JP6380510B2 - Heating furnace slab charging temperature prediction system and heating furnace slab charging temperature prediction method - Google Patents

Heating furnace slab charging temperature prediction system and heating furnace slab charging temperature prediction method Download PDF

Info

Publication number
JP6380510B2
JP6380510B2 JP2016222483A JP2016222483A JP6380510B2 JP 6380510 B2 JP6380510 B2 JP 6380510B2 JP 2016222483 A JP2016222483 A JP 2016222483A JP 2016222483 A JP2016222483 A JP 2016222483A JP 6380510 B2 JP6380510 B2 JP 6380510B2
Authority
JP
Japan
Prior art keywords
slab
temperature
heating furnace
transition
calculates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016222483A
Other languages
Japanese (ja)
Other versions
JP2017104904A (en
Inventor
孝次 吉原
孝次 吉原
康之 馬場
康之 馬場
一也 難波
一也 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017104904A publication Critical patent/JP2017104904A/en
Application granted granted Critical
Publication of JP6380510B2 publication Critical patent/JP6380510B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Control Of Metal Rolling (AREA)

Description

本発明は、製鉄所における熱間圧延工場の加熱炉へ装入するスラブの温度を予測する、加熱炉のスラブ装入温度予測システムに関するものである。   The present invention relates to a slab charging temperature prediction system for a heating furnace that predicts the temperature of the slab charged into the heating furnace of a hot rolling mill in an ironworks.

これまでの熱間圧延工場の加熱炉のスラブ装入温度は、連続鋳造機でトーチカットされて加熱炉に装入されるまでの経過時間に基づいて求めることが一般的であった。   Conventionally, the slab charging temperature of a heating furnace in a hot rolling mill has been generally determined based on the elapsed time from the torch cut by a continuous casting machine until charging into the heating furnace.

例えば、特許文献1では、連続鋳造機でトーチカットされる予定時刻から、このスラブが熱間圧延工場の加熱炉に装入する予定時刻までの経過時間に基づいた非線形回帰式を用いて、経過時間の間に生じる温度降下量を求める。そして、トーチカットされた時点でのスラブ温度から求めた温度降下量を差し引いて、スラブ装入温度としている。   For example, Patent Document 1 uses a non-linear regression equation based on the elapsed time from the scheduled time when the torch is cut by the continuous casting machine to the scheduled time when the slab is charged into the heating furnace of the hot rolling mill. Find the amount of temperature drop that occurs over time. And the temperature drop amount calculated | required from the slab temperature at the time of a torch cut is deducted, and it is set as the slab charging temperature.

特開平11−264026号公報JP 11-264026 A

特許文献1に開示の技術では、加熱炉での再加熱時の燃料費を削減する、連続鋳造−熱間圧延同期化操業(以下、DHCRと称する)を前提としており、トーチカットされてから加熱炉に装入されるまでのスラブの移動方法の違いによる温度降下量の違いが考慮されていないという問題がある。   The technique disclosed in Patent Document 1 is based on the premise of a continuous casting-hot rolling synchronized operation (hereinafter referred to as DHCR) that reduces fuel costs during reheating in a heating furnace, and is heated after being torch cut. There is a problem that the difference in temperature drop due to the difference in the method of moving the slab until it is charged into the furnace is not taken into account.

すなわち、DHCRではトーチカットから加熱炉までのスラブ搬送時間が短く、このスラブ搬送時間で加熱炉のスラブ装入温度を予測しても、実際のスラブ装入温度との誤差は小さいものの、トーチカットから加熱炉までの途中にスラブヤードでスラブを保管する場合では、加熱炉までの経過時間が長く、かつスラブヤードでの保管状況によって温度降下量は大きく異なってくる。   That is, in DHCR, the slab transfer time from the torch cut to the heating furnace is short, and even if the slab charging temperature of the heating furnace is predicted by this slab transfer time, the error with the actual slab charging temperature is small, but the torch cut In the case where the slab is stored in the slab yard in the middle from the heating furnace to the heating furnace, the elapsed time to the heating furnace is long, and the temperature drop varies greatly depending on the storage condition in the slab yard.

例えば、スラブヤードでのスラブ保管時間が同じであるとしても、スラブヤードで高温のスラブに挟まれた状態で山置きされていたスラブと、スラブ単体で外気温にさらされた状態で置かれていたスラブとでは、後者スラブの温度降下量が大きくなる。   For example, even if the slab storage time in the slab yard is the same, the slab that was placed between the slab yard and the high temperature slab and the slab alone was exposed to the outside temperature. With a slab, the temperature drop of the latter slab is large.

本発明は、このような従来の問題に鑑みてなされたものであり、製鉄所の熱間圧延工場におけるスラブの加熱炉への装入温度を、スラブヤードでのスラブ保管状況を考慮して精度よく予測することができる、加熱炉のスラブ装入温度予測システムを提供することを目的とする。   The present invention has been made in view of such a conventional problem, and the charging temperature of the slab in the hot rolling mill of the ironworks is considered to be accurate in consideration of the slab storage situation in the slab yard. An object of the present invention is to provide a slab charging temperature prediction system for a heating furnace that can be well predicted.

上記課題は、以下の発明によって解決できる。   The above problems can be solved by the following invention.

[1] 製鉄所における熱間圧延工場の加熱炉へ装入するスラブの温度を予測する加熱炉のスラブ装入温度予測システムであって、
連続鋳造機で鋳造され、所定の長さにトーチカットされたスラブのトーチカット時刻および該時刻でのスラブ温度を保持する連続鋳造機操業実績データベースと、
スラブ毎の搬送計画およびスラブヤードでの山積み情報を保持するスラブ搬送計画データベースと、
前記トーチカット時刻、該時刻でのスラブ温度、前記スラブ毎の搬送計画、およびスラブヤードでの山積み情報を元に、スラブヤードでのスラブの温度推移を計算することによって、スラブの加熱炉装入温度を予測する加熱炉装入温度予測システムとを具備することを特徴とする加熱炉のスラブ装入温度予測システム。
[1] A slab charging temperature prediction system for a heating furnace for predicting a temperature of a slab charged into a heating furnace of a hot rolling mill in a steel mill,
A continuous casting machine operation result database that holds the torch cutting time of the slab cast by the continuous casting machine and torch cut to a predetermined length and the slab temperature at the time;
A slab transportation plan database that holds the transportation plan for each slab and the pile information at the slab yard;
Based on the torch cut time, the slab temperature at the time, the transport plan for each slab, and the pile information at the slab yard, the temperature transition of the slab at the slab yard is calculated to calculate the slab furnace charge. A slab charging temperature prediction system for a heating furnace, comprising a heating furnace charging temperature prediction system for predicting a temperature.

[2] 上記[1]に記載の加熱炉のスラブ装入温度予測システムにおいて、
前記スラブヤードでのスラブの温度推移の計算にあたっては、
温度推移を計算するスラブの温度と、温度推移を計算するスラブの上側に置かれたスラブの温度あるいは温度推移を計算するスラブの上側にスラブが置かれていない場合には外気温との温度差、および、
温度推移を計算するスラブの温度と、温度推移を計算するスラブの下側に置かれたスラブの温度あるいは温度推移を計算するスラブの下側にスラブが置かれていない場合には外気温との温度差のそれぞれに基づき、温度推移を計算するスラブの温度降下量を計算することを特徴とする加熱炉のスラブ装入温度予測システム。
[2] In the heating furnace slab charging temperature prediction system according to [1] above,
In calculating the temperature transition of the slab at the slab yard,
Temperature difference between the temperature of the slab that calculates the temperature transition and the temperature of the slab placed above the slab that calculates the temperature transition, or the outside temperature if no slab is placed above the slab that calculates the temperature transition ,and,
The temperature of the slab that calculates the temperature transition and the temperature of the slab that is placed under the slab that calculates the temperature transition or the outside air temperature if there is no slab under the slab that calculates the temperature transition A slab charging temperature prediction system for a heating furnace, which calculates a temperature drop amount of a slab for calculating a temperature transition based on each temperature difference.

[3] 上記[1]または[2]に記載の加熱炉のスラブ装入温度予測システムにおいて、
前記スラブヤードでのスラブの温度推移の計算にあたっては、
以下の(1)、(2)式を用いることを特徴とする加熱炉のスラブ装入温度予測システム。
[3] In the heating furnace slab charging temperature prediction system according to [1] or [2] above,
In calculating the temperature transition of the slab at the slab yard,
A slab charging temperature prediction system for a heating furnace using the following equations (1) and (2):

本発明により、製鉄所の熱間圧延工場におけるスラブの加熱炉への装入温度を精度よく予測することができるようになったので、加熱炉でのスラブ加熱制御がより精度良くできるようになる。また、熱間圧延スケジューリングシステムと連携することで、より高能率、低コストでの熱間圧延工場の操業が可能となる。   According to the present invention, it is possible to accurately predict the charging temperature of the slab into the heating furnace in the hot rolling mill of the ironworks, so that the slab heating control in the heating furnace can be performed with higher accuracy. . Also, by cooperating with the hot rolling scheduling system, it is possible to operate the hot rolling mill with higher efficiency and lower cost.

本発明を適用する製鉄所の設備列の一例を説明する図である。It is a figure explaining an example of the equipment row | line of the steelworks to which this invention is applied. 本発明を適用するシステム構成の一例を示す図である。It is a figure which shows an example of the system configuration to which this invention is applied. 本実施例におけるスラブヤードでの山積み状態の変化を示す図である。It is a figure which shows the change of the piled-up state in the slab yard in a present Example. 本実施例におけるスラブ温度の時間推移結果を示す図である。It is a figure which shows the time transition result of the slab temperature in a present Example.

以下、図および式を参照しながら、本発明の説明を行う。図1は、本発明を適用する製鉄所の設備列の一例を説明する図である。図中、1は連続鋳造機、2はスラブ、3は山、4はスラブヤード、5は加熱炉、および6は熱間圧延機をそれぞれ表す。   Hereinafter, the present invention will be described with reference to the drawings and formulas. FIG. 1 is a diagram for explaining an example of an equipment row of an ironworks to which the present invention is applied. In the figure, 1 is a continuous casting machine, 2 is a slab, 3 is a mountain, 4 is a slab yard, 5 is a heating furnace, and 6 is a hot rolling mill.

連続鋳造機1で鋳造され、所定の長さにトーチカットされたスラブ2は、スラブヤード4と呼ばれる置場に、搬送設備(図示せず)で運ばれる。ここで、スラブ2は複数本重ねて置かれ、重ねて置かれたスラブの一固まりは山と呼ばれる。図1に見られるように、山3がスラブヤード4内に複数存在する。   The slab 2 cast by the continuous casting machine 1 and torch-cut to a predetermined length is transported to a place called a slab yard 4 by a transport facility (not shown). Here, a plurality of slabs 2 are laid on top of each other, and a lump of slabs placed on top of each other is called a mountain. As seen in FIG. 1, a plurality of mountains 3 exist in the slab yard 4.

熱間圧延工場の圧延計画により、スラブ毎の加熱炉3への装入時刻がスケジューリングされ、このスケジューリング結果に従ってスラブ2はスラブヤード4から加熱炉5に装入される。所定の圧延温度まで加熱されたスラブ2は、加熱炉5より抽出され熱間圧延機6により所定の厚さに圧延され、コイラー(図示せず)にて巻き取られてコイル状の鋼板となる。   According to the rolling plan of the hot rolling mill, the charging time into the heating furnace 3 for each slab is scheduled, and the slab 2 is charged into the heating furnace 5 from the slab yard 4 according to the scheduling result. The slab 2 heated to a predetermined rolling temperature is extracted from the heating furnace 5, rolled to a predetermined thickness by a hot rolling mill 6, and wound up by a coiler (not shown) to form a coiled steel plate. .

図2は、本発明を適用するシステム構成の一例を示す図である。図中、10は連続鋳造機操業実績データベース、20はスラブ搬送計画データベース、30は加熱炉装入温度予測システム、および40は熱間圧延スケジューリングシステムをそれぞれ表す。   FIG. 2 is a diagram showing an example of a system configuration to which the present invention is applied. In the figure, 10 represents a continuous caster operation performance database, 20 represents a slab transfer plan database, 30 represents a furnace charging temperature prediction system, and 40 represents a hot rolling scheduling system.

加熱炉装入温度予測システム30は、連続鋳造機操業実績データベース10より、トーチカット時刻とトーチカット時のスラブ温度を、スラブ搬送計画データベース20よりスラブ毎の搬送計画とスラブヤードでの山積み情報を受け取り、それらの情報を元にスラブヤードでのスラブの温度推移を計算することによって、スラブの加熱炉装入温度をより正確に予測する。   The heating furnace charging temperature prediction system 30 obtains the torch cutting time and the slab temperature at the time of torch cutting from the continuous casting machine operation result database 10, and the transportation plan for each slab and the pile information at the slab yard from the slab transportation plan database 20. The temperature of the slab in the furnace is calculated more accurately by calculating the temperature transition of the slab at the slab yard based on the received information.

そして、予測されたスラブ毎の加熱炉装入温度は、熱間圧延スケジューリングシステム40に送られ、加熱炉へのスラブ装入時刻や熱間圧延時刻などの計算に使用される。なお、加熱炉装入温度予測システム30および熱間圧延スケジューリングシステム40は、それぞれ別個のコンピュータで実現することも、また一つのコンピュータで違うモジュールとして実現することもできる。   And the heating furnace charging temperature for every estimated slab is sent to the hot rolling scheduling system 40, and is used for calculation, such as the slab charging time to a heating furnace, and hot rolling time. The heating furnace charging temperature prediction system 30 and the hot rolling scheduling system 40 can be realized by separate computers or as different modules by one computer.

加熱炉装入温度予測システム30におけるスラブの加熱炉装入温度の予測計算にあたっては、スラブが、トーチカットされてからスラブヤードに搬送されるまで、およびスラブヤードから加熱炉に搬送されるまでの搬送時間については、特許文献1のようにそれぞれの搬送時間に基づいてスラブの温度降下量を求めるようにする。   In the prediction calculation of the heating furnace charging temperature of the slab in the heating furnace charging temperature prediction system 30, the slab is cut from the torch cut until it is transported to the slab yard and from the slab yard to the heating furnace. As for the conveyance time, the temperature drop amount of the slab is obtained based on the respective conveyance times as in Patent Document 1.

スラブがスラブヤードに到着した後の、スラブヤードでのスラブの温度推移については、以下に示す(1)、(2)式により計算する。   The temperature transition of the slab at the slab yard after the slab arrives at the slab yard is calculated by the following equations (1) and (2).

上記計算は、温度推移を計算するスラブの上下面からの熱伝達を考慮したものである。山積み状況(上下面に他のスラブがある場合またはない場合)を考慮し、上下面での温度差に基づいてスラブヤードに置かれたスラブの温度推移を予測する。   The above calculation considers heat transfer from the upper and lower surfaces of the slab for calculating the temperature transition. Considering the piled up situation (with or without other slabs on the top and bottom surfaces), predict the temperature transition of the slab placed in the slab yard based on the temperature difference between the top and bottom surfaces.

上記計算によって、加熱炉装入時刻よりスラブヤードから加熱炉への搬送にかかる時間を差し引いた時刻までのスラブ温度(スラブヤードから搬送時のスラブ温度)を求め、このスラブ温度から加熱炉への搬送にかかる時間での温度降下量を引いて、加熱炉へ装入するスラブの温度とする。   Based on the above calculation, the slab temperature from the time when the furnace is charged to the time obtained by subtracting the time required for conveyance from the slab yard to the furnace (the slab temperature during conveyance from the slab yard) is obtained. By subtracting the temperature drop during the time required for conveyance, the temperature of the slab charged into the heating furnace is obtained.

以上のように、製鉄所の熱間圧延工場におけるスラブの加熱炉への装入温度を精度よく予測することができるようになったので、加熱炉でのスラブ加熱制御がより精度良くできるようになる。また、熱間圧延スケジューリングシステムと連携することで、より高能率、低コストでの熱間圧延工場の操業が可能となる。   As described above, the charging temperature of the slab into the heating furnace in the hot rolling mill of the steel works can be accurately predicted, so that the slab heating control in the heating furnace can be performed with higher accuracy. Become. Also, by cooperating with the hot rolling scheduling system, it is possible to operate the hot rolling mill with higher efficiency and lower cost.

以下に、スラブヤードでのスラブ温度推移の一例を示す。図3は、本実施例におけるスラブヤードでの山積み状態の変化を示す図である。スラブ4本(スラブA、B、C、D)、スラブヤードに3つの山(山1、山2、山3)、時間刻みが1時間での時刻0. 0〜10. 0での山積み状態の変化例を示している。   Below, an example of slab temperature transition in a slab yard is shown. FIG. 3 is a diagram showing a change in the piled state at the slab yard in the present embodiment. Four slabs (slabs A, B, C, D), three slabs in the slab yard (mountain 1, mountain 2, mountain 3), piled up at time 0.0 to 10.0 in 1 hour increments An example of change is shown.

スラブAとBは時刻0. 0に、スラブCとDは時刻3. 0に、それぞれトーチカットされた後スラブヤードに到着している。スラブAとBは、到着時には山1の位置にスラブBの上にスラブAが積まれ、また、スラブCは、到着時には山1のスラブAの上に積まれ、さらに、スラブDは、到着時には山3の位置に単体で床置きされる。スラブヤード到着時の温度は全て900℃とする。   Slabs A and B arrive at the slab yard after being torch cut at time 0.0 and slabs C and D are at time 3.0, respectively. When slabs A and B arrive, slab A is stacked on slab B at the position of mountain 1, slab C is stacked on slab A of mountain 1 upon arrival, and slab D arrives Sometimes it is placed alone on the mountain 3 position. All temperatures on arrival at the slab yard shall be 900 ° C.

さらに時刻9. 0では、山1のスラブBの上に積まれていたスラブAとスラブCを、それぞれ山2と山3に移動する配置換えが行なわれていることを表している。   Furthermore, at time 9.0, it represents that the slab A and the slab C loaded on the slab B of the mountain 1 are moved to the mountain 2 and the mountain 3 respectively.

このときの、各スラブの温度変化は、前述した(1)、(2)式により計算される。例えば、時刻4. 0におけるスラブAの温度TA(4)は、図3で見るように山1でスラブB、Cに挟まれて積まれているので、時刻3. 0におけるスラブAの温度TA(3)、スラブCの温度TC(3)、およびスラブBの温度TB(3)を用いて、以下のように表される。   The temperature change of each slab at this time is calculated by the above-described equations (1) and (2). For example, the temperature TA (4) of the slab A at time 4.0 is stacked between the slabs B and C at the mountain 1 as seen in FIG. Using (3), the temperature TC (3) of the slab C, and the temperature TB (3) of the slab B, it is expressed as follows.

上記パラメータα、β、γは、α=0.09015、β=0.0883、γ=6.11とした。これは、例えば1か月分のスラブの加熱炉装入温度の実測値を用いて、予測誤差が最小となるように最小二乗法で同定することで求めることができる。また、この例では、外気温を50℃で設定した。   The parameters α, β, and γ were set to α = 0.09015, β = 0.0883, and γ = 6.11. This can be obtained by, for example, using the measured value of the heating furnace charging temperature of the slab for one month, and identifying by the least square method so that the prediction error is minimized. In this example, the outside air temperature was set to 50 ° C.

山積みの状態に即して、各スラブの各時刻での温度を順次求めていくことで、任意の時刻における各スラブの温度を予測することができる。   The temperature of each slab at an arbitrary time can be predicted by sequentially obtaining the temperature at each time of each slab in accordance with the state of piles.

図4は、本実施例におけるスラブ温度の時間推移結果を示す図である。図4(a)に計算結果を表形式で、図4(b)にグラフ形式でそれぞれ示している。   FIG. 4 is a diagram showing the time transition result of the slab temperature in this example. FIG. 4A shows the calculation results in a table format, and FIG. 4B shows the calculation results in a graph format.

山積みの状態の違いにより、各スラブの温度変化に差が出ていることが分る。また、高温のスラブBとスラブCに挟まれていたスラブAの温度履歴が高く推移し、逆に単体で置かれていたスラブDの温度が低く推移していることが表現できている。   It can be seen that there is a difference in the temperature change of each slab due to the difference in the state of the pile. Moreover, it can be expressed that the temperature history of the slab A sandwiched between the high-temperature slab B and the slab C is high, and conversely, the temperature of the slab D that has been placed alone is low.

なお、本実施例ではスラブ4本、スラブヤード3山、1時間単位での予測結果例示したが、実際の適用では、スラブ本数が数千本、スラブヤードの山が数十、時間刻みは1分単位で行っている。このように規模が変わっても同様の計算方法で予測することが可能である。   In the present embodiment, the prediction result is shown by 4 slabs, 3 slab yards, 1 hour unit, but in actual application, the number of slabs is thousands, the slab yards are tens, and the time increment is 1 This is done in minutes. Even if the scale changes in this way, it is possible to predict with the same calculation method.

1 連続鋳造機
2 スラブ
3 山
4 スラブヤード
5 加熱炉
6 熱間圧延機
10 連続鋳造機操業実績データベース
20 スラブ搬送計画データベース
30 加熱炉装入温度予測システム
40 熱間圧延スケジューリングシステム
DESCRIPTION OF SYMBOLS 1 Continuous casting machine 2 Slab 3 Mountain 4 Slab yard 5 Heating furnace 6 Hot rolling mill 10 Continuous casting machine operation results database 20 Slab conveyance plan database 30 Heating furnace charging temperature prediction system 40 Hot rolling scheduling system

Claims (4)

製鉄所における熱間圧延工場の加熱炉へ装入するスラブの温度を予測する加熱炉のスラブ装入温度予測システムであって、
連続鋳造機で鋳造され、所定の長さにトーチカットされたスラブのトーチカット時刻および該時刻でのスラブ温度を保持する連続鋳造機操業実績データベースと、
スラブ毎の搬送計画およびスラブヤードでの山積み情報を保持するスラブ搬送計画データベースと、
トーチカットされてからスラブヤードに搬送されるまでの搬送時間に基づくスラブの温度降下量と、スラブヤードでのスラブの温度推移と、スラブヤードから加熱炉に搬送されるまでの搬送時間に基づくスラブの温度降下量を計算することによって、スラブの加熱炉装入温度を予測する加熱炉装入温度予測システムとを具備することを特徴とする加熱炉のスラブ装入温度予測システム。
A heating furnace slab charging temperature prediction system for predicting a temperature of a slab charged into a heating furnace of a hot rolling mill in a steel mill,
A continuous casting machine operation result database that holds the torch cutting time of the slab cast by the continuous casting machine and torch cut to a predetermined length and the slab temperature at the time;
A slab transportation plan database that holds the transportation plan for each slab and the pile information at the slab yard;
Slab temperature drop amount based on transport time from torch cut to transport to slab yard, slab temperature transition in slab yard, and slab based on transport time from slab yard to heating furnace A slab charging temperature prediction system for a heating furnace, comprising a heating furnace charging temperature prediction system for predicting a slab heating furnace charging temperature by calculating a temperature drop amount of the slab.
請求項1に記載の加熱炉のスラブ装入温度予測システムにおいて、
前記スラブヤードでのスラブの温度推移の計算にあたっては、
温度推移を計算するスラブの温度と、温度推移を計算するスラブの上側に置かれたスラブの温度あるいは温度推移を計算するスラブの上側にスラブが置かれていない場合には外気温との温度差、および、
温度推移を計算するスラブの温度と、温度推移を計算するスラブの下側に置かれたスラブの温度あるいは温度推移を計算するスラブの下側にスラブが置かれていない場合には外気温との温度差のそれぞれに基づき、温度推移を計算するスラブの温度降下量を計算することを特徴とする加熱炉のスラブ装入温度予測システム。
In the heating furnace slab charging temperature prediction system according to claim 1,
In calculating the temperature transition of the slab at the slab yard,
Temperature difference between the temperature of the slab that calculates the temperature transition and the temperature of the slab placed above the slab that calculates the temperature transition, or the outside temperature if no slab is placed above the slab that calculates the temperature transition ,and,
The temperature of the slab that calculates the temperature transition and the temperature of the slab that is placed under the slab that calculates the temperature transition or the outside air temperature if there is no slab under the slab that calculates the temperature transition A slab charging temperature prediction system for a heating furnace, which calculates a temperature drop amount of a slab for calculating a temperature transition based on each temperature difference.
製鉄所における熱間圧延工場の加熱炉へ装入するスラブの温度を予測する加熱炉のスラブ装入温度予測方法であって、A method for predicting a slab charging temperature of a heating furnace for predicting a temperature of a slab charged into a heating furnace of a hot rolling factory in an ironworks,
連続鋳造機で鋳造され、所定の長さにトーチカットされたスラブのトーチカットされてからスラブヤードに搬送されるまでの搬送時間に基づくスラブの温度降下量と、スラブヤードでのスラブの温度推移と、スラブヤードから加熱炉に搬送されるまでの搬送時間に基づくスラブの温度降下量を計算することによって、スラブの加熱炉装入温度を予測することを特徴とする加熱炉のスラブ装入温度予測方法。The temperature drop of the slab based on the transfer time from the torch cut of the slab cast by the continuous caster and torch cut to a predetermined length to the slab yard, and the slab temperature transition in the slab yard And a slab charging temperature of the heating furnace characterized by predicting a heating furnace charging temperature of the slab by calculating a temperature drop amount of the slab based on a transfer time from the slab yard to the heating furnace. Prediction method.
請求項3に記載の加熱炉のスラブ装入温度予測方法において、In the heating furnace slab charging temperature prediction method according to claim 3,
前記スラブヤードでのスラブの温度推移の計算にあたっては、In calculating the temperature transition of the slab at the slab yard,
温度推移を計算するスラブの温度と、温度推移を計算するスラブの上側に置かれたスラブの温度あるいは温度推移を計算するスラブの上側にスラブが置かれていない場合には外気温との温度差、および、Temperature difference between the temperature of the slab that calculates the temperature transition and the temperature of the slab placed above the slab that calculates the temperature transition, or the outside temperature if no slab is placed above the slab that calculates the temperature transition ,and,
温度推移を計算するスラブの温度と、温度推移を計算するスラブの下側に置かれたスラブの温度あるいは温度推移を計算するスラブの下側にスラブが置かれていない場合には外気温との温度差のそれぞれに基づき、温度推移を計算するスラブの温度降下量を計算することを特徴とする加熱炉のスラブ装入温度予測方法。The temperature of the slab that calculates the temperature transition and the temperature of the slab that is placed under the slab that calculates the temperature transition or the outside air temperature if there is no slab under the slab that calculates the temperature transition A method for predicting a slab charging temperature of a heating furnace, wherein a temperature drop amount of a slab for calculating a temperature transition is calculated based on each temperature difference.
JP2016222483A 2015-11-30 2016-11-15 Heating furnace slab charging temperature prediction system and heating furnace slab charging temperature prediction method Expired - Fee Related JP6380510B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015232620 2015-11-30
JP2015232620 2015-11-30

Publications (2)

Publication Number Publication Date
JP2017104904A JP2017104904A (en) 2017-06-15
JP6380510B2 true JP6380510B2 (en) 2018-08-29

Family

ID=59058725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016222483A Expired - Fee Related JP6380510B2 (en) 2015-11-30 2016-11-15 Heating furnace slab charging temperature prediction system and heating furnace slab charging temperature prediction method

Country Status (1)

Country Link
JP (1) JP6380510B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828644B (en) * 2021-09-18 2023-12-05 广东韶钢松山股份有限公司 Scheduling method for red-fed billets
CN114309080B (en) * 2021-11-29 2023-10-03 邯郸钢铁集团有限责任公司 Method for judging direct hot charging of conventional hot continuous rolling production line
CN115011786A (en) * 2022-04-19 2022-09-06 北京科技大学 Furnace temperature optimization method and device for dynamically sensing working condition of heating furnace

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353216A (en) * 1986-08-25 1988-03-07 Nippon Steel Corp Method for controlling charging order of rolling material into heating furnace for hot rolling
KR970700068A (en) * 1994-10-25 1997-01-08 미노루 다나까 SLAB FEED YARD
JPH11264026A (en) * 1998-03-17 1999-09-28 Kawasaki Steel Corp Method for determing slab withdraw time in hot rolling
JP3458758B2 (en) * 1999-03-31 2003-10-20 Jfeスチール株式会社 Method and apparatus for cooling steel sheet
JP4007166B2 (en) * 2002-11-20 2007-11-14 Jfeスチール株式会社 How to handle ferritic single-phase stainless steel slabs
JP4158034B2 (en) * 2003-11-28 2008-10-01 Jfeスチール株式会社 Hot rolling method for thin steel sheet
JP5679914B2 (en) * 2011-06-15 2015-03-04 株式会社神戸製鋼所 Steel temperature prediction method
CN102637272B (en) * 2012-03-19 2016-05-04 东北大学 Distribution method and the device of the front storehouse of hot rolling slab residue slab
JP5803838B2 (en) * 2012-07-31 2015-11-04 新日鐵住金株式会社 Method for estimating slab temperature

Also Published As

Publication number Publication date
JP2017104904A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6380510B2 (en) Heating furnace slab charging temperature prediction system and heating furnace slab charging temperature prediction method
CN105005632A (en) Erosion prediction method for blast furnace hearth with multi-layer refractory brick furnace wall structure
JP5789958B2 (en) Cooling stop temperature control device and cooling stop temperature control method
JPWO2016151854A1 (en) Temperature calculation method, temperature calculation device, heating control method, and heating control device
JP5736804B2 (en) Combustion control method and combustion control apparatus for continuous heating furnace
JP6658372B2 (en) Yard management device, yard management method, and program
JP2010228003A (en) Method and apparatus for preparing charging order and extracting order of heating furnace and rolling order
JP5862300B2 (en) Thermoelectric generation method
JP2012030282A (en) Device and method for preparing hot rolling schedule and computer program
CN104599076B (en) A kind of steel production solid waste recycles scheduling system and method
JP6229632B2 (en) Rolling order determination system and rolling order determination method for hot rolling
JP4227354B2 (en) Apparatus and method for creating a heating schedule in a hot rolling mill.
JP3144984B2 (en) Adjustment method of molten steel temperature in steelmaking process
JP6665475B2 (en) Furnace temperature setting method and furnace temperature setting device
JP5974883B2 (en) Thermoelectric generation method
JP4718287B2 (en) Rolling line management system
JP2013126674A (en) Method for charging slab into heating furnace
JP6981830B2 (en) Steel piece temperature estimation device and method
JP6354952B2 (en) Method of storing steel slabs in a storage yard and guidance device used for carrying out the method
JP6375741B2 (en) Control method of molten steel temperature in steelmaking factory
JP2014170411A (en) In-process inventory quantity prediction device and in-process inventory quantity prediction method
JP2017164758A (en) Method for controlling mill pacing of rolling line
JP5581600B2 (en) Determination method of heating furnace extraction interval
JP2019107660A (en) Calculation method of rough rolling time of steel plate, calculation device of the same, and manufacturing method of steel plate
KIHARA et al. with the Ald of Boundary Element Methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180306

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R150 Certificate of patent or registration of utility model

Ref document number: 6380510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

LAPS Cancellation because of no payment of annual fees