JP4158034B2 - Hot rolling method for thin steel sheet - Google Patents

Hot rolling method for thin steel sheet Download PDF

Info

Publication number
JP4158034B2
JP4158034B2 JP2003400399A JP2003400399A JP4158034B2 JP 4158034 B2 JP4158034 B2 JP 4158034B2 JP 2003400399 A JP2003400399 A JP 2003400399A JP 2003400399 A JP2003400399 A JP 2003400399A JP 4158034 B2 JP4158034 B2 JP 4158034B2
Authority
JP
Japan
Prior art keywords
temperature
steel
rolling
slab
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003400399A
Other languages
Japanese (ja)
Other versions
JP2005161326A (en
Inventor
義光 福井
正人 小出
誠 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003400399A priority Critical patent/JP4158034B2/en
Publication of JP2005161326A publication Critical patent/JP2005161326A/en
Application granted granted Critical
Publication of JP4158034B2 publication Critical patent/JP4158034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、Nを強化元素として0.005質量%以上含有する歪時効硬化特性に優れた薄鋼板の熱間圧延方法に係り、とくにめっき処理時のめっきむら発生を抑制できる薄鋼板の熱間圧延方法に関する。   TECHNICAL FIELD The present invention relates to a hot rolling method for thin steel sheets containing N as a strengthening element in an amount of 0.005% by mass or more and having excellent strain age hardening characteristics, and in particular, a hot rolling method for thin steel sheets capable of suppressing the occurrence of uneven plating during plating. About.

近年、例えば、自動車に用いられる鋼板には、従来よりも、高強度で板厚の薄いものが用いられる趨勢にある。これは、高強度のものを用いる分だけ板厚を薄いものとすることで、自動車を軽量化し、燃費の向上、あるいはさらにCO2排出量削減に伴う対環境性能の向上等を志向する事情が背景にある。例えば、人の目に触れるところでは、ドアの表面に用いる部材、フェンダー、ボンネット等、目に触れないところでは、シャーシフレーム、インパクトビーム、さらには座席のスライド用の金具などに、高強度で板厚の薄いものを多用することにより、自動車車体重量をより軽量化できる。自動車用ばかりでなく、家電用、飲料缶用でも、板厚が薄くて高強度の鋼板を使用すれば、鋼板購入量を減らせるという利点がある。 In recent years, for example, steel plates used in automobiles have a tendency to use steel plates having higher strength and thinner thickness than conventional ones. The reason for this is to reduce the thickness of the car by using a high-strength material, thereby reducing the weight of the car, improving fuel efficiency, and further improving environmental performance associated with reducing CO 2 emissions. In the background. For example, if it is in contact with human eyes, it is a high-strength plate on a member used on the door surface, fender, bonnet, etc. If it is not in contact with the chassis frame, impact beam, or seat slide bracket, etc. By using many thin ones, the weight of the automobile body can be further reduced. Not only for automobiles, but also for home appliances and beverage cans, the use of thin steel plates with high thickness and high strength has the advantage that the amount of steel sheet purchase can be reduced.

単に高強度のものを、ということであれば、従来からある高炭素鋼や高張力鋼を用いればよいが、しかし、これらの鋼種は硬質なため、プレス成形性等に代表される成形性が著しく悪く、金型に沿ってきれいに曲がらずにスプリングバックしたり、成形途中で板割れを起こす、等の問題がある。例えば、ドアの表面に用いる部材等は、自動車独特のボディラインから想像できるように、きれいな筋が入るように、しかも板割れや皺等を生じることなくプレスできる必要があり、自動車に用いられる鋼板には、高強度でかつ良好な成形性を有することが強く要求されている。   If it is simply a high-strength one, conventional high-carbon steel or high-strength steel may be used. However, since these steel types are hard, formability typified by press formability etc. It is extremely bad, and there are problems such as springback without bending along the mold and cracking in the middle of molding. For example, the members used on the surface of the door must be able to be pressed without causing cracks or wrinkles, etc., as can be imagined from the body line unique to automobiles. Is strongly required to have high strength and good moldability.

このような技術的要求に応えるための一つの方策として、例えば、特許文献1には、歪時効硬化特性に優れた高張力冷延鋼板の製造方法が記載されている。特許文献1に記載された技術によれば、Nを強化元素として用い、Al含有量をN含有量に応じて適正な範囲に制御するとともに、熱延条件や冷延条件、冷延焼鈍条件を適正化して組織を微細化し、固溶N量を最適化することにより、優れた成形性と歪時効硬化特性を有する高張力冷延鋼板となるとしている。   As one measure for meeting such technical requirements, for example, Patent Document 1 describes a method for producing a high-tensile cold-rolled steel sheet having excellent strain age hardening characteristics. According to the technique described in Patent Document 1, N is used as a strengthening element, and the Al content is controlled to an appropriate range according to the N content, and hot rolling conditions, cold rolling conditions, and cold rolling annealing conditions are set. By optimizing and refining the structure and optimizing the amount of dissolved N, it is said that a high-tensile cold-rolled steel sheet having excellent formability and strain age hardening characteristics is obtained.

また、特許文献2には、歪時効硬化特性に優れた高張力熱延鋼板の製造方法が記載されている。特許文献2に記載された技術によれば、Nを強化元素として用い、キーとなるAlの含有量を適正な範囲に制御し、熱延条件を適正化して組織を微細化し、固溶N量を最適化することにより、優れた成形性と歪時効硬化特性を有する高張力熱延鋼板となるとしている。   Patent Document 2 describes a method for producing a high-tensile hot-rolled steel sheet having excellent strain age hardening characteristics. According to the technique described in Patent Literature 2, N is used as a strengthening element, the key Al content is controlled within an appropriate range, the hot rolling conditions are optimized, the structure is refined, and the amount of solid solution N Is optimized to provide a high-tensile hot-rolled steel sheet having excellent formability and strain age hardening characteristics.

また、特許文献3には、歪時効硬化特性に優れた深絞り用冷延鋼板の製造方法が記載されている。特許文献3に記載された技術によれば、N:0.0050〜0.02%、Al:0.005〜0.020%を含有し、N/(Al+Nb+Ti+V+B):0.3以上とした組成の鋼素材に、粗圧延および仕上圧延条件を調整した熱間圧延を施し熱延板とし、ついで熱延板に再結晶焼鈍とそれに続く冷間圧延を施し冷延板とし、ついで冷延板に再結晶焼鈍を施すことにより、深絞り性と歪時効硬化特性に優れた冷延鋼板となるとしている。   Patent Document 3 describes a method for producing a deep-drawn cold-rolled steel sheet having excellent strain age hardening characteristics. According to the technique described in Patent Document 3, N: 0.0050 to 0.02%, Al: 0.005 to 0.020%, and a steel material having a composition of N / (Al + Nb + Ti + V + B): 0.3 or more is subjected to rough rolling and finish rolling. Deep drawing is performed by applying hot rolling under adjusted conditions to obtain a hot rolled sheet, then subjecting the hot rolled sheet to recrystallization annealing and subsequent cold rolling to form a cold rolled sheet, and then subjecting the cold rolled sheet to recrystallization annealing. It is said that it will be a cold-rolled steel sheet with excellent properties and strain age hardening characteristics.

特許文献1〜特許文献3に記載された技術は、熱延、冷延、冷延焼鈍条件等を調整して鋼板の微細組織をある範囲に制御するとともに、Al含有量をN含有量に応じて適正範囲に調整して固溶N量をある範囲に制御し、成形後にNによる歪時効硬化現象を安定して発現させることにより、優れた成形性と成形後の高強度化が両立できる鋼板としている。   The techniques described in Patent Literature 1 to Patent Literature 3 adjust hot rolling, cold rolling, cold rolling annealing conditions and the like to control the microstructure of the steel sheet within a certain range, and the Al content according to the N content. By adjusting the amount of solute N within a certain range and controlling the strain age hardening phenomenon due to N after forming, the steel sheet can achieve both excellent formability and high strength after forming. It is said.

つまり、これらの鋼板は、冷間加工の代表であるプレス成形をする際には比較的軟質でありながら、成形後に塗装焼付処理等により硬質化する性質を利用することで、高強度と良好な成形性という相反する特性を兼備することが必要であるという技術的要求に応えたものといえる。   In other words, these steel sheets are high in strength and good by utilizing the property of being hardened by a paint baking process after forming while being relatively soft when performing press forming, which is representative of cold working. It can be said that it meets the technical requirement that it is necessary to combine the contradictory properties of formability.

ところで、近年、熱間圧延の製造プロセスにおいては、燃料、電力等のエネルギー原単位の低減を目的として、一つ前の製造プロセスである、溶鋼を連続鋳造等によりスラブ等の鋼素材に鋳造する製造プロセスにて、製造されたスラブ等の鋼素材を、常温まで冷却せずに製造直後の高温の状態のまま熱間圧延のための加熱炉に装入し、加熱および圧延の能率を阻害しないようにする、ホットチャージローリング(HCR)と呼ばれる方法が広く採用され、実操業に適用されている。   By the way, in recent years, in the manufacturing process of hot rolling, for the purpose of reducing the basic unit of energy such as fuel and electric power, molten steel is cast into a steel material such as slab by continuous casting, which is the previous manufacturing process. In the manufacturing process, steel materials such as manufactured slabs are not cooled to room temperature, but are charged in a heating furnace for hot rolling while maintaining the high temperature immediately after manufacturing, and heating and rolling efficiency are not hindered. A method called hot charge rolling (HCR) is widely adopted and applied to actual operations.

ここで、熱効率の観点からは、より高温で加熱炉に装入されることが望ましいため、スラブ等の鋼素材がまだオーステナイト(γ)温度域にあるうちに加熱炉に装入する、いわゆる、γ−HCRも実操業に適用される場合がある。   Here, from the viewpoint of thermal efficiency, since it is desirable to be charged into the heating furnace at a higher temperature, the steel material such as slab is charged into the heating furnace while still in the austenite (γ) temperature range, so-called, γ-HCR may also be applied to actual operations.

しかしながら、このγ−HCRを行うと、最も温度が低くなるスラブ表層部でさえも、鋳込み終了から熱間圧延のための加熱炉装入までの冷却時に、オーステナイト(γ)がフェライト(α)に変態しない場合がある。この場合、γ→α変態、および、加熱時のα→γ逆変態に起因する組織の微細化が図れず、粗大γ粒となり、粗大粒に起因した表面疵が発生しやすくなる。特に、Nb、Ti、V等のAr変態点を低下させる合金元素を含有する組成の鋼素材の場合、このような表面疵の発生が顕著になる。 However, when this γ-HCR is performed, even in the slab surface layer where the temperature is the lowest, austenite (γ) is converted to ferrite (α) during cooling from the end of casting to charging the heating furnace for hot rolling. May not transform. In this case, the structure due to the γ → α transformation and the α → γ reverse transformation during heating cannot be refined, resulting in coarse γ grains, and surface defects due to the coarse grains tend to occur. In particular, in the case of a steel material having a composition containing an alloy element that lowers the Ar 3 transformation point such as Nb, Ti, or V, the occurrence of such surface defects becomes remarkable.

このような問題に対し、薄鋼板ではなく、厚鋼板についてであるが、特許文献4には、連続鋳造鋳片のホットチャージ圧延方法が記載されている。特許文献4に記載された技術は、内部に未凝固相を有する鋳片を連続鋳造機内で冷却し、その表面温度を500℃以下まで低下させると共に500℃以下で15秒間以上保持し、次いで、鋳片表面を復熱させつつ鋳片中心部まで凝固させ、その後、所定長さに切断した高温の鋳片を加熱炉へ装入して加熱し、所定温度まで加熱した後に熱間圧延して厚鋼板とする方法である。   With respect to such a problem, although it is not about a thin steel plate but about a thick steel plate, Patent Document 4 describes a hot charge rolling method for a continuous cast slab. In the technique described in Patent Document 4, a slab having an unsolidified phase inside is cooled in a continuous casting machine, the surface temperature is lowered to 500 ° C. or lower and held at 500 ° C. or lower for 15 seconds or more, The slab surface is solidified to the center of the slab while reheating, and then the hot slab cut to a predetermined length is charged into a heating furnace and heated, heated to a predetermined temperature, and then hot rolled. This is a method of making a thick steel plate.

また、特許文献5には、熱間圧延時の割れ疵防止方法が記載されている。特許文献5に記載された技術は、鋳片の表面温度600〜900℃および全圧下比1.3以上の条件で行う直送圧延またはホットチャージ圧延において、全圧下比1.3未満までの圧延はAr変態点以上の高温側で圧延し、全圧下比が1.3を超える分は鋳片表面温度をAr〜(Ar−80℃)の範囲まで冷却し、(Ar+50℃)〜(Ar−100℃)の範囲で熱間圧延する方法である。 Patent Document 5 describes a cracking prevention method during hot rolling. In the technique described in Patent Document 5, in direct feed rolling or hot charge rolling performed under conditions where the surface temperature of the slab is 600 to 900 ° C. and the total reduction ratio is 1.3 or more, rolling up to a total reduction ratio of less than 1.3 is an Ar 3 transformation point. Rolling is performed on the above high temperature side, and the slab surface temperature is cooled to a range of Ar 3 to (Ar 3 −80 ° C.) for the total reduction ratio exceeding 1.3, and (Ar 3 + 50 ° C.) to (Ar 3 −100) In the range of [° C.].

また、特許文献6には、ホットチャージプロセスにおける低温靭性に優れる厚鋼板の製造方法が記載されている。特許文献6に記載された技術は、鋳片の表面温度が(Ar−100℃)以下、300℃以上の間に加熱炉に装入して、950℃以上の温度に加熱し、続いて、全圧下比が3以上の圧延を行い、鋼板の表面温度が(Ar−100℃)以上、950℃以下の温度で熱間圧延を終了する方法である。
特開2002−053935号公報 特開2002−047536号公報 特開2001−335887号公報 特開2001−137901号公報 特開昭62−34602号公報 特開平07−331329号公報
Patent Document 6 describes a method for producing a thick steel plate having excellent low temperature toughness in a hot charge process. In the technique described in Patent Document 6, the surface temperature of the slab is (Ar 3 −100 ° C.) or less, and is heated to a temperature of 950 ° C. or more after being charged into a heating furnace while being 300 ° C. or more. In this method, rolling with a total reduction ratio of 3 or more is performed, and hot rolling is finished at a surface temperature of the steel sheet of (Ar 3 −100 ° C.) or more and 950 ° C. or less.
JP 2002-053935 A JP 2002-047536 A JP 2001-335887 A JP 2001-137901 A Japanese Unexamined Patent Publication No. 62-34602 JP 07-331329 A

本発明者らの検討によれば、特許文献1〜特許文献3に記載されたような、歪時効硬化特性に優れた高張力鋼板の製造に際し、熱効率向上を目的として、特許文献4〜特許文献6に記載されたようなホットチャージローリング(HCR)を適用すると、熱延鋼板段階(例えば板厚にして2〜3mm)や、冷延鋼板段階(例えば板厚にして0.3〜0.5mm)において表面疵は発生しないものの、その後の製造プロセスであるめっき処理で、図6に模式的に示すように、鋼板1の幅端部近傍にめっきむらが生じるという品質不良が発生する場合があるということが新たに判明した。   According to the study by the present inventors, Patent Documents 4 to 5 are disclosed for the purpose of improving thermal efficiency in the production of high-tensile steel sheets having excellent strain age hardening characteristics as described in Patent Documents 1 to 3. When hot charge rolling (HCR) as described in 6 is applied, the surface at the hot-rolled steel plate stage (for example, 2-3 mm in thickness) or cold-rolled steel plate stage (for example, 0.3-0.5 mm in thickness) Although wrinkles do not occur, there is a case where, in the plating process that is a subsequent manufacturing process, as shown schematically in FIG. 6, there may be a quality defect that uneven plating occurs in the vicinity of the width end portion of the steel sheet 1. Newly found.

本発明は、上記したような状況に鑑みて、Nを強化元素として0.005質量%以上含有し、歪時効硬化特性に優れた薄鋼板の熱間圧延に際して、加熱および圧延の能率を阻害することなく、燃料、電力等のエネルギー原単位を低減でき、かつ熱間圧延後、あるいは冷間圧延後に行われる、めっき処理時のめっきむら発生を抑制することができる、薄鋼板の熱間圧延方法を提案することを目的とする。   In view of the situation as described above, the present invention contains 0.005% by mass or more of N as a strengthening element, and does not hinder the efficiency of heating and rolling during hot rolling of a thin steel sheet having excellent strain age hardening characteristics. Proposal of a hot rolling method for thin steel sheets that can reduce the energy intensity of fuel, electric power, etc., and can suppress the occurrence of uneven plating during plating after hot rolling or cold rolling The purpose is to do.

本発明でいう「薄鋼板」とは、1.0mm以上6mm以下、好ましくは1.0mm以上4.5mm以下の熱延板を指し、熱間圧延を途中工程として通る鋼板すべてを含むものとする。これら熱延板は、さらにめっき処理を施されて熱延めっき鋼板、あるいはさらに冷間圧延−めっき処理を施されて、好ましくは0.1mm以上3.2mm以下の厚さの冷延めっき鋼板とされる。   The “thin steel sheet” in the present invention refers to a hot rolled sheet having a thickness of 1.0 mm or more and 6 mm or less, preferably 1.0 mm or more and 4.5 mm or less, and includes all steel sheets that pass through hot rolling as an intermediate step. These hot-rolled sheets are further subjected to a plating treatment to be a hot-rolled plated steel sheet, or further subjected to a cold rolling-plating process, and preferably a cold-rolled plated steel sheet having a thickness of 0.1 mm to 3.2 mm. .

本発明者らは、上記した課題を達成するために、Nを強化元素として0.005質量%以上含有する鋼板のめっき処理時のめっきむら発生におよぼす各種要因について鋭意検討した。その結果、めっきむらは、加熱炉に装入する前の鋼素材(鋳片)温度の位置による相違に基づいた組織変化に起因して発生することを見出した。   In order to achieve the above-described problems, the present inventors diligently studied various factors that contribute to the occurrence of uneven plating during the plating treatment of a steel sheet containing 0.005% by mass or more of N as a strengthening element. As a result, it has been found that uneven plating occurs due to a change in structure based on the difference in the position of the temperature of the steel material (slab) before being charged into the heating furnace.

すなわち、連続鋳造等により鋳造された直後のスラブ(鋼素材)はその各辺またはその近傍にあたる部分が最も冷却速度が大きく、加熱炉装入前に低温まで冷却され組織が微細化される。しかし、それ以外の部分では冷却速度が遅く、比較的高い温度のまま、加熱炉に装入され、組織が微細化されず粗い組織となる。これら組織の境界にあたる部分は、スラブ幅方向の端部近傍に存在し、スラブ長手方向に延在することになる。本発明者らは、この境界にあたる部分がスラブ段階で内部割れしかけているか、あるいは同部分の粒界が他の正常な粒界より弱いかの理由で、その後の熱間圧延、冷間圧延後の鋼板の表層の微細な割れとして現れ、それがめっき処理時にめっきの付着の仕方の微妙な違いとなって顕在化し、光沢のむらとなってめっきむらとなるものと推察した。   That is, the slab (steel material) immediately after being cast by continuous casting or the like has the highest cooling rate at each side or in the vicinity thereof, and is cooled to a low temperature before being charged into the heating furnace, thereby miniaturizing the structure. However, in other parts, the cooling rate is slow, and it is charged into the heating furnace at a relatively high temperature, and the structure becomes a coarse structure without being refined. The portion corresponding to the boundary between these tissues exists near the end in the slab width direction and extends in the slab longitudinal direction. The present inventors, after the subsequent hot rolling and cold rolling, because the portion corresponding to this boundary is cracking internally at the slab stage or the grain boundary of the same portion is weaker than other normal grain boundaries It appears that it appears as a fine crack in the surface layer of the steel plate, which becomes apparent as a subtle difference in the manner of adhesion of the plating during the plating process, and results in uneven brightness and uneven plating.

熱間圧延するのに先立って加熱炉に装入されるまでの結晶粒の変化を、スラブの各辺またはその近傍の局部的に低温まで冷却される部分について模式的に図1に推定して示す。   Fig. 1 schematically estimates the change in crystal grains until they are charged into the heating furnace prior to hot rolling, for each part of the slab that is locally cooled to a low temperature. Show.

連続鋳造法で鋳込みが完了したばかりのスラブは粗大なγ粒を多く含む(図1中a)が、冷却されてAr3変態点以下まで温度降下するとγ粒界からα粒が析出し(図1中b)、さらに冷却されるにしたがい、α粒が成長するか、あるいはγ粒内からもα粒が析出し、γ粒が分断される。さらに冷却されて、Ar1変態点以下まで温度降下すると、γ→α変態が完了し、組織は完全にα粒組織となり微細化される(図1中c)。その後、スラブは加熱炉に装入され、加熱されてAc1変態点以上に昇温されるとα→γ逆変態が開始して微細なγ粒が多数析出し(図1中d)、さらにAc3 変態点以上に昇温されて、α→γ逆変態が完了して、微細なγ粒からなる均一組織となる(図1中e)。さらに昇温すると、γ粒は成長する(図1中f)。 Slabs that have just been cast by the continuous casting method contain many coarse γ grains (a in Fig. 1), but when cooled and the temperature drops below the Ar 3 transformation point, α grains precipitate from the γ grain boundary (Fig. In 1), as the particles are further cooled, α grains grow or α grains are precipitated from within the γ grains, and the γ grains are divided. When the temperature is further lowered to a temperature below the Ar 1 transformation point, the γ → α transformation is completed, and the structure becomes an α grain structure and is refined (c in FIG. 1). After that, the slab is charged into a heating furnace, heated to a temperature higher than the Ac 1 transformation point, α → γ reverse transformation starts and many fine γ grains precipitate (d in FIG. 1). When the temperature is raised above the Ac 3 transformation point, the α → γ reverse transformation is completed, and a uniform structure consisting of fine γ grains is obtained (e in FIG. 1). When the temperature is further increased, γ grains grow (f in FIG. 1).

これに対し、比較的高い温度のまま、加熱炉に装入される部分の結晶粒の変化を模式的に図2に推定して示す。   On the other hand, the change of the crystal grains in the portion charged into the heating furnace is schematically estimated and shown in FIG.

連続鋳造法で鋳込みが完了したばかりのスラブは粗大なγ粒を多く含む(図2中a)が、冷却されてAr3変態点以下まで温度降下するとγ粒界からα粒が析出し(図2中b)、さらに冷却されるにしたがい、α粒が析出、成長するが、Ar1変態点以下まで冷却されずに、加熱炉に装入されるため、もはや熱間圧延されるまでにAr1変態点以下に温度が低下することはない。したがって、冷却時にγ→α変態した旧γ粒界近傍の領域は、加熱により、α→γ逆変態し微細化する(図2中c)が、冷却時にαに変態しなかった領域は粗大なγのままであるため、圧延加熱温度に保持されたのちも、粗大なγ粒の粒界に微細なγ粒を含む不均一組織(図2中d、e)となる。 The slab that has just been cast by the continuous casting method contains many coarse γ grains (a in Fig. 2), but when cooled and the temperature drops below the Ar 3 transformation point, α grains precipitate from the γ grain boundary (Fig. B), α grains precipitate and grow as they are further cooled, but they are not cooled to below the Ar 1 transformation point and are charged into the heating furnace, so that Ar is no longer hot-rolled. The temperature does not drop below the 1 transformation point. Therefore, the region in the vicinity of the old γ grain boundary that has undergone γ → α transformation during cooling becomes α → γ reverse transformation and refines by heating (c in FIG. 2), but the region that has not transformed into α during cooling is coarse. Since it remains as γ, it becomes a non-uniform structure (d, e in FIG. 2) including fine γ grains at the grain boundary of coarse γ grains after being kept at the rolling heating temperature.

また、本発明で使用するスラブ(鋼素材)は、NおよびAlを含むため、スラブの加熱冷却中にAlNの固溶・析出が生じるがその作用を以下に推定して説明する。   In addition, since the slab (steel material) used in the present invention contains N and Al, solid solution / precipitation of AlN occurs during heating and cooling of the slab.

γ域ではAlNの析出は溶解度に依存するものの、冷却過程においてα域であるAr3変態点以下の温度域に達すると、AlNの析出は進まなくなる。その後、加熱炉で加熱され、昇温過程で約1000℃を超えるあたりから、再度AlNが析出するようになる。しかし、図2に示すような、Ar1変態点超えの温度までしか冷却されない、比較的高い温度のままで加熱炉に装入される部分では、粗大γ粒を多く含む組織のままであるため、加熱によりAlNは、析出が起こり易い結晶粒界に集中的に析出するようになり(図2中c)、AlNは不均一分布状態を呈する。 In the γ region, the precipitation of AlN depends on the solubility, but when the temperature reaches the temperature below the Ar 3 transformation point in the α region during the cooling process, the precipitation of AlN does not proceed. Thereafter, it is heated in a heating furnace, and AlN begins to precipitate again from above about 1000 ° C. in the temperature raising process. However, as shown in FIG. 2, the portion that is cooled only to a temperature exceeding the Ar 1 transformation point and is charged into the heating furnace at a relatively high temperature remains a structure containing a large amount of coarse γ grains. As a result of heating, AlN is concentrated in the grain boundaries where precipitation is likely to occur (c in FIG. 2), and AlN exhibits a non-uniform distribution state.

一方、スラブの各辺またはその近傍の、加熱炉に装入されるまでに局部的に低温まで冷却される部分は、γ粒が微細化されているため、AlNは、微細化される前の粗大γ粒の粒界への析出に加えて、γ粒内にも析出せざるを得なくなり、均一分布状態を呈する。
図1と、図2とを比較すると、最終的に、加熱炉から抽出されるときの組織は、両者間で著しく異なっていることになる。図1の場合には、全体的に均一な微細組織となるのに対し、図2の場合には、粗大γ粒の粒界に微細なAlNや微細なγ粒が存在する不均一組織となる。
On the other hand, the portion of each side of the slab or its vicinity, which is locally cooled to the low temperature before being charged into the heating furnace, is refined in γ grains. In addition to the precipitation of coarse γ grains at the grain boundaries, they must also precipitate within the γ grains, exhibiting a uniform distribution state.
When FIG. 1 and FIG. 2 are compared, the structure when finally extracted from the heating furnace will be significantly different between the two. In the case of FIG. 1, a uniform microstructure is obtained as a whole, whereas in the case of FIG. 2, a heterogeneous structure in which fine AlN and fine γ grains are present at the grain boundaries of coarse γ grains. .

このようなスラブ内での位置による組織の違いが、熱間圧延後にも残存し、両者の境界部分が熱間圧延、冷間圧延後の鋼板の表層の微細な割れとしてあらわれ、めっき処理時にめっきの付着の仕方の微妙な違いとなって顕在化し、光沢のむらとなってめっきむらとなるものと考えられる。両者の境界では、スラブ段階で、内部割れしかけているか、あるいは同部分の粒界が他の正常な粒界より弱いかの理由で、その後の熱間圧延、冷間圧延後の鋼板の表層の微細な割れとして現れるものと推察される。   The difference in structure depending on the position in the slab remains after hot rolling, and the boundary between the two appears as fine cracks in the surface layer of the steel sheet after hot rolling and cold rolling. It is thought that it becomes a subtle difference in the manner of adhesion of the metal, and it becomes apparent that the luster becomes uneven and the plating becomes uneven. At the boundary between the two, at the slab stage, internal cracking has occurred, or the grain boundary of the same part is weaker than other normal grain boundaries, so the surface layer of the steel sheet after subsequent hot rolling and cold rolling It is assumed that it appears as a fine crack.

上記した考えに基づき、さらに検討を加えた結果、本発明者らは、鋳込み終了後、鋼素材の表面温度を400℃以上Ar1変態点以下に調整したのち、加熱炉に装入し熱間圧延を行うことにより、めっき処理時のめっきむら発生を抑制することができることを知見した。 As a result of further investigation based on the above-mentioned idea, the present inventors adjusted the surface temperature of the steel material to 400 ° C. or higher and Ar 1 transformation point or less after casting, and then charged it into the heating furnace and It has been found that the occurrence of uneven plating during the plating process can be suppressed by rolling.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。   The present invention has been completed based on the above findings and further studies.

すなわち、本発明は、質量%で、Al:0.02%以下、N:0.005〜0.025%を、N/Al:0.3 以上を満足するように含む組成の鋼素材を、鋳込み終了後、該鋼素材の表面温度が400℃以上Ar1変態点以下になるように調整して、加熱炉に装入し加熱したのち、該鋼素材に熱間圧延を施して薄鋼板とすることを特徴とする薄鋼板の熱間圧延方法である。 That is, the present invention provides a steel material having a composition containing, by mass%, Al: 0.02% or less, N: 0.005-0.025%, and N / Al: 0.3 or more, A steel sheet characterized by adjusting the surface temperature to 400 ° C. or more and below the Ar 1 transformation point, charging it into a heating furnace and heating it, and then subjecting the steel material to hot rolling to form a steel sheet This is a hot rolling method.

本発明によれば、熱間圧延の加熱および圧延の能率を阻害することなく、燃料、電力等のエネルギー原単位を低減できるとともに、めっき処理時のめっきむら発生を防止して、薄鋼板のめっき品質不良を抑制でき、産業上格段の効果を奏する。   According to the present invention, it is possible to reduce the energy intensity of fuel, electric power, etc. without impairing the heating and rolling efficiency of hot rolling, and to prevent the occurrence of uneven plating during the plating process, thereby plating thin steel plates Quality defects can be suppressed, and there are significant industrial effects.

まず、本発明で使用する鋼素材の組成限定理由について説明する。以下、組成における質量%は、単に%と記す。   First, the reasons for limiting the composition of the steel material used in the present invention will be described. Hereinafter, the mass% in the composition is simply referred to as%.

本発明で使用する鋼素材は、歪時効硬化特性に優れた薄鋼板とするため、Nを強化元素として0.005%以上含有し、0.02%以下のAlをN/Al:0.3以上となるように含有する。   The steel material used in the present invention contains 0.005% or more of N as a strengthening element and 0.02% or less of Al so that N / Al: 0.3 or more in order to make a thin steel plate with excellent strain age hardening characteristics. To do.

Al:0.02%以下
Alは、脱酸剤として作用し、鋼の清浄度を向上させるのに有効な元素であり、さらに薄鋼板の組織を微細化する作用を有する元素でもある。このような効果は、0.001 %以上の含有で顕著となる。一方、0.02%を超える過剰の含有は、鋼板の表面性状を悪化させ、さらに歪時効硬化に寄与する固溶状態のN量を減少させ、製造条件がばらついた場合に歪時効硬化特性にばらつきが生じやすくなる。このため、本発明では、Alは0.02%以下に限定した。なお、材質安定性の観点からは、Alは0.015%以下とすることが好ましい。
Al: 0.02% or less
Al acts as a deoxidizer, is an element effective for improving the cleanliness of steel, and is also an element having an action of refining the structure of a thin steel sheet. Such an effect becomes remarkable when the content is 0.001% or more. On the other hand, an excessive content exceeding 0.02% deteriorates the surface properties of the steel sheet, further reduces the amount of N in a solid solution state that contributes to strain age hardening, and variation in strain age hardening characteristics when manufacturing conditions vary. It tends to occur. For this reason, in the present invention, Al is limited to 0.02% or less. From the viewpoint of material stability, Al is preferably 0.015% or less.

N:0.005〜0.025%
Nは、固溶強化と歪時効硬化により鋼板の強度を向上させる元素であり、本発明では0.005%以上含有させる。また、Nは鋼の変態点を下げる働きもあり、Nの含有は薄物で変態点を大きく割り込んだ圧延が忌避される状況下での操業安定化にも有用である。N含有量が0.005%未満では、上記した強度向上効果が安定して現れにくい。一方、Nが0.025%を超えると、鋼板の内部欠陥発生率が高くなるとともに、連続鋳造時のスラブ割れなどが多発するようになる。このため、Nは0.005〜0.025%の範囲に限定した。なお、製造工程全体を考慮した材質の安定性・歩留り向上の観点からは、Nは0.0070〜0.0170%の範囲とするのが好ましい。なお、本発明範囲内のN量であれば、スポット溶接、アーク溶接等の溶接性への悪影響は全くない。
N: 0.005-0.025%
N is an element that improves the strength of the steel sheet by solid solution strengthening and strain age hardening. In the present invention, N is contained by 0.005% or more. N also has a function of lowering the transformation point of steel, and the content of N is also useful for stabilizing the operation in a situation where rolling that is a thin material and greatly interrupts the transformation point is avoided. If the N content is less than 0.005%, the above-described strength improvement effect is not likely to appear stably. On the other hand, if N exceeds 0.025%, the rate of occurrence of internal defects in the steel sheet increases, and slab cracking during continuous casting occurs frequently. For this reason, N was limited to the range of 0.005 to 0.025%. Note that N is preferably in the range of 0.0070 to 0.0170% from the viewpoint of improving the stability and yield of the material in consideration of the entire manufacturing process. If the N amount is within the range of the present invention, there is no adverse effect on weldability such as spot welding and arc welding.

N/Al(N含有量とAl含有量の比):0.3 以上
製品状態で、好ましくは0.0010%以上の固溶状態のNを安定させて残留させ、所望の歪時効硬化量(例えば、歪時効処理前後での引張強さの増加量ΔTS40MPa以上)を確保するためには、Nを強力に固定する元素であるAlの量を制限する必要がある。本発明で使用する鋼素材の組成範囲内のN含有量とAl含有量の組合せについて検討した結果、冷延製品およびめっき製品での固溶N量を0.0010%以上とするには、Al量を0.02%以下と低く限定した場合、N/Alを0.3 以上とすることが必要である。このようなことから、N/Alを0.3以上に限定した。
N / Al (ratio of N content to Al content): 0.3 or more In the product state, preferably in a solid solution state of preferably 0.0010% or more, N in a solid solution state is stably left, and a desired strain age hardening amount (for example, strain age hardening) In order to ensure an increase in tensile strength before and after the treatment ΔTS40 MPa or more), it is necessary to limit the amount of Al, which is an element that strongly fixes N. As a result of examining the combination of the N content and the Al content within the composition range of the steel material used in the present invention, in order to make the solid solution N content in cold-rolled products and plated products 0.0010% or more, the Al content is If limited to 0.02% or less, N / Al must be 0.3 or more. For this reason, N / Al was limited to 0.3 or more.

本発明で使用する鋼素材では、上記したAl、N以外の化学成分は、要求特性に応じ適宜選択できる。本発明で使用する鋼素材では、Al:0.02%以下、N:0.005〜0.025%を、N/Alが0.3 以上を満足するように含有する組成に加え、さらに、C:0.15%以下、Si:2.0 %以下、Mn:3.0 %以下、P:0.08%以下、S:0.02%以下、あるいはさらに、次a群〜d群
a群:Cu、Ni、Cr、Moの1種または2種以上を合計で、1.0%以下
b群:Nb、Ti、Vの1種または2種以上を合計で、0.1 %以下
c群:B:0.0030%以下
d群:Ca、REM の1種または2種を合計で0.0010〜0.010 %
のうちから選ばれた1群または2群以上を含み、残部がFeおよび不可避的不純物からなる組成としてもよい。各成分含有量の限定理由はつぎの通りである。
In the steel material used in the present invention, chemical components other than the above-described Al and N can be appropriately selected according to required characteristics. In the steel material used in the present invention, Al: 0.02% or less, N: 0.005 to 0.025% is added to the composition containing N / Al so as to satisfy 0.3 or more, and C: 0.15% or less, Si: 2.0% or less, Mn: 3.0% or less, P: 0.08% or less, S: 0.02% or less, or the following a group to d group a group: one or more of Cu, Ni, Cr, and Mo are totaled 1.0% or less b group: Nb, Ti, or V in total, 0.1% or less c group: B: 0.0030% or less d group: Ca, REM 1 or 2 types in total 0.0010-0.010%
It is good also as a composition which contains 1 group or 2 groups or more selected from these, and the remainder consists of Fe and an unavoidable impurity. The reasons for limiting the content of each component are as follows.

C:0.15%以下
Cは、鋼板の強度を向上する元素であり、所望の強度を確保するという観点から、0.005 %以上含有するのが好ましい。なお、より好ましくは、0.03%以上である。一方、0.15%を超える含有は、鋼板中の炭化物分率が過大となり、延性が顕著に低下し成形性が低下するうえ、さらにスポット溶接性、アーク溶接性などが顕著に低下する。このため、Cは0.15%以下に限定するのが好ましい。なお、より好ましくは0.10%以下、良好な延性が要求される用途では0.08%以下とするのがより好ましい。
C: 0.15% or less C is an element that improves the strength of the steel sheet, and is preferably contained in an amount of 0.005% or more from the viewpoint of securing a desired strength. More preferably, it is 0.03% or more. On the other hand, if the content exceeds 0.15%, the carbide fraction in the steel sheet becomes excessive, the ductility is remarkably lowered and the formability is lowered, and the spot weldability and arc weldability are further lowered. For this reason, it is preferable to limit C to 0.15% or less. In addition, it is more preferably 0.10% or less, and more preferably 0.08% or less for uses requiring good ductility.

Si:2.0 %以下
Siは、鋼の延性を顕著に低下させることなく鋼板の強度を向上することができる有用な元素であり、0.1 %以上含有するのが好ましい。一方、2.0 %を超えるSi含有は、熱間圧延時に変態点を大きく上昇させて品質、形状の確保を困難にしたり、あるいはまた表面性状、化成処理性などを低下させ、鋼板表面の美麗さに悪影響を与える。このため、Siは2.0%以下に限定することが好ましい。Siが2.0 %以下であれば、複合添加するMnの量を調整することで変態点の顕著な上昇を抑制することができ、良好な表面性状も確保できる。
Si: 2.0% or less
Si is a useful element that can improve the strength of the steel sheet without significantly reducing the ductility of the steel, and is preferably contained in an amount of 0.1% or more. On the other hand, a Si content exceeding 2.0% greatly increases the transformation point during hot rolling, making it difficult to ensure quality and shape, or lowering the surface properties and chemical conversion properties, resulting in the beauty of the steel sheet surface. Adversely affected. For this reason, it is preferable to limit Si to 2.0% or less. If Si is 2.0% or less, a remarkable increase in the transformation point can be suppressed by adjusting the amount of Mn added in combination, and good surface properties can be secured.

Mn:3.0 %以下
Mnは、Sによる熱間割れを防止する有効な元素であり、含有するS量に応じて含有することが好ましい。Sを安定して固定する観点からは、Mnは0.2 %以上含有するのが好ましい。また、Mnは鋼板の強度を向上する元素であり、強度要求に応じて適宜含有できる。強度を安定して確保する観点からより好ましくは1.5 %以上である。Mn含有量をこのレベルまで高めると、熱延条件を含め製造条件の変動に対する鋼板の機械的性質、および歪時効硬化特性のばらつきが小さくなり、品質安定化に効果的である。一方、Mnを3.0 %を超えて多量に含有すると、鋼板の熱間変形抵抗が増加する傾向となるうえ、スポット溶接性、および溶接部の成形性が低下する傾向となり、さらに、フェライトの生成が抑制されるため、延性が顕著に低下する傾向となる。このため、Mnは3.0 %以下に限定するのが好ましい。なお、より良好な耐食性と成形性が要求される用途では、Mnは2.5 %以下とするのが好ましい。
Mn: 3.0% or less
Mn is an effective element for preventing hot cracking due to S, and is preferably contained according to the amount of S contained. From the viewpoint of stably fixing S, Mn is preferably contained in an amount of 0.2% or more. Mn is an element that improves the strength of the steel sheet, and can be appropriately contained according to the strength requirement. From the viewpoint of stably securing the strength, it is more preferably 1.5% or more. When the Mn content is increased to this level, variations in the mechanical properties and strain age hardening characteristics of the steel sheet with respect to fluctuations in production conditions including hot rolling conditions are reduced, which is effective in stabilizing the quality. On the other hand, if Mn is contained in a large amount exceeding 3.0%, the hot deformation resistance of the steel sheet tends to increase, the spot weldability and the formability of the welded portion tend to decrease, and further, the formation of ferrite occurs. Since it is suppressed, the ductility tends to decrease remarkably. For this reason, it is preferable to limit Mn to 3.0% or less. In applications where better corrosion resistance and formability are required, Mn is preferably 2.5% or less.

また、Mnは熱間圧延時に変態点を下げる働きがあり、Siとともに含有することにより、Si含有による変態点の上昇を相殺することができる。とくに板厚が薄い製品では、変態点の変動によって品質・形状が敏感に変わるため、MnとSiの含有量を厳密にバランスさせることが肝腎となる。このようなことから、Mn/Siを3.0 以上とするのがより好ましい。   Further, Mn has a function of lowering the transformation point during hot rolling, and inclusion with Si can offset an increase in transformation point due to the inclusion of Si. Especially for products with thin plate thickness, quality and shape change sensitively due to changes in transformation point, so it is important to balance Mn and Si contents precisely. For these reasons, it is more preferable to set Mn / Si to 3.0 or more.

P:0.08%以下
Pは、鋼の固溶強化元素として有用な元素であり、この観点からは0.001 %以上の含有が望ましいが、過剰に含有すると鋼を脆化させ、さらに鋼板の成形性を低下させる。また、Pは鋼中で偏析する傾向が強いためそれに起因した溶接部の脆化をもたらす。このため、Pは0.08%以下に限定するのが好ましい。なお、伸び、加工性の観点からより好ましくは0.04%以下、さらに好ましくは溶接部靱性の観点から0.02%以下である。
P: 0.08% or less P is an element useful as a solid solution strengthening element of steel. From this viewpoint, P is preferably contained in an amount of 0.001% or more. However, if excessively contained, steel makes the steel brittle and further improves the formability of the steel sheet. Reduce. Moreover, since P has a strong tendency to segregate in steel, it causes embrittlement of the weld due to it. For this reason, it is preferable to limit P to 0.08% or less. In view of elongation and workability, it is more preferably 0.04% or less, and further preferably 0.02% or less from the viewpoint of weld zone toughness.

S:0.02%以下
Sは、鋼板中では介在物として存在し、鋼板の延性、さらには耐食性の低下をもたらす元素であり、0.02%以下に限定するのが好ましい。なお、とくに良好な加工性が要求される用途においては、0.015 %以下、さらに好ましくは0.008 %以下である。
S: 0.02% or less S is an element which exists as an inclusion in a steel sheet and causes a decrease in ductility and further corrosion resistance of the steel sheet, and is preferably limited to 0.02% or less. In applications where particularly good workability is required, it is 0.015% or less, more preferably 0.008% or less.

上記した成分に加えてさらに、要求特性に応じ、a群〜d群のうちから選ばれた1群または2群以上を含有することができる。   In addition to the above-described components, one group or two or more groups selected from group a to group d can be contained according to required characteristics.

a群:Cu、Ni、Cr、Moのうちから選ばれた1種または2種以上を合計で、1.0 %以下
a群:Cu、Ni、Cr、Moは、いずれも鋼板の強度の向上に寄与する元素であり、必要に応じ選択して単独または複合して含有できる。このような効果を得るには、それぞれCu:0.01%以上、Ni:0.01%以上、Cr:0.01%以上、Mo:0.01%以上、を含有することが好ましい。一方、合計で1.0 %を超える含有は、熱間変形抵抗が増加し、あるいは化成処理性や広義の表面処理特性が低下するうえ、溶接部が硬化し溶接部成形性が低下する。このため、a群の元素は合計で1.0 %以下とするのが好ましい。
Group a: 1.0 or less in total of one or more selected from Cu, Ni, Cr, and Mo Group a: Cu, Ni, Cr, and Mo all contribute to improving the strength of the steel sheet It is an element to be selected and can be selected alone or in combination as required. In order to obtain such effects, it is preferable to contain Cu: 0.01% or more, Ni: 0.01% or more, Cr: 0.01% or more, and Mo: 0.01% or more, respectively. On the other hand, if the total content exceeds 1.0%, the hot deformation resistance increases, or the chemical conversion property and the surface treatment characteristics in a broad sense are deteriorated, and the weld is hardened and the weld formability is deteriorated. For this reason, it is preferable that the elements in group a be 1.0% or less in total.

b群:Nb、Ti、Vのうちから選ばれた1種または2種以上を合計で、0.1 %以下
b群:Nb、Ti、Vは、いずれも結晶粒の微細化・均一化に寄与する元素であり、必要に応じ選択して単独または複合して含有できる。このような効果は、Nb:0.002 %以上、Ti:0.002 %以上、V:0.002 %以上、をそれぞれ含有することにより顕著に認められるようになる。一方、b群の元素は合計で0.1 %を超えて含有すると、含有量が多すぎて、熱間変形抵抗が増加するとともに、化成処理性や広義の表面処理特性が低下する。このため、b群の元素は合計で0.1 %以下とするのが好ましい。
Group b: Total of one or more selected from Nb, Ti, and V, 0.1% or less Group b: Nb, Ti, and V all contribute to refinement and uniformity of crystal grains It is an element and can be selected alone or in combination as required. Such an effect becomes noticeable by containing Nb: 0.002% or more, Ti: 0.002% or more, and V: 0.002% or more. On the other hand, when the total amount of elements in the group b exceeds 0.1%, the content is too large, the hot deformation resistance increases, and the chemical conversion property and the surface treatment characteristics in a broad sense are deteriorated. For this reason, it is preferable that the total amount of elements in group b is 0.1% or less.

c群:B:0.0030%以下
c群:Bは、鋼の焼入れ性を向上させ、フェライト相以外の低温変態相の分率を増加させて、鋼板の強度を向上する元素であり、必要に応じ含有することができる。この効果は、B:0.0002%以上の含有で認められるが、含有量が多すぎると熱間変形能が低下し、BNを生成することで固溶Nを低減させる。このため、Bは0.0030%以下とするが好ましい。
c group: B: 0.0030% or less c group: B is an element that improves the hardenability of the steel and increases the fraction of the low-temperature transformation phase other than the ferrite phase to improve the strength of the steel sheet. Can be contained. This effect is observed when the content of B is 0.0002% or more. However, when the content is too large, the hot deformability is lowered, and the solute N is reduced by generating BN. For this reason, B is preferably 0.0030% or less.

d群:Ca、REM の1種または2種を合計で、0.0010〜0.010 %
d群:Ca、REM は、いずれも介在物の形態制御に役立つ元素であり、必要に応じ単独または複合して含有するのが好ましい。d群の元素の合計で、0.0010%未満では介在物の形態制御効果が不足し、一方、0.010 %を超えると表面欠陥の発生が目立つようになる。このため、d群の元素は合計で0.0010〜0.010 %の範囲に限定するのが好ましい。
d group: One or two of Ca and REM in total, 0.0010 to 0.010%
d group: Ca and REM are elements useful for controlling the form of inclusions, and are preferably contained alone or in combination as required. When the total amount of elements in the d group is less than 0.0010%, the effect of controlling the shape of inclusions is insufficient. On the other hand, when the content exceeds 0.010%, surface defects are conspicuous. For this reason, it is preferable to limit the elements of the d group to a total range of 0.0010 to 0.010%.

上記した成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、O:0.0050%以下が許容される。   The balance other than the above components is Fe and inevitable impurities. As an inevitable impurity, O: 0.0050% or less is allowed.

本発明で使用する鋼素材は、上記した組成の溶鋼を通常公知の溶製方法で溶製し、好ましくは通常公知の連続鋳造法で鋳込み、所定の寸法のスラブ等とすることが好ましい。鋳込みが完了した鋼素材は、ついで冷却され、鋼素材の表面温度が400℃以上Ar1変態点以下になるように調整して、加熱炉に装入される。鋳込み完了から加熱炉装入までの冷却は、大気中での自然冷却、あるいは、ブロワー、ミスト、スプレー等による強制冷却とすることが好ましい。ブロワー、ミスト、スプレー等により強制冷却する場合は、図3に示すように、搬送ルートの途中や連続鋳造機スラブヤード50内あるいは熱延スラブヤード60内に強制冷却装置80を設置するのが好ましい。 The steel material used in the present invention is preferably prepared by melting a molten steel having the above composition by a generally known melting method, and preferably casting it by a generally known continuous casting method to obtain a slab having a predetermined size. The steel material that has been cast is then cooled, adjusted so that the surface temperature of the steel material is not lower than 400 ° C. and not higher than the Ar 1 transformation point, and charged into the heating furnace. The cooling from the completion of casting to charging the heating furnace is preferably natural cooling in the atmosphere or forced cooling by a blower, mist, spray or the like. In the case of forced cooling by a blower, mist, spray, etc., as shown in FIG. 3, it is preferable to install a forced cooling device 80 in the middle of the conveyance route, in the continuous casting machine slab yard 50 or in the hot rolling slab yard 60. .

加熱炉装入前の鋼素材の表面温度が400℃未満では、鋼素材温度が低くなりすぎて、熱間圧延のための加熱時間が長くなり、燃料、電力エネルギー低減にとって有効でなくなるうえ、加熱効率が低下し、生産性が低下する。一方、加熱炉装入前の鋼素材の表面温度がAr1変態点を超えて高い場合には、γ→α変態、さらにはα→γ逆変態による結晶粒微細化効果が利用できず、加熱に際し粗大γ粒が形成され、表面疵が発生しやすくなる。このため、加熱炉装入前の鋼素材の表面温度を400℃以上Ar1変態点以下に限定した。なお、上記した鋼素材の表面温度は、鋼素材の板幅中央、板長さ端部(100 〜300 mm)で測定した平均値とする。 If the surface temperature of the steel material before charging the furnace is less than 400 ° C, the steel material temperature will be too low, the heating time for hot rolling will be long, and it will not be effective for reducing fuel and power energy. Efficiency decreases and productivity decreases. On the other hand, when the surface temperature of the steel material before charging the furnace is high beyond the Ar 1 transformation point, the grain refinement effect due to the γ → α transformation and further the α → γ reverse transformation cannot be used. At this time, coarse γ grains are formed, and surface defects are likely to occur. For this reason, the surface temperature of the steel material before charging the heating furnace was limited to 400 ° C. or higher and Ar 1 transformation point or lower. The surface temperature of the steel material described above is an average value measured at the plate width center and the plate length end (100 to 300 mm) of the steel material.

鋼素材の表面温度は、例えば、図3に示すような、連続鋳造機5出側に設置された連続鋳造機出側温度計20で直接測定することが好ましい。また、連続鋳造機5に配置された媒体(例えば連続鋳造機内のロール、ロール冷却水または鋼素材のハンドリング時に接触する機械部品など)の温度を、図示しない別の温度計によって実測し、実測した温度に基づき、計算機40内で鋼素材の表面温度を予測計算して推定する間接的な方法をとってもよい。また、図3に示すような、スラブを連続鋳造機5の出側から加熱炉8、8までの搬送ルートTの途中にある、連続鋳造機スラブヤード50内や熱延スラブヤード60内に設置したスラブヤード温度計70、あるいは加熱炉入側温度計30によって、スラブ表面温度を実測してもよい。また、連続鋳造機5出側でトーチカットしてからの経過時間の実績をもとに予測計算する等してもよい。なお、上記した方法のうちの二つ以上を併用する方法をとってもよい。   It is preferable to directly measure the surface temperature of the steel material with a continuous casting machine outlet side thermometer 20 installed on the outgoing side of the continuous casting machine 5 as shown in FIG. 3, for example. Further, the temperature of a medium (for example, a roll in the continuous casting machine, a machine part that is in contact with the roll cooling water or a steel material when handling the steel material, etc.) disposed in the continuous casting machine 5 is measured by another thermometer (not shown) and measured. An indirect method of predicting and estimating the surface temperature of the steel material in the computer 40 based on the temperature may be taken. Further, as shown in FIG. 3, the slab is installed in the continuous casting machine slab yard 50 or in the hot rolling slab yard 60 in the middle of the conveyance route T from the exit side of the continuous casting machine 5 to the heating furnaces 8 and 8. The slab surface temperature may be measured using the slab yard thermometer 70 or the heating furnace entrance-side thermometer 30. Further, it may be predicted and calculated based on the actual time elapsed since the torch cut at the outlet side of the continuous casting machine 5. In addition, you may take the method of using together two or more of the above-mentioned methods.

連続鋳造機出側温度計20や加熱炉入側温度計30で実測、あるいは間接的に測定した鋼素材の表面温度の情報を基に、加熱炉8、8に装入する前の鋼素材の表面温度が上記した所定の温度範囲内となるように所定時間の大気放置等により熱放散させて調整したのち、保温ピット65に装入し、加熱炉への装入まで保留することが好ましい。保温ピット65に保留することにより、鋼素材温度を極力低下しないように保持することができる。なお、大気放置に代えて、放置時間の短縮のために、空気吹付けによる冷却、水または油等の媒体でのミスト冷却、スプレー冷却等の強制冷却を行っても何ら問題はない。   Based on information on the surface temperature of the steel material measured or indirectly measured by the continuous casting machine outlet side thermometer 20 and the heating furnace inlet side thermometer 30, the steel material before charging into the furnaces 8 and 8 It is preferable that the surface temperature is adjusted by dissipating heat by leaving in the atmosphere for a predetermined time so that the surface temperature is within the predetermined temperature range described above, and then charged into the heat retaining pit 65 and suspended until charging in the heating furnace. By holding in the heat retaining pit 65, the steel material temperature can be held so as not to decrease as much as possible. In place of leaving in the atmosphere, there is no problem even if forced cooling such as cooling by air blowing, mist cooling with a medium such as water or oil, spray cooling or the like is performed in order to shorten the standing time.

また、必要な大気中放置時間は、鋼素材の表面温度の実測値に基づき、鋼素材断面の厚さなどの各鋼素材の属性データに応じて、計算機40により計算し、求めることができる。   Further, the required standing time in the atmosphere can be calculated and calculated by the computer 40 based on the measured value of the surface temperature of the steel material and the attribute data of each steel material such as the thickness of the cross section of the steel material.

なお、連続鋳造機出側あるいは加熱炉入側に配置された温度計20,30、図示しない各種トラッキングセンサーのデータを基に計算機40が、情報伝達ルートXを通じて、連続鋳造機出側、スラブヤード内、加熱炉入側の各種設備への指令を送るようにしている。情報伝達ルートYはそれら設備の実績的な状態に関する情報を計算機40に送るようにしている。   In addition, the thermometers 20 and 30 arranged on the continuous casting machine outlet side or the heating furnace inlet side, and the computer 40 based on the data of various tracking sensors (not shown), through the information transmission route X, the continuous casting machine outlet side, the slab yard Among them, instructions are sent to various facilities on the heating furnace entrance side. The information transmission route Y is configured to send information regarding the actual state of these facilities to the computer 40.

加熱炉に装入された鋼素材は、所定温度に加熱されたのち、熱間圧延を施される。   The steel material charged in the heating furnace is heated to a predetermined temperature and then subjected to hot rolling.

本発明では、鋼素材の加熱温度は熱間圧延が可能な温度であればよく、とくに限定する必要はないが、1050℃〜1250℃の範囲とすることが好ましい。加熱温度が1050℃未満では、変形抵抗が高くなるため、圧延荷重が高くなりすぎて圧延が困難となる。また、仕上圧延機出側温度をAr3変態点以上とすることが困難となる。一方、1250℃を超えて高くなると、加熱によるスケールロスが増大し、歩留りが低下する。 In the present invention, the heating temperature of the steel material is not particularly limited as long as it is a temperature at which hot rolling is possible, but is preferably in the range of 1050 ° C to 1250 ° C. When the heating temperature is less than 1050 ° C., the deformation resistance becomes high, so that the rolling load becomes too high and rolling becomes difficult. In addition, it is difficult to set the finish rolling mill outlet temperature to the Ar 3 transformation point or higher. On the other hand, when the temperature exceeds 1250 ° C., the scale loss due to heating increases and the yield decreases.

なお、鋼素材(スラブ)の加熱温度が、所定温度以上になったことは、例えば、加熱炉内での各加熱帯での雰囲気温度と在帯時間の実績に基いて、例えば図4に示すようなメッシュでスラブ(鋼素材)を仮想分割して差分計算するモデルにより予測計算することで求めるのが好ましいが、必ずしもこれに限るものではない。図4では、スラブ長手方向端部と中央部2箇所にメッシュを想定し、スラブ長手方向中央部と端部の温度を別個に計算するが、メッシュの切り方はこれに限るものではなく、あるいは全く別に、差分法によらない方法によっても構わない。   Note that the heating temperature of the steel material (slab) is equal to or higher than a predetermined temperature, for example, as shown in FIG. 4 based on the results of the atmospheric temperature and the time spent in each heating zone in the heating furnace. Although it is preferable to obtain the slab (steel material) with such a mesh by predictive calculation using a model that virtually divides the slab (steel material), the present invention is not necessarily limited to this. In FIG. 4, a mesh is assumed at the two ends of the slab longitudinal direction and the central portion, and the temperatures of the slab longitudinal direction central portion and the end portion are calculated separately, but the method of cutting the mesh is not limited to this, or It is also possible to use a method that does not depend on the difference method.

鋼素材の加熱温度は、表面の温度でも、断面平均温度でも、実操業上、好都合な方を使用することが好ましい。また、鋼素材長手方向中央部の温度、端部の温度を使ってもよい。   As for the heating temperature of the steel material, it is preferable to use one that is convenient in actual operation, whether it is the surface temperature or the average cross-sectional temperature. Moreover, you may use the temperature of the steel raw material longitudinal direction center part, and the temperature of an edge part.

加熱炉で所定温度に加熱された鋼素材は、ついで、図5に代表的な一例を示す熱間圧延ラインで、熱間圧延を施される。   Next, the steel material heated to a predetermined temperature in the heating furnace is hot-rolled by a hot rolling line shown in a typical example in FIG.

図5に示す熱間圧延ライン100は、被圧延材である鋼素材(以下、被圧延材:S)を数百〜千数百℃に加熱した後、熱間圧延ライン上に抽出し、一対のロールで被圧延材を挟圧しつつそのロールを回転させることで薄く延ばす製造ラインである。これは、被圧延材Sの搬送方向上流から下流に向かう順に、加熱炉8,8、複数の粗圧延機(Rougher)12、クロップシャ14、デスケーリング装置16、仕上圧延機(Finisher)18、冷却ゾーン22、コイラー(巻取装置)24等が順次配置されている。   A hot rolling line 100 shown in FIG. 5 extracts a steel material (hereinafter, a material to be rolled: S), which is a material to be rolled, to several hundred to several hundreds of degrees Celsius, and then extracts the material on the hot rolling line. It is a production line which extends thinly by rotating the roll while pinching the material to be rolled with the roll. This is because, in order from the upstream to the downstream in the conveying direction of the material to be rolled S, the heating furnaces 8, 8, a plurality of roughing mills (Rougher) 12, a cropping machine 14, a descaling device 16, a finishing mill (Finisher) 18, A cooling zone 22, a coiler (winding device) 24, and the like are sequentially arranged.

なお、一般に、熱間圧延ラインにおいて、粗圧延機12は、多くの場合4基を備え、そのうち一部(多くの場合1基)を往復圧延するものとし、残る粗圧延機(多くの場合3基)が一方向圧延を行う3/4連続と呼ばれるタイプのものが多い。しかし、4基中3基が一方向のタイプに限らず、例えば3基中1基が一方向のタイプのものなどもあるため、それらも含め、3/4連続という。なお、3/4連続以外のタイプとしては、粗圧延機1基又は2基の往復圧延後、仕上圧延する半連続と呼ばれるタイプのものや、粗圧延機6基内外で一方向圧延を行ったのち、仕上圧延する完全連続と呼ばれるタイプのものがある。本発明を適用できる熱間圧延ラインは、図5に示された3基中2基を往復圧延する3/4連続タイプの熱間圧延ラインに限定されるものではなく、上記した全てのタイプの熱間圧延ラインに適用できることは言うまでもない。なお、粗圧延機12による圧延中ないし圧延後でかつ仕上圧延機18で圧延される前の被圧延材Sはシートバーとも称される。   In general, in a hot rolling line, the rough rolling mill 12 is often provided with four units, of which a part (often one) is reciprocally rolled, and the remaining rough rolling mill (in many cases 3). There are many types called “3/4 continuous” in which the base) performs unidirectional rolling. However, three of the four groups are not limited to the one-way type, and for example, one of the three groups is a one-way type. In addition, as a type other than 3/4 continuous, after one or two rough rolling mills were reciprocally rolled, a type called semi-continuous finish rolling or one-way rolling was performed inside and outside six rough rolling mills. After that, there is a type called complete continuous that is finish-rolled. The hot rolling line to which the present invention can be applied is not limited to the 3/4 continuous type hot rolling line that reciprocally rolls two out of the three shown in FIG. Needless to say, it can be applied to a hot rolling line. Note that the material to be rolled S during rolling by the roughing mill 12 or after rolling and before rolling by the finishing mill 18 is also referred to as a sheet bar.

加熱炉で所定温度に加熱された鋼素材は、ついで仕上圧延機出側温度を所定温度範囲とする仕上圧延と、巻取り温度を所定温度範囲とするように巻き取る、熱間圧延を施され、熱延板(薄鋼板)とされる。なお、仕上圧延機出側温度は、仕上圧延機18の出側(被圧延材搬送方向下流側)に設置した仕上圧延機出側温度計21により実測するのが好ましい。また、巻取り温度は、巻取装置24の入側(被圧延材搬送方向上流側)に設置した巻取温度計23により実測するのが好ましい。仕上圧延機出側温度、巻取り温度は、製品に要求される機械的性質等の特性に基いて適宜決定される。   The steel material heated to a predetermined temperature in the heating furnace is then subjected to finish rolling in which the finish rolling mill outlet temperature is in a predetermined temperature range and hot rolling in which the winding temperature is wound in a predetermined temperature range. , Hot-rolled sheet (thin steel sheet). Note that the finish rolling mill delivery side temperature is preferably measured by a finish mill delivery side thermometer 21 installed on the delivery side of the finishing mill 18 (on the downstream side in the material transport direction). In addition, the winding temperature is preferably measured by a winding thermometer 23 installed on the entry side (upstream side in the conveyance direction of the material to be rolled) of the winding device 24. The finish rolling mill outlet temperature and the coiling temperature are appropriately determined based on characteristics such as mechanical properties required for the product.

歪時効硬化特性に優れた高張力冷延鋼板の製造の場合には、仕上圧延機出側温度は800℃以上、巻取り温度は600℃以下とすることが、また歪時効硬化特性に優れた高張力熱延鋼板の場合には、仕上圧延機出側温度は800℃以上、巻取り温度は650℃以下、好ましくは550〜650℃とすることが好ましい。   When manufacturing high-tensile cold-rolled steel sheets with excellent strain age hardening characteristics, the finish rolling mill outlet temperature should be 800 ° C or higher, and the winding temperature should be 600 ° C or lower. In the case of a high-tensile hot-rolled steel sheet, the finish rolling mill outlet temperature is 800 ° C. or higher, and the winding temperature is 650 ° C. or lower, preferably 550 to 650 ° C.

また、歪時効硬化特性に優れた深絞り用冷延鋼板の場合には、仕上圧延機出側温度は600℃以上とすることが好ましく、Ar3 変態点以下とすることがさらに好ましい。なお、この場合、巻取り温度はとくに限定する必要はない。また、粗圧延機出側温度計等で実測する粗圧延機出側温度(粗圧延終了温度)は1000℃以下Ar3 変態点以上とすることが好ましい。 Further, in the case of a cold-rolled steel sheet for deep drawing having excellent strain age hardening characteristics, the finish rolling mill outlet temperature is preferably 600 ° C. or higher, and more preferably Ar 3 transformation point or lower. In this case, the winding temperature need not be particularly limited. Moreover, it is preferable that the rough rolling mill delivery side temperature (rough rolling finish temperature) measured with a rough rolling mill delivery thermometer or the like is 1000 ° C. or lower and the Ar 3 transformation point or higher.

上記した熱間圧延により得られた熱延板は、圧延まま、あるいはさらに必要に応じ、熱延板焼鈍、酸洗処理、冷間圧延を施され冷延板とされ、さらに再結晶焼鈍を施されて冷延焼鈍板とされたのち、めっき処理を施されてめっき鋼板とされ、製品として使用に供される。   The hot-rolled sheet obtained by the above hot rolling is rolled or, if necessary, further subjected to hot-rolled sheet annealing, pickling treatment, and cold rolling to form a cold-rolled sheet, and further subjected to recrystallization annealing. After being made into a cold-rolled annealed plate, it is plated and made into a plated steel plate, which is used as a product.

以下、実施例に基づき、本発明をさらに詳細に説明する。   Hereinafter, based on an Example, this invention is demonstrated in detail.

表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法により表1に示す厚さのスラブ(鋼素材)とした。スラブは、図3に示す搬送経路を経由して加熱炉に装入した。   Molten steel having the composition shown in Table 1 was melted in a converter, and a slab (steel material) having the thickness shown in Table 1 was obtained by a continuous casting method. The slab was charged into the heating furnace via the conveyance path shown in FIG.

まず、鋳込み完了後に、連続鋳造機出側温度計20でスラブ表面温度を測定した。各スラブの属性を用いて計算機40により、各スラブの加熱炉装入温度上限を判定し、さらに測定されたスラブ表面温度と各スラブの属性から計算機40により、加熱炉装入温度上限となるように加熱炉装入までの熱放散のための、大気放置時間を計算し設定した。設定された大気放置時間に基づいて、大気中に放置したのち、保温ピット65に装入した。なお、保温ピットでは、スラブ表面温度の低下はほとんど認められなかった。   First, after completion of casting, the slab surface temperature was measured with a continuous caster outlet thermometer 20. The upper limit of the furnace charging temperature of each slab is determined by the computer 40 using the attribute of each slab, and the upper limit of the heating furnace charging temperature is determined by the calculator 40 from the measured slab surface temperature and the attribute of each slab. The air standing time for heat dissipation until charging the furnace was calculated and set. After being left in the air based on the set air leaving time, the heat retaining pit 65 was inserted. In the heat retaining pit, almost no decrease in the slab surface temperature was observed.

保温ピット65に保留されたスラブは、ついで加熱炉に装入され、表2に示す加熱温度に加熱されたのち、表2に示す条件で熱間圧延を施され、表2に示す板厚の熱延板とされた。   The slab held in the heat retaining pit 65 was then charged into a heating furnace, heated to the heating temperature shown in Table 2, and then hot-rolled under the conditions shown in Table 2 to obtain the plate thickness shown in Table 2. It was a hot-rolled sheet.

ついで、これら熱延板は、熱延板焼鈍−酸洗処理を施された後、冷間圧延により表2に示す板厚の冷延板とされた。ついで冷延板は、仕上焼鈍(700 ℃×20 min)を施された後、電気錫めっき処理を施されめっき鋼板を得た。   Subsequently, these hot-rolled sheets were subjected to hot-rolled sheet annealing-pickling treatment, and then cold-rolled sheets having the thicknesses shown in Table 2 by cold rolling. Subsequently, the cold-rolled sheet was subjected to finish annealing (700 ° C. × 20 min) and then subjected to electrotin plating to obtain a plated steel sheet.

めっき処理後、めっき鋼板の表面を目視観察して、めっきむら発生の有無を調査した。めっきむらが発生した場合を×、発生しなかった場合を○として評価した。なお、目視観察で筋状に見える光沢むらが存在する場合をめっきむらが発生した場合とした。   After the plating treatment, the surface of the plated steel sheet was visually observed to investigate the occurrence of uneven plating. The case where uneven plating occurred was evaluated as x, and the case where it did not occur was evaluated as ○. In addition, the case where the uneven plating which looks like stripes by visual observation exists was set as the case where the uneven plating occurred.

得られた結果を表2に示す。   The results obtained are shown in Table 2.

Figure 0004158034
Figure 0004158034

Figure 0004158034
Figure 0004158034

本発明例は、いずれもめっきむらの発生は認められない。一方、本発明の範囲を外れる比較例は、めっきむらが発生している。なお、Al、N、N/Alの範囲が本発明の範囲を外れる従来例ではめっきむらが発生していないが、これは成分系の違いにより従来ではそもそもめっきむら発生の問題が生じていなかったのである。   In all of the inventive examples, the occurrence of uneven plating is not observed. On the other hand, in the comparative example outside the scope of the present invention, uneven plating occurs. In the conventional example in which the range of Al, N, and N / Al is outside the range of the present invention, uneven plating does not occur. However, due to the difference in the component system, there has been no problem of uneven plating in the first place. It is.

本発明の条件に適合する場合の結晶組織の変化の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of the change of the crystal structure in the case of satisfy | filling the conditions of this invention. 本発明の条件からはずれる場合の結晶組織の変化の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of the change of the crystal structure when deviating from the conditions of this invention. 本発明の実施に好適な、鋼素材の搬送経路、制御系の全体を模式的に示す概要説明図である。It is an outline explanatory view showing typically the whole conveyance route of a steel material, and the whole control system suitable for implementation of the present invention. 鋼素材温度を計算するためのモデルの一例を示す説明図である。It is explanatory drawing which shows an example of the model for calculating steel raw material temperature. 本発明の実施に好適な熱間圧延ラインの全体の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the whole of the hot rolling line suitable for implementation of this invention. めっきむらの発生状況を模式的に示す説明図である。It is explanatory drawing which shows typically the generation | occurrence | production state of plating unevenness.

符号の説明Explanation of symbols

1 鋼板(鋼帯)
5 連続鋳造機
8 加熱炉
12 粗圧延機
13 ワークロール
14 クロップシャ
16 デスケーリング装置
18 仕上圧延機
19 ワークロール
20 連続鋳造機出側温度計
21 仕上圧延機出側温度計
22 冷却ゾーン
23 巻取温度計
24 コイラー
30 加熱炉入側温度計
40 計算機
50 連続鋳造機スラブヤード
60 熱延スラブヤード
65 保温ピット
70 スラブヤード温度計
80 強制冷却装置
90 下位計算機
95 制御装置
100 熱間圧延ライン
W、G、X、Y 情報伝達ルート
S 被圧延材
T 搬送ルート
1 Steel plate (steel strip)
5 Continuous Casting Machine 8 Heating Furnace 12 Rough Rolling Mill 13 Work Roll 14 Crop Sha 16 Descaling Device 18 Finishing Roller 19 Work Roll 20 Continuous Casting Machine Delivery Side Thermometer 21 Finishing Roller Delivery Side Thermometer 22 Cooling Zone 23 Winding Thermometer 24 Coiler 30 Heating furnace inlet side thermometer 40 Computer 50 Continuous casting machine slab yard 60 Hot-roll slab yard 65 Thermal insulation pit 70 Slab yard thermometer 80 Forced cooling device 90 Sub computer 95 Control device 100 Hot rolling line W, G , X, Y Information transmission route S Rolled material T Transport route

Claims (1)

質量%で、Al:0.02%以下、N:0.005〜0.025%を、N/Al:0.3 以上を満足するように含む組成の鋼素材を、鋳込み終了後、該鋼素材の表面温度が400℃以上Ar1変態点以下になるように調整して、加熱炉に装入し加熱したのち、該鋼素材に熱間圧延を施して薄鋼板とすることを特徴とする薄鋼板の熱間圧延方法。 The surface temperature of the steel material is 400 ° C. or higher after the completion of casting with a steel material having a composition that satisfies Al: 0.02% or less, N: 0.005 to 0.025%, and N / Al: 0.3 or more. A method of hot rolling a thin steel sheet, characterized by adjusting the Ar 1 transformation point or less, charging it into a heating furnace and heating it, and then subjecting the steel material to hot rolling to form a thin steel sheet.
JP2003400399A 2003-11-28 2003-11-28 Hot rolling method for thin steel sheet Expired - Fee Related JP4158034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003400399A JP4158034B2 (en) 2003-11-28 2003-11-28 Hot rolling method for thin steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003400399A JP4158034B2 (en) 2003-11-28 2003-11-28 Hot rolling method for thin steel sheet

Publications (2)

Publication Number Publication Date
JP2005161326A JP2005161326A (en) 2005-06-23
JP4158034B2 true JP4158034B2 (en) 2008-10-01

Family

ID=34724681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003400399A Expired - Fee Related JP4158034B2 (en) 2003-11-28 2003-11-28 Hot rolling method for thin steel sheet

Country Status (1)

Country Link
JP (1) JP4158034B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5825185B2 (en) * 2012-04-18 2015-12-02 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP6380510B2 (en) * 2015-11-30 2018-08-29 Jfeスチール株式会社 Heating furnace slab charging temperature prediction system and heating furnace slab charging temperature prediction method

Also Published As

Publication number Publication date
JP2005161326A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
KR101476866B1 (en) Low density steel with good stamping capability
US6364968B1 (en) High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
US20140007992A1 (en) Method for Producing a Hot-Rolled Flat Steel Product
JP3610883B2 (en) Method for producing high-tensile steel sheet with excellent bendability
CN103249847B (en) Method for manufacturing high-strength cold-rolled/hot-rolled trip steel having a tensile strength of 590 mpa grade, superior workability, and low mechanical-property deviation
KR20150127298A (en) High-strength steel sheet having excellent hot rolling workability, and process for production thereof
JP5846445B2 (en) Cold rolled steel sheet and method for producing the same
JP4506476B2 (en) Cold-rolled steel sheet suitable for warm forming and manufacturing method thereof
JP4840270B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP2013185240A (en) High-tension cold-rolled steel sheet, high-tension plated steel sheet, and method for producing them
JP3870868B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in stretch flangeability, strength-ductility balance and strain age hardening characteristics, and method for producing the same
JP5035268B2 (en) High tensile cold-rolled steel sheet
JPH0681036A (en) Production of ferritic stainless steel sheet excellent in ridging characteristic and workability
JP4192857B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP4867338B2 (en) Ultra-high strength steel sheet and method for manufacturing the same
JP2004197119A (en) Hot-rolled steel sheet superior in uniformity of material quality, hot-dipped steel sheet, and manufacturing method therefor
JP4158034B2 (en) Hot rolling method for thin steel sheet
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP4292986B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP7186291B2 (en) Hot-rolled steel sheet and its manufacturing method
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP4432725B2 (en) Cr-containing high-strength cold-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP6658708B2 (en) Method for producing steel sheet having low yield ratio
JP4385777B2 (en) Cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
CN117616144A (en) Cold-rolled steel sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees