均熱帯の炉温を、決めた前記均熱帯での被圧延材の昇温量と被圧延材の在炉時間から決定するようにしたことを特徴とする連続式加熱炉の燃焼制御方法。
In the combustion control method of a continuous heating furnace in which the material to be rolled in the furnace is sequentially conveyed from the charging side to the extraction side, heated by the heating temperature in the heating zone, and then heated by the temperature increase in the soaking zone.
First, the temperature increase amount of the material to be rolled in the soaking zone is determined in accordance with the operation mode of the hot rolling facility, and then the furnace temperature in the soaking zone is set to the determined temperature rise of the material to be rolled in the soaking zone. A combustion control method for a continuous heating furnace, characterized in that it is determined from the amount of heat and the in-furnace time of the material to be rolled.
前記均熱帯での被圧延材の昇温量を、予め解析して求めた前記被圧延材を安定して圧延可能とする影響因子との関係を考慮して決定することを特徴とする請求項1に記載の連続式加熱炉の燃焼制御方法。   The temperature rise amount of the material to be rolled in the soaking zone is determined in consideration of a relationship with an influence factor that enables the material to be rolled to be stably rolled, which is obtained by analyzing in advance. The combustion control method of the continuous heating furnace as described in 1. 前記被圧延材を安定して圧延可能とする影響因子を、前記被圧延材の温度が抽出目標温度に到達したときの、定常部に対するスキッドマーク部の温度低下量とすることを特徴とする請求項2に記載の連続式加熱炉の燃焼制御方法。
The influential factor that enables stable rolling of the material to be rolled is defined as a temperature drop amount of the skid mark portion with respect to the steady portion when the temperature of the material to be rolled reaches the extraction target temperature. Item 3. A combustion control method for a continuous heating furnace according to Item 2.
JP2005099122A 2005-03-30 2005-03-30 Combustion control method for continuous heating furnace Expired - Fee Related JP4815837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005099122A JP4815837B2 (en) 2005-03-30 2005-03-30 Combustion control method for continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005099122A JP4815837B2 (en) 2005-03-30 2005-03-30 Combustion control method for continuous heating furnace

Publications (2)

Publication Number Publication Date
JP2006274421A true JP2006274421A (en) 2006-10-12
JP4815837B2 JP4815837B2 (en) 2011-11-16

Family

ID=37209451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005099122A Expired - Fee Related JP4815837B2 (en) 2005-03-30 2005-03-30 Combustion control method for continuous heating furnace

Country Status (1)

Country Link
JP (1) JP4815837B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114266A (en) * 2006-11-06 2008-05-22 Jfe Steel Kk Method for controlling heating of continuously heating furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138319A (en) * 1989-10-24 1991-06-12 Sumitomo Metal Ind Ltd Method for controlling furnace temperature for continuous heating furnace
JPH05255762A (en) * 1992-03-10 1993-10-05 Sumitomo Metal Ind Ltd Method for controlling furnace temperature of continuous heating furnace
JPH08246058A (en) * 1995-03-09 1996-09-24 Nippon Steel Corp Automatic combustion control method in continuous type heating furnace
JPH09209044A (en) * 1996-01-31 1997-08-12 Kawasaki Steel Corp Operation of continuous type steel cast slab heating furnace
JPH09268358A (en) * 1996-04-02 1997-10-14 Nkk Corp Production of galvannealed steel strip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138319A (en) * 1989-10-24 1991-06-12 Sumitomo Metal Ind Ltd Method for controlling furnace temperature for continuous heating furnace
JPH05255762A (en) * 1992-03-10 1993-10-05 Sumitomo Metal Ind Ltd Method for controlling furnace temperature of continuous heating furnace
JPH08246058A (en) * 1995-03-09 1996-09-24 Nippon Steel Corp Automatic combustion control method in continuous type heating furnace
JPH09209044A (en) * 1996-01-31 1997-08-12 Kawasaki Steel Corp Operation of continuous type steel cast slab heating furnace
JPH09268358A (en) * 1996-04-02 1997-10-14 Nkk Corp Production of galvannealed steel strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114266A (en) * 2006-11-06 2008-05-22 Jfe Steel Kk Method for controlling heating of continuously heating furnace

Also Published As

Publication number Publication date
JP4815837B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
CN104060080B (en) Heater for rolling steel heating of plate blank control method and system
Parsunkin et al. Energy-saving optimal control over heating of continuous cast billets
Andreev et al. Billet heating control fuel-saving solution in the rolling mill furnace
JP4815837B2 (en) Combustion control method for continuous heating furnace
JP2006104490A (en) Combustion control method of continuous heating furnace
JP5293405B2 (en) Roll gap setup method in reverse rolling
KR20130088525A (en) Cooling apparatus for slab and controlling method thereof
JPH0663039B2 (en) Temperature control device for heating furnace
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JPS5845325A (en) Furnace temperature setting method of continuous heating furnace
JP2003033808A (en) Hot rolling method and equipment
JPS61170508A (en) Method for erasing skid mark in continuous heating furnace
JP3982042B2 (en) Combustion control method for continuous heating furnace
RU2450064C2 (en) Method to control efficiency of kiln to roast iron-ore pellets
Andreev et al. Obtaining reliable information on energy-saving regimes for the heating of continuous-cast semifinished products prior to rolling
JP2007224373A (en) Method for charging slab into heating furnace
JPH048122B2 (en)
JPH0160528B2 (en)
JP5217393B2 (en) Control method of heating furnace dilution fan
JPS60151709A (en) Temperature controller for industrial furnace
JP3504118B2 (en) Slab baking control device for tunnel furnace
JP2005076935A (en) Billet heating furnace and operation method thereof
JPS5831373B2 (en) Temperature control method and device for continuous strip heat treatment furnace
JPS6411686B2 (en)
JPH0332605B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees