JP2007224373A - Method for charging slab into heating furnace - Google Patents

Method for charging slab into heating furnace Download PDF

Info

Publication number
JP2007224373A
JP2007224373A JP2006047721A JP2006047721A JP2007224373A JP 2007224373 A JP2007224373 A JP 2007224373A JP 2006047721 A JP2006047721 A JP 2006047721A JP 2006047721 A JP2006047721 A JP 2006047721A JP 2007224373 A JP2007224373 A JP 2007224373A
Authority
JP
Japan
Prior art keywords
slab
charging
temperature
heating furnace
walking beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006047721A
Other languages
Japanese (ja)
Inventor
Atsushi Yamamoto
敦志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006047721A priority Critical patent/JP2007224373A/en
Publication of JP2007224373A publication Critical patent/JP2007224373A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Conveyors (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a filling factor of a slab in a walking-beam type furnace. <P>SOLUTION: When continuously charging a plurality of slabs into the walking-beam type furnace and heating them in the furnace, this charging method includes determining a space (L) between a leading slab and a following slab by the expression: L=(ΔW1+ΔW2)/2+α, wherein ΔW<SB>1</SB>represents a thermally expanded amount in a width direction of the leading slab, which is calculated from a temperature when the leading slab has been charged and a set temperature when the slab is extracted; ΔW<SB>2</SB>represents a thermally expanded amount in a width direction of the following slab which is calculated from a temperature when the following slab has been charged and a set temperature when the slab is extracted; and (α) represents the minimum space between the slabs in the walking-beam type furnace. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ウォーキングビーム式の加熱炉の操業方法、特に、スラブの装入方法に関する。   The present invention relates to a method for operating a walking beam heating furnace, and more particularly to a method for charging a slab.

厚鋼板や熱延鋼板はスラブを熱間圧延するためには、それに先立ってスラブを所定温度まで加熱する必要がある。この加熱は、近年ではいわゆるウォーキングビーム方式の加熱炉を用いて行われる。その際、スラブの加熱炉への装入は、複数のスラブを、その長手方向が加熱炉の炉床搬送方向に対して直角になるように並べ、かつ、スラブ間に必要な間隔が維持されるように行われる。   In order to hot-roll a slab from a thick steel plate or a hot-rolled steel plate, it is necessary to heat the slab to a predetermined temperature prior to that. In recent years, this heating is performed using a so-called walking beam heating furnace. At that time, the slab is charged into the heating furnace by arranging a plurality of slabs so that the longitudinal direction thereof is perpendicular to the hearth conveying direction of the heating furnace, and a necessary interval between the slabs is maintained. To be done.

従来、この加熱炉の操炉条件は、特許文献1、特許文献2に開示されているように、鋼種や加熱温度等のスラブ加熱条件から定められ、必要な温度の加熱するための在炉時間が確保されることのほかに、燃料原単位の低減や生産性の向上、さらには、装入、抽出、トラッキングの安全性が確保できるようにされている。また、上記特許文献の開示するところではないが、ほぼ同一の加熱条件を有するスラブを加熱する際には、生産性を考慮して、スラブ間の間隔をスラブの装入及び抽出の安全性が確保できる程度の一定値として操業することも行われている。   Conventionally, the furnace operating conditions of this heating furnace are determined from the slab heating conditions such as the steel type and the heating temperature, as disclosed in Patent Document 1 and Patent Document 2, and the in-furnace time for heating at the required temperature In addition to ensuring fuel efficiency, it is possible to reduce fuel consumption, improve productivity, and ensure the safety of charging, extraction, and tracking. In addition, although not disclosed in the above patent document, when heating slabs having substantially the same heating conditions, in consideration of productivity, the interval between the slabs can be safely inserted and extracted. It is also operated as a constant value that can be secured.

特開平8−291334号公報JP-A-8-291334 特開平3−200619号公報Japanese Patent Laid-Open No. 3-200619

このようなスラブ間の間隔を一定値として操業することは簡便であり、トラッキングの制御に要する負荷も小さいという利点があるが、スラブ間の間隔が所定値と定まっているので、加熱炉へのスラブの充填率を十分に上げられない場合がある。特に、上記所定値が、たとえば、操炉上の安全性を重視するあまり過剰設定となっている場合には、加熱炉へのスラブ充填率向上の障害となる。本発明は、かかる操業上の障害を解決して、ウォーキングビーム式加熱炉へのスラブ充填率の向上を図ることを目的とする。   It is easy to operate with such a constant interval between slabs, and there is an advantage that the load required for tracking control is small, but since the interval between slabs is fixed to a predetermined value, The slab filling rate may not be increased sufficiently. In particular, when the predetermined value is excessively set, for example, placing importance on safety in the operation of the furnace, it becomes an obstacle to improving the slab filling rate in the heating furnace. An object of the present invention is to solve such operational obstacles and improve the slab filling rate of a walking beam type heating furnace.

本発明は、上記所定値を設定するに当たり、在炉中におけるスラブの熱膨張量を考慮することにより、スラブ間の間隔を最小量に低減できることに着目し、本発明を完成したものである。   The present invention has been completed by paying attention to the fact that the interval between the slabs can be reduced to the minimum amount by considering the thermal expansion amount of the slabs in the in-furnace in setting the predetermined value.

すなわち、本発明は、ウォーキングビーム式加熱炉に複数のスラブを連続的に装入して加熱するに当たり、先行スラブと後行スラブの間隙Lを下記(1)式によって定めることとするものである。
L=(ΔW+ΔW)/2+α・・・・・(1)
ここに、
ΔW:先行スラブの装入時温度と該スラブの抽出時設定温度から算出される先行スラブの幅方向熱膨張量
ΔW:後行スラブの装入時温度と該スラブの抽出時設定温度から算出される後行スラブの幅方向熱膨張量
α:ウォーキングビーム式加熱炉の最小スラブ間隔
That is, according to the present invention, when a plurality of slabs are continuously charged and heated in the walking beam type heating furnace, the gap L between the preceding slab and the succeeding slab is determined by the following equation (1). .
L = (ΔW 1 + ΔW 2 ) / 2 + α (1)
here,
ΔW 1 : The amount of thermal expansion in the width direction of the preceding slab calculated from the charging temperature of the preceding slab and the setting temperature when extracting the slab ΔW 2 : From the charging temperature of the succeeding slab and the setting temperature when extracting the slab Calculated amount of thermal expansion α of the trailing slab in the width direction: Minimum slab interval of the walking beam furnace

上記発明は、
ウォーキングビーム式加熱炉に複数のスラブを連続的に装入して加熱するに当たり、搬送テーブル上において、先行スラブ及び該先行スラブに続いて装入される後行スラブの装入時スラブ幅及びスラブ温度を測定する段階と、
前記各スラブのスラブ幅及びスラブ温度及び抽出時設定温度に基づいて、これらスラブの加熱炉内における熱膨張量を算出する段階と、
前記ウォーキングビーム式加熱炉の搬送停止信号を得て先行スラブの尾端位置を推定する段階と、
前記後行スラブを、前記先行スラブと後行スラブの間隙Lを前記(1)式によって定めて、装入する段階と、を包含するように操業することによって実現できる。
The above invention
When a plurality of slabs are continuously charged and heated in the walking beam type heating furnace, the slab width and slab at the time of charging of the preceding slab and the succeeding slab to be charged following the preceding slab on the transfer table Measuring the temperature;
Based on the slab width and slab temperature of each slab and the extraction set temperature, calculating the amount of thermal expansion in the heating furnace of these slabs;
Obtaining a transport stop signal of the walking beam heating furnace and estimating the tail end position of the preceding slab;
The succeeding slab can be realized by operating so as to include the step of determining and inserting the gap L between the preceding slab and the succeeding slab according to the equation (1).

本発明により、加熱炉へのスラブの充填率を向上させることができ、熱延鋼材の生産性の向上を図ることができる。   By this invention, the filling rate of the slab to a heating furnace can be improved, and the improvement of productivity of a hot-rolled steel material can be aimed at.

図1は、本発明の適用されるウォーキングビーム式加熱炉の装入−搬送−抽出機構の概念図である。この形式の装入−搬送−抽出機構を有するウォーキングビーム式加熱炉では、スラブS(S1〜Sn)がスラブヤード(図示しない)から装入ローラ11に搬送され、プッシャ14によってウォーキングビーム式加熱炉の移動ビーム12上に載置されるようになっている。この状態で、移動ビーム12が前進、下降、後退、上昇のサイクルを繰り返し、それに伴って、スラブSが移動ビーム12への載置状態と固定ビーム13への載置状態を繰り返しながら、炉内を前進しつつ加熱され、加熱炉端部においてエキストラクタ16により抽出ローラテーブル15上に載置されるようになっている。なお、ウォーキングビーム式加熱炉でのスラブの装入−搬送−抽出は、スラブSの長手方向が搬送方向に対し直交するように並べ、すなわち、スラブSの幅方向が搬送方向となるようにすることは周知のとおりである。 FIG. 1 is a conceptual diagram of a charging-conveying-extracting mechanism of a walking beam heating furnace to which the present invention is applied. Loading of this type - conveying - the walking beam type heating furnace having an extraction mechanism, slab S (S 1 to S n) is conveyed from the slab yard (not shown) to the charging roller 11, walking beam type by pusher 14 It is placed on the moving beam 12 of the heating furnace. In this state, the moving beam 12 repeats the forward, descending, retracting, and ascending cycle, and the slab S is repeatedly placed in the moving beam 12 and the stationary beam 13 in the furnace. And is placed on the extraction roller table 15 by the extractor 16 at the end of the heating furnace. Note that the slab charging-conveying-extraction in the walking beam heating furnace is arranged so that the longitudinal direction of the slab S is orthogonal to the conveying direction, that is, the width direction of the slab S is the conveying direction. This is well known.

この移動状態においてスラブS1, S2,・・・Sn-1, Snの間隔は、これら各スラブの熱膨張により次第に小さくなる。すなわち、図2(A)に示すように、装入当初においては、先行スラブS2と後行スラブS1との間に、間隔Lがおかれていても、加熱によりスラブ温度が上昇することにより、最終的には(B)に示すように、スラブ幅W,WがそれぞれW+ΔW及びW+ΔWになり、その結果、スラブS1とS2との離間距離は
α=L−1/2(ΔW+ΔW
となる。なお、スラブ幅Wは、通常の幅計によって測定されるスラブ幅の最大幅として計測されたものであり、スラブS1、S2に対してそれぞれW、Wとした。
Slab S 1, S 2 in this moving state, the distance ··· S n-1, S n becomes smaller gradually due to thermal expansion of the slabs. That is, as shown in FIG. 2 (A), in the initial charge is, between the preceding slab S 2 and succeeding slab S 1, even though placed spacing L, and the slab temperature rises by heating Thus, finally, as shown in (B), the slab widths W 1 and W 2 become W 1 + ΔW 1 and W 2 + ΔW 2 respectively. As a result, the separation distance between the slabs S 1 and S 2 is α = L-1 / 2 (ΔW 1 + ΔW 2 )
It becomes. The slab width W was measured as the maximum width of the slab width measured by a normal width meter, and was set to W 1 and W 2 for the slabs S 1 and S 2 , respectively.

このように先行スラブS2と後行スラブS1との離間距離が縮まっても、その間にウォーキングビーム式加熱炉を操炉するための最小スラブ間隔があれば、操炉が可能であり、そのように先行スラブS2と後行スラブS1の離間距離を定めれば、ウォーキングビーム式加熱炉のスラブ充填率を最大にすることができる。かかる配慮の下で、本発明では、ウォーキングビーム式加熱炉に複数のスラブを連続的に装入して加熱するに当たり、スラブを装入する際の先行スラブと後行スラブの間隙Lを、
L=(ΔW+ΔW)/2+α・・・(1)
により定めることとする。
ここに、
ΔW:先行スラブの装入時温度と該スラブの抽出時設定温度から算出される先行スラブの幅方向熱膨張量
ΔW:後行スラブの装入時温度と該スラブの抽出時設定温度から算出される後行スラブの幅方向熱膨張量
α:ウォーキングビーム式加熱炉の最小スラブ間隔
である。
Thus, even if the separation distance between the preceding slab S 2 and the succeeding slab S 1 is reduced, if there is a minimum slab interval for operating the walking beam heating furnace, the furnace can be operated. If the distance between the preceding slab S 2 and the following slab S 1 is determined as described above, the slab filling rate of the walking beam heating furnace can be maximized. Under such consideration, in the present invention, when continuously charging and heating a plurality of slabs in the walking beam type heating furnace, the gap L between the preceding slab and the succeeding slab when charging the slab,
L = (ΔW 1 + ΔW 2 ) / 2 + α (1)
It shall be determined by
here,
ΔW 1 : The amount of thermal expansion in the width direction of the preceding slab calculated from the charging temperature of the preceding slab and the setting temperature when extracting the slab ΔW 2 : From the charging temperature of the succeeding slab and the setting temperature when extracting the slab The amount of thermal expansion α in the width direction of the succeeding slab calculated is the minimum slab interval of the walking beam type heating furnace.

αは、ウォーキングビーム式加熱炉の最小トラッキング余裕代として定められるものであり、図1を参照して説明すれば、加熱炉末端部においてエキストラクタによりスラブSnをそのすぐ後ろのスラブSn-1と干渉することなく抽出することができる距離として定められる。実際上は、この余裕代αの決定に当たっては、さらに、スラブの加熱温度の誤差、寸法誤差、さらには反りなどの形状因子を加味しておき、それにより、スラブ加熱炉操業中のスラブ相互の圧着事故などの発生が確実に防止できる大きさを考慮する。この余裕代αは、加熱炉の大きさや、最高加熱温度、装入スラブのサイズや材質によって変動するものであるが、経験的にはおよそ10〜15mm程度である。 α are those defined as the minimum tracking margin of walking beam type heating furnace, it will be described with reference to FIG. 1, a slab of immediately behind the slab S n by the extractor in a heating furnace end S n- It is defined as the distance that can be extracted without interfering with 1 . In practice, in determining the margin α, the slab heating temperature error, dimensional error, and shape factors such as warpage are further taken into account. Consider a size that can reliably prevent the occurrence of crimping accidents. This margin α varies depending on the size of the heating furnace, the maximum heating temperature, the size and material of the charging slab, and is about 10 to 15 mm empirically.

上記条件を実現し、本発明の目的を達成するためには、例えば、図3に示すように、加熱炉10を、加熱炉制御装置21に加えてスラブ位置演算装置22及びプッシャ制御装置23を備えた制御系を有するものとして構成し、これを以下に示すように操作すればよい。以下、一例としてかかる操作手順を示す。   In order to realize the above conditions and achieve the object of the present invention, for example, as shown in FIG. 3, a heating furnace 10 is added to a heating furnace control device 21, and a slab position calculation device 22 and a pusher control device 23 are provided. A configuration having a control system provided may be performed as described below. Hereinafter, this operation procedure is shown as an example.

まず、搬送テーブル11上が先行スラブS2及び後行スラブS1が通過する際に、これらのスラブ幅及びスラブ温度を測定し、これらをそれぞれ先行スラブ入り側情報S1E(W1E, T1E),S2E(W2E, T2E)としてスラブ位置演算装置22に入力し、記憶させておく。また、このスラブ位置演算装置22には、これらスラブの抽出設定温度を、それぞれT1D,T2Dとして入力しておく。ここに、スラブS1及びS2のスラブ温度(T1E, T2E)は放射温度計によって測定されたスラブ表面温度のうちの最高温度として計測されたものである。 First, when the upper conveying table 11 passes a preceding slab S 2 and the following slab S 1, these slabs width and slab temperature measurements, they each preceding slab entry side information S 1E (W 1E, T 1E ), S 2E (W 2E , T 2E ) are input to the slab position calculation device 22 and stored. Further, the slab position calculation device 22 is inputted with the extraction set temperatures of these slabs as T 1D and T 2D , respectively. Here, the slab temperatures (T 1E , T 2E ) of the slabs S 1 and S 2 are measured as the highest temperature among the slab surface temperatures measured by the radiation thermometer.

スラブ加熱炉10を操炉し、末端のスラブSnが所定加熱温度に達するとともに圧機側の準備が完了すると、スラブSnはエキストラクタ16によって抽出され、その抽出信号を得て、加熱炉制御装置21は、スラブSn-1を加熱炉から抽出可能な位置まで搬送しその状態で一旦停止する。この停止状態において、加熱炉制御装置21は、スラブ加熱炉10の移動ビーム12の停止位置を演算し、その情報をスラブ装入位置演算装置22に移動ビーム停止位置情報として伝達する。この移動ビーム停止位置情報とは、スラブ加熱炉10の移動ビーム12が上昇、前進、下降又は後退のどの段階にあるか、また上記いずれかの段階のどの位置にあるについての情報であって、先行スラブの停止位置、ひいてはその尾端位置を算出する基礎になるものである。 The slab heating furnace 10 and Misaoro, the slab S n of terminal prepares the intensifier side together reach a predetermined heating temperature is completed, the slab S n are extracted by extractor 16 to obtain the extracted signal, the furnace control The apparatus 21 transports the slab Sn-1 from the heating furnace to a position where it can be extracted, and temporarily stops in that state. In this stopped state, the heating furnace control device 21 calculates the stop position of the moving beam 12 of the slab heating furnace 10, and transmits the information to the slab charging position calculation device 22 as moving beam stop position information. This moving beam stop position information is information about which stage the moving beam 12 of the slab heating furnace 10 is in ascending, advancing, descending or retreating, and at which position in any one of the above stages, This is the basis for calculating the stop position of the preceding slab, and hence its tail end position.

すでに述べたように、スラブ装入位置演算装置22には、先行スラブS2及び後行スラブS1についてのスラブ入り側情報S1Eが与えられている。また、移動ビーム停止位置情報が与えられている。さらに、先行スラブS2を装入する際には、プッシャ14から先行スラブS2の装入位置情報が入力されている。したがって、上記スラブ装入位置演算装置22により、先行スラブS2の尾端位置を算出することができ、その位置がスラブ装入位置演算装置22内に記憶される。 As described above, the slab insertion position calculation device 22 is provided with the slab entry side information S 1E regarding the preceding slab S 2 and the succeeding slab S 1 . Also, moving beam stop position information is given. Furthermore, when the charged prior slab S 2 is charging position information of the preceding slab S 2 from the pusher 14 is input. Thus, the slab loading position calculating unit 22, preceding the tail position of the slab S 2 can be calculated, the position is stored in the slab loading position calculating device 22.

この尾端位置を基準に後行スラブS1の先端位置が下記のようにして決定される。すでに述べたとおり、スラブ装入位置演算装置22には、先行スラブ情報、後行スラブ情報、及びこれらスラブの抽出設定温度(T1D,T2D)が入力され、蓄積されている。一方、スラブ加熱炉10の操炉条件として、余裕代αが別途設定され、蓄積されている。したがって、これら情報を基に、先行スラブS2の尾端と後行スラブS1の先端の間におかれるべき必要な間隙Lは、すでに述べたように、
L=(ΔW+ΔW)/2+α
ここに
ΔW=W×(T1D−T1E)×β
ΔW=W×(T2D−T2E)×β
β:スラブの線熱膨張係数
なお、スラブの線熱膨張係数βは、鋼種、装入温度、抽出温度ごとに測定した値を用いる。
The tail position tip position of the trailing slab S 1 based on is determined as follows. As described above, the slab charging position calculation device 22 receives and stores the preceding slab information, the following slab information, and the extraction set temperatures (T 1D , T 2D ) of these slabs. On the other hand, as the operating condition of the slab heating furnace 10, a margin allowance α is separately set and accumulated. Therefore, based on this information, the necessary gap L to be placed between the tail end of the preceding slab S 2 and the tip of the succeeding slab S 1 is as described above.
L = (ΔW 1 + ΔW 2 ) / 2 + α
Where ΔW 1 = W 1 × (T 1D− T 1E ) × β
ΔW 2 = W 2 × (T 2D− T 2E ) × β
β: Linear thermal expansion coefficient of the slab The linear thermal expansion coefficient β of the slab uses a value measured for each steel type, charging temperature, and extraction temperature.

このようにして算出された先行スラブS2の尾端と後行スラブS1の先端の間におかれるべき必要な間隙Lは、プッシャ制御装置23に入力され、それに基づいてプッシャ14のストローク量が制御され、後行スラブS1が所定の位置、すなわち、先行スラブS2の尾端と後行スラブS1の先端の間に間隙Lを空けて装入されることになる。なお、プッシャ14のストローク量の制御精度は、本発明の目的に従い、1mm以下のオーダーで制御可能なものとするのが好ましい。 The required gap L to be placed between the tail end of the preceding slab S 2 and the tip of the succeeding slab S 1 calculated in this way is input to the pusher control device 23, and the stroke amount of the pusher 14 is based on the gap L. And the trailing slab S 1 is inserted at a predetermined position, that is, with a gap L between the tail end of the preceding slab S 2 and the tip of the trailing slab S 1 . It should be noted that the control accuracy of the stroke amount of the pusher 14 is preferably controllable on the order of 1 mm or less in accordance with the object of the present invention.

上記のように操業することにより、本発明の目的に添ってスラブ充填率を向上させることが可能になる。以下、実施例により本発明の実施形態を明らかにする。   By operating as described above, the slab filling rate can be improved in accordance with the object of the present invention. Hereinafter, embodiments of the present invention will be clarified by examples.

スラブ装入温度:100℃、スラブ幅:1000mmのスラブ17本を本発明に従ってスラブ加熱炉に装入し、1000℃迄加熱する。この場合において熱膨張係数を14×10-6とする。また、α:ウォーキングビーム式加熱炉の最小トラッキング余裕代:αを13.6mmに設定する。 In accordance with the present invention, 17 slabs having a slab charging temperature of 100 ° C. and a slab width of 1000 mm are charged into a slab heating furnace and heated to 1000 ° C. In this case, the thermal expansion coefficient is 14 × 10 −6 . Α: Minimum tracking margin of the walking beam type heating furnace: α is set to 13.6 mm.

上記条件から、先行スラブと後行スラブの熱膨張量は、それぞれ
(1000−100)×14×10-6=12.6mm
と算出され、したがって、
先行スラブと後行スラブとの間隙は、
L=13.6+(12.6+12.6)/2=26.2mm
となる。この場合における、加熱炉へのスラブ充填率は、
R=(1000+12.6)×17/(1000+26.2)×17=98.6%
となる。
From the above conditions, the thermal expansion amount of the preceding slab and the following slab is (1000-100) × 14 × 10 -6 = 12.6mm respectively.
And therefore
The gap between the leading slab and the trailing slab is
L = 13.6 + (12.6 + 12.6) /2=26.2mm
It becomes. In this case, the slab filling rate to the heating furnace is
R = (1000 + 12.6) × 17 / (1000 + 26.2) × 17 = 98.6%
It becomes.

これに対し、先行スラブと後行スラブとの間隙Lを一定値30mmとした場合には、スラブ充填率は、
R=98.3%
であり、本発明により充填率が0.5%向上した。
On the other hand, when the gap L between the preceding slab and the following slab is a constant value of 30 mm, the slab filling rate is
R = 98.3%
The filling rate was improved by 0.5% according to the present invention.

スラブ装入温度:800℃とし、その他の条件は実施例1と同様とする。上記条件から、先行スラブと後行スラブの熱膨張量は、それぞれ
(1000−800)×14×10-6=2.8mm
と算出され、したがって、
先行スラブと後行スラブとの間隙は、
L=13.6+(2.8+2.8)/2=16.4mm
となる。この場合における、加熱炉へのスラブ充填率は、
R=(1000+2.8)×17/(1000+16.4)×17=98.7%
となる。
Slab charging temperature: 800 ° C. The other conditions are the same as in Example 1. From the above conditions, the thermal expansion of the leading slab and the trailing slab is (1000-800) x 14 x 10-6 = 2.8mm respectively.
And therefore
The gap between the leading slab and the trailing slab is
L = 13.6 + (2.8 + 2.8) /2=16.4mm
It becomes. In this case, the slab filling rate to the heating furnace is
R = (1000 + 2.8) × 17 / (1000 + 16.4) × 17 = 98.7%
It becomes.

これに対し、先行スラブと後行スラブとの間隙Lを一定値30mmとした場合には、スラブ充填率は、
R=97.4%
であり、本発明により充填率が1.3%向上した。
On the other hand, when the gap L between the preceding slab and the following slab is a constant value of 30 mm, the slab filling rate is
R = 97.4%
The filling rate was improved by 1.3% according to the present invention.

本発明の適用されるウォーキングビーム式加熱炉の装入−搬送−抽出機構の概念図である。It is a conceptual diagram of the charging-conveying-extraction mechanism of the walking beam type heating furnace to which the present invention is applied. 本発明を適用した場合の装入時スラブ間間隙Lとウォーキングビーム式加熱炉の最小トラッキング余裕代αとの関係の説明図である。適用されるIt is explanatory drawing of the relationship between the gap | interval L between the slabs at the time of charging at the time of applying this invention, and the minimum tracking allowance (alpha) of a walking beam type heating furnace. Apply 本発明を実施するための加熱炉の制御系の概略図である。It is the schematic of the control system of the heating furnace for implementing this invention.

符号の説明Explanation of symbols

10:スラブ加熱炉
11:装入ローラ
12:移動ビーム
13:固定ビーム
14:プッシャ
15:抽出ローラテーブル
16:エキストラクタ
21:加熱炉制御装置
22:スラブ装入位置設定装置
23:プッシャ制御装置
S(S1, S2,・・・・Sn-1, Sn):スラブ
10: Slab heating furnace
11: Loading roller
12: Moving beam
13: Fixed beam
14: Pusher
15: Extraction roller table
16: Extractor
21: Heating furnace controller
22: Slab charging position setting device
23: Pusher control device
S (S 1 , S 2 ,... S n-1 , S n ): Slab

Claims (2)

ウォーキングビーム式加熱炉に複数のスラブを連続的に装入して加熱するに当たり、
先行スラブと後行スラブの間隙Lを下記式によって定めることを特徴とするウォーキングビーム式加熱炉へのスラブ装入方法。
L=(ΔW+ΔW)/2+α
ここに、
ΔW:先行スラブの装入時温度と該スラブの抽出設定温度から算出される先行スラブの幅方向熱膨張量
ΔW:後行スラブの装入時温度と該スラブの抽出設定温度から算出される後行スラブの幅方向熱膨張量
α:ウォーキングビーム式加熱炉の最小スラブ間隔
In charging and heating a plurality of slabs continuously in a walking beam furnace,
A method for inserting a slab into a walking beam heating furnace, wherein a gap L between the preceding slab and the following slab is determined by the following equation.
L = (ΔW 1 + ΔW 2 ) / 2 + α
here,
ΔW 1 : Amount of thermal expansion in the width direction of the preceding slab calculated from the charging temperature of the preceding slab and the extraction set temperature of the slab ΔW 2 : Calculated from the charging temperature of the succeeding slab and the extraction setting temperature of the slab Thermal expansion amount α in the width direction of the following slab: Minimum slab spacing of the walking beam furnace
ウォーキングビーム式加熱炉に複数のスラブを連続的に装入して加熱するに当たり、搬送テーブル上において、先行スラブ及び該先行スラブに続いて装入される後行スラブの装入時のスラブ幅及びスラブ温度を測定する段階と、
前記各スラブの装入時のスラブ幅及びスラブ温度及び抽出時の設定温度に基づいて、これらスラブの加熱炉内における熱膨張量を算出する段階と、
前記ウォーキングビーム式加熱炉の搬送停止信号を得て先行スラブの尾端位置を推定する段階と、
前記後行スラブを、前記先行スラブと後行スラブの間隙Lを下記式によって定めて、装入する段階と、
を包含することを特徴とするウォーキングビーム式加熱炉へのスラブ装入方法。
L=(ΔW+ΔW)/2+α
ここに
ΔW:先行スラブの装入時温度と該スラブの抽出設定温度から算出される先行スラブの幅方向熱膨張量
ΔW:後行スラブの装入時温度と該スラブの抽出設定温度から算出される後行スラブの幅方向熱膨張量
α:ウォーキングビーム式加熱炉の最小スラブ間隔


When continuously charging and heating a plurality of slabs in a walking beam type heating furnace, the slab width at the time of charging the preceding slab and the succeeding slab to be charged following the preceding slab on the transfer table, and Measuring the slab temperature;
Based on the slab width and slab temperature at the time of charging each slab and the set temperature at the time of extraction, calculating the amount of thermal expansion in the heating furnace of these slabs;
Obtaining a transport stop signal of the walking beam heating furnace and estimating the tail end position of the preceding slab;
The following slab is inserted by setting a gap L between the preceding slab and the following slab according to the following equation:
A method for charging a slab into a walking beam furnace.
L = (ΔW 1 + ΔW 2 ) / 2 + α
Here, ΔW 1 : The amount of thermal expansion in the width direction of the preceding slab calculated from the charging temperature of the preceding slab and the extraction setting temperature of the preceding slab ΔW 2 : From the charging temperature of the succeeding slab and the extraction setting temperature of the slab Calculated amount of thermal expansion α of the trailing slab in the width direction: Minimum slab interval of the walking beam furnace


JP2006047721A 2006-02-24 2006-02-24 Method for charging slab into heating furnace Pending JP2007224373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006047721A JP2007224373A (en) 2006-02-24 2006-02-24 Method for charging slab into heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006047721A JP2007224373A (en) 2006-02-24 2006-02-24 Method for charging slab into heating furnace

Publications (1)

Publication Number Publication Date
JP2007224373A true JP2007224373A (en) 2007-09-06

Family

ID=38546447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006047721A Pending JP2007224373A (en) 2006-02-24 2006-02-24 Method for charging slab into heating furnace

Country Status (1)

Country Link
JP (1) JP2007224373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110056263A1 (en) * 2008-03-25 2011-03-10 Sumitomo Metal Industries, Ltd. Method for Producing Seamless Pipe and Method for Determining Length of Billet for Use in Producing Seamless Pipe
JP2013035010A (en) * 2011-08-05 2013-02-21 Jfe Steel Corp Device and method for detecting slab width, and control device for slab arrangement in heating furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110056263A1 (en) * 2008-03-25 2011-03-10 Sumitomo Metal Industries, Ltd. Method for Producing Seamless Pipe and Method for Determining Length of Billet for Use in Producing Seamless Pipe
US8770003B2 (en) * 2008-03-25 2014-07-08 Sumitomo Metal Industries, Ltd. Method for producing seamless pipe and method for determining length of billet for use in producing seamless pipe
JP2013035010A (en) * 2011-08-05 2013-02-21 Jfe Steel Corp Device and method for detecting slab width, and control device for slab arrangement in heating furnace

Similar Documents

Publication Publication Date Title
JP2776217B2 (en) Continuous heating furnace and method for extracting material to be heated
JP5565200B2 (en) Finishing temperature control device in hot rolling
JP2007224373A (en) Method for charging slab into heating furnace
JP6380510B2 (en) Heating furnace slab charging temperature prediction system and heating furnace slab charging temperature prediction method
KR20130110492A (en) Method for compensation driving of heating furnace
JP2009263701A (en) Method for heating material to be heated
JP4797736B2 (en) Billet heating apparatus and heating method
CN107687769A (en) A kind of recognition methods of heater for rolling steel blank vacation in place
JP4227354B2 (en) Apparatus and method for creating a heating schedule in a hot rolling mill.
JP4079098B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP4815837B2 (en) Combustion control method for continuous heating furnace
JP2006274286A (en) Heat treatment method and method for controlling quality of article to be heat-treated
JP2006274401A (en) Method for automatically controlling combustion in continuous heating furnace
KR101442915B1 (en) Method for controlling skid beam moving pattern in furnace and thereof apparatus
JP3928314B2 (en) Method for predicting and determining heating furnace extraction time and heating furnace control method
JP5509965B2 (en) Casting heating method
JPH10102136A (en) Method for ejecting heated material in continuous heating furnace and device therefor
JPH07126760A (en) Method for controlling material transportation in continuous heating furnace
JPH06287632A (en) Idling device in walking beam type furnace
JP2010207899A (en) Method of controlling temperature in hot rolling
JP6254754B2 (en) Heating method of heated material
JPS59185722A (en) Heating method of heating furnace for steel material
JP2023125249A (en) Correction device and correction method for slab temperature model, furnace temperature control device and furnace temperature control method for heating furnace and manufacturing method of steel plate
JPS6321482A (en) Walking beam heating furnace
KR101908776B1 (en) Mill pacing control method for reheating furnace