JP6658708B2 - Method for producing steel sheet having low yield ratio - Google Patents

Method for producing steel sheet having low yield ratio Download PDF

Info

Publication number
JP6658708B2
JP6658708B2 JP2017183135A JP2017183135A JP6658708B2 JP 6658708 B2 JP6658708 B2 JP 6658708B2 JP 2017183135 A JP2017183135 A JP 2017183135A JP 2017183135 A JP2017183135 A JP 2017183135A JP 6658708 B2 JP6658708 B2 JP 6658708B2
Authority
JP
Japan
Prior art keywords
less
rolling
annealing
steel sheet
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017183135A
Other languages
Japanese (ja)
Other versions
JP2019059963A (en
Inventor
金晴 奥田
金晴 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017183135A priority Critical patent/JP6658708B2/en
Publication of JP2019059963A publication Critical patent/JP2019059963A/en
Application granted granted Critical
Publication of JP6658708B2 publication Critical patent/JP6658708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、低降伏比を有する鋼板の製造方法に関する。本発明は、特に、自動車の外板パネル等の使途に有用な、引張強度(TS)が270MPa以上500MPa未満の強度でかつ降伏強度が低く、プレス成型時にしわが発生しにくい冷延鋼板の製造方法に関するものである。   The present invention relates to a method for producing a steel sheet having a low yield ratio. The present invention is particularly useful for producing cold-rolled steel sheets having a tensile strength (TS) of 270 MPa or more and less than 500 MPa, a low yield strength, and less wrinkling during press molding, which is useful for the use of automobile skin panels and the like. It is about the method.

近年、地球環境保全の観点から、COの排出量を規制するため、自動車の燃費改善が要求されている。加えて、衝突時に乗員の安全を確保するため、自動車車体の衝突特性を中心にした安全性向上も要求されている。このように、自動車車体の軽量化および自動車車体の強化が積極的に進められている。 2. Description of the Related Art In recent years, from the viewpoint of global environmental protection, improvement of fuel efficiency of automobiles has been demanded in order to regulate CO 2 emissions. In addition, in order to ensure the safety of the occupant in the event of a collision, there is also a demand for an improvement in safety with a focus on the collision characteristics of the vehicle body. As described above, the weight reduction of the vehicle body and the strengthening of the vehicle body have been actively promoted.

自動車車体の軽量化と強化を同時に満たすには、剛性に問題とならない範囲で部品素材を高強度化し、板厚を減ずることによる軽量化が効果的であると言われており、最近では高張力鋼板が自動車部品に積極的に使用されている。   In order to satisfy both the weight reduction and strengthening of an automobile body at the same time, it is said that it is effective to increase the strength of component materials and reduce the thickness of the parts as long as there is no problem with rigidity. Steel plates are being actively used in automotive parts.

軽量化効果は使用する鋼板が高強度であるほど大きくなるため、自動車業界では、例えば内板および外板用のパネル用材料として引張強度(TS)390MPa以上の鋼板を使用する動向にある。   Since the weight reduction effect increases as the steel plate used increases in strength, the automotive industry tends to use a steel plate having a tensile strength (TS) of 390 MPa or more, for example, as a panel material for an inner plate and an outer plate.

一方、鋼板を素材とする自動車部品の多くは、プレス加工によって成形されるため、自動車用鋼板には優れたプレス成形性を有していることが必要とされる。しかしながら、高強度鋼板は、通常の軟鋼板に比べて成形性が劣化するため、自動車の軽量化を進める上での課題も多い。外板用のパネル用材料ではプレス後の表面品質が厳格に管理され、例えばドアの取っ手回りの面ひずみと呼ばれる局所的な凹凸をなくすことが重要である。   On the other hand, since most automotive parts made of steel sheets are formed by press working, steel sheets for automobiles need to have excellent press formability. However, since high-strength steel sheets are deteriorated in formability as compared with ordinary mild steel sheets, there are many problems in reducing the weight of automobiles. For the panel material for the outer panel, the surface quality after pressing is strictly controlled, and for example, it is important to eliminate local unevenness called surface distortion around the handle of the door.

このような面ひずみに対しては、降伏強度を下げる必要があり、引張強度(TS)に対する降伏強度(YS)の比である降伏比YR[=(YS/TS)×100]を下げる試みがなされている。   For such a surface strain, it is necessary to lower the yield strength, and an attempt to lower the yield ratio YR [= (YS / TS) × 100], which is the ratio of the yield strength (YS) to the tensile strength (TS), has been made. It has been done.

例えば、特許文献1には、伸びフランジ性に優れ、低YS特性であるプレス成形性に優れた鋼板とその製造方法が開示されている。特許文献1では、C:0.0040〜0.015wt%、Nb:0.04〜0.25wt%で、Nb/(7.75×C)=1.5〜2.5と炭素をNbで十分に固定し、焼鈍段階で、再結晶温度以上に加熱して、0.3×Nb/(7.75×C)−0.25≦張力T≦2.0と張力を制御することで、粒界近傍にNbCの低密度領域を形成し、低YS化を達成している。   For example, Patent Literature 1 discloses a steel sheet having excellent stretch flangeability, low YS characteristics, and excellent press formability, and a method for producing the same. In Patent Document 1, C: 0.0040 to 0.015 wt%, Nb: 0.04 to 0.25 wt%, Nb / (7.75 × C) = 1.5 to 2.5, and carbon is Nb. By sufficiently fixing and heating to a temperature equal to or higher than the recrystallization temperature in the annealing step, and controlling the tension to 0.3 × Nb / (7.75 × C) -0.25 ≦ tensile T ≦ 2.0, A low-density NbC region is formed near the grain boundary to achieve a low YS.

また、特許文献2に開示された鋼板は、フェライト組織に主としてマルテンサイトからなる第2相を適量分散させた組織を有しており、従来のIF鋼等の固溶強化鋼よりYPは低減される。また、前記鋼板は高いBHを有し耐デント性にも優れる。しかしながら、ドア等の部品においてこの鋼板をプレス成形すると、従来の340MPa級焼付硬化型鋼板より面ひずみの発生量が大きくなることから、より一層の低YP化が必要とされている。   Further, the steel sheet disclosed in Patent Document 2 has a structure in which a second phase mainly composed of martensite is dispersed in a ferrite structure in an appropriate amount, and YP is reduced as compared with a conventional solid solution strengthened steel such as IF steel. You. Further, the steel sheet has a high BH and has excellent dent resistance. However, when this steel sheet is press-formed in a part such as a door, the amount of surface strain generated becomes larger than that of a conventional 340 MPa class bake hardening steel sheet, so that a further reduction in YP is required.

特許文献3には、所定の成分を有する熱延板を冷間圧延し、Ac点以上Ac点以下の温度範囲で焼鈍した後、3〜20℃/sの冷却速度で550〜750℃の温度範囲まで1次冷却し、さらに100℃/s以上の冷却速度で200℃以下まで2次冷却する鋼板の製造方法が開示されている。しかし特許文献3に記載の方法は、焼鈍後に急速冷却を必要とするので、めっき処理を施さない連続焼鈍ラインでは適用できるが、焼鈍後の冷却中に450〜500℃に保持された亜鉛めっき浴に浸漬してめっき処理を施す連続溶融亜鉛めっきラインにおいては適用するのが原理的に難しい。 Patent Document 3 discloses that a hot-rolled sheet having a predetermined component is cold-rolled, annealed in a temperature range of 1 to 3 points of Ac, and 550 to 750 ° C. at a cooling rate of 3 to 20 ° C./s. A method for producing a steel sheet in which primary cooling is performed to a temperature range of 200 ° C. and then further cooled to 200 ° C. or less at a cooling rate of 100 ° C./s or more is disclosed. However, since the method described in Patent Document 3 requires rapid cooling after annealing, it can be applied to a continuous annealing line that is not subjected to plating treatment, but a zinc plating bath maintained at 450 to 500 ° C. during cooling after annealing. It is difficult in principle to apply to a continuous hot-dip galvanizing line in which a plating process is performed by immersion in a galvanizing process.

特開2001−131681号公報JP 2001-131681 A 特公昭62−40405号公報JP-B-62-40405 特開2006−233294号公報JP 2006-233294 A

本発明は、低降伏比を有する鋼板の製造方法を提供することを目的とする。
なお、本発明における低降伏比を有する鋼板とは、降伏比(YR)が50%以下の鋼板を意味する。
An object of the present invention is to provide a method for producing a steel sheet having a low yield ratio.
The steel sheet having a low yield ratio in the present invention means a steel sheet having a yield ratio (YR) of 50% or less.

従来、深絞り性を向上させるためにNbとCの原子比である(12/93)×(Nb/C)[前記Nb、Cは、各元素の含有量(質量%)]を1.0よりも十分高くしていたが、NbCによる析出物が多いと、その分散を制御することで降伏強度(YS)を低く、また析出強化で引張強度(TS)を高めることができるものの、降伏比(YR)を50%以下とすることは困難であった。そこでさらなる検討を行ったところ、十分に低い降伏比を有する鋼板とするためには、NbとCの原子比を0.8以上1.1以下の限られた範囲とし、冷間圧延工程での冷間圧延率と焼鈍工程での加熱速度を制御することが重要であることを見出した。   Conventionally, to improve the deep drawability, the atomic ratio of Nb and C (12/93) × (Nb / C) [the content of each element (mass%) of Nb and C is 1.0] However, when there are many precipitates due to NbC, the yield strength (YS) can be lowered by controlling the dispersion, and the tensile strength (TS) can be increased by precipitation strengthening. It was difficult to make (YR) 50% or less. Therefore, further investigation was made. In order to obtain a steel sheet having a sufficiently low yield ratio, the atomic ratio of Nb and C was set to a limited range of 0.8 or more and 1.1 or less, and the cold rolling process was performed. It has been found that it is important to control the cold rolling rate and the heating rate in the annealing step.

本発明は、このような知見に基づいてなされたものであり、以下の構成を有する。
[1]質量%で、
C:0.0040〜0.0120%、
Si:0.70%以下、
Mn:0.50〜1.80%、
P:0.005〜0.05%、
S:0.01%以下、
Al:0.005〜0.3%、
N:0.005%以下、
Nb:0.025〜0.110%
を含有し、かつ、
下記(1)式で示されるNbとCの原子比が0.80以上1.10以下であり、残部がFeおよび不可避的不純物である組成を有する鋼スラブに、
仕上圧延出側温度を880℃以上とする仕上圧延を施し、550℃以上670℃以下で巻き取り、熱延板とする熱間圧延工程と、
該熱延板に冷間圧延率65%以上92%以下の冷間圧延を施し冷延板とする冷間圧延工程と、
該冷延板を加熱し、760℃以上950℃以下の温度域の焼鈍温度Tで焼鈍を行う焼鈍工程と、を有し、
冷間圧延工程での板厚真ひずみεtと、焼鈍工程での650℃から焼鈍温度Tまでの加熱速度HR(℃/s)との関係が下記(2)式を満たす、低降伏比を有する鋼板の製造方法。
(12/93)×(Nb/C) ・・・(1)
ただし、上記(1)式におけるNb、Cは、各元素の含有量(質量%)を表す。
−14.0≦ln(HR)−5(εt)≦−8.0 ・・・(2)
ただし、上記(2)式におけるεtは、下記(3)式で算出される。
εt=−ln(1−CR/100) ・・・(3)
ただし、上記(3)式におけるCRは、冷間圧延工程における冷間圧延率(%)である。
[2]前記組成に加えて、さらに、鋼スラブが、質量%で、
B:0.0010%以下
を含有する、[1]に記載の低降伏比を有する鋼板の製造方法。
[3]さらに、前記焼鈍工程後に、鋼板表面にめっき処理を行う、[1]または[2]に記載の低降伏比を有する鋼板の製造方法。
The present invention has been made based on such knowledge, and has the following configuration.
[1] In mass%,
C: 0.0040 to 0.0120%,
Si: 0.70% or less,
Mn: 0.50 to 1.80%,
P: 0.005 to 0.05%,
S: 0.01% or less,
Al: 0.005 to 0.3%,
N: 0.005% or less,
Nb: 0.025 to 0.110%
Containing, and
In a steel slab having an atomic ratio of Nb to C represented by the following formula (1) of 0.80 or more and 1.10 or less and a balance of Fe and unavoidable impurities,
A hot rolling step of performing finish rolling at a finish-rolling exit temperature of 880 ° C. or higher, winding at 550 ° C. or higher and 670 ° C. or lower, and forming a hot-rolled sheet;
A cold rolling step of subjecting the hot rolled sheet to cold rolling at a cold rolling rate of 65% or more and 92% or less to form a cold rolled sheet;
An annealing step of heating the cold-rolled sheet and performing annealing at an annealing temperature T in a temperature range of 760 ° C. or more and 950 ° C. or less,
A steel sheet having a low yield ratio, in which the relationship between the true thickness strain εt in the cold rolling step and the heating rate HR (° C./s) from 650 ° C. to the annealing temperature T in the annealing step satisfies the following expression (2). Manufacturing method.
(12/93) × (Nb / C) (1)
However, Nb and C in the above formula (1) represent the contents (% by mass) of each element.
−14.0 ≦ ln (HR) −5 (εt) ≦ −8.0 (2)
However, εt in the above equation (2) is calculated by the following equation (3).
εt = -ln (1-CR / 100) (3)
Here, CR in the above equation (3) is a cold rolling rate (%) in the cold rolling step.
[2] In addition to the above composition, the steel slab further comprises,
B: The method for producing a steel sheet having a low yield ratio according to [1], containing 0.0010% or less.
[3] The method for producing a steel sheet having a low yield ratio according to [1] or [2], further comprising, after the annealing step, plating the steel sheet surface.

本発明によれば、低降伏比を有する鋼板の製造方法を提供することができる。
本発明の製造方法により製造された鋼板は、従来にない低い降伏比を有する。また、MoやCr等の合金元素の添加を制限していることから、めっき性や表面外観が良好である。よって、自動車外板用鋼板として好適に用いることができる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the steel plate which has a low yield ratio can be provided.
The steel sheet manufactured by the manufacturing method of the present invention has an unprecedented low yield ratio. Further, since the addition of alloying elements such as Mo and Cr is limited, the plating property and the surface appearance are good. Therefore, it can be suitably used as a steel plate for automobile outer panels.

本発明は、C含有量がC:0.0040〜0.0120%の範囲において、NbとCの原子比である(12/93)×(Nb/C)が0.80≦(12/93)×(Nb/C)≦1.10と従来のIF鋼よりも、低いレベルで炭素を固定し、冷間圧延工程での冷間圧延率と、焼鈍工程での加熱速度を制御することで、フェライト単相鋼で従来にない低い降伏比を達成できることを見出してなされたものである。この理由については、必ずしも明らかではないが、次のように考えられる。   In the present invention, when the C content is in the range of 0.0040 to 0.0120%, the atomic ratio of Nb to C (12/93) × (Nb / C) is 0.80 ≦ (12/93). ) × (Nb / C) ≦ 1.10. By fixing carbon at a lower level than the conventional IF steel, and controlling the cold rolling rate in the cold rolling step and the heating rate in the annealing step. It has been found that ferrite single-phase steel can achieve a lower yield ratio than ever before. The reason for this is not necessarily clear, but is considered as follows.

これまで深絞り性の観点から、固溶炭素を極限まで減少させるために炭素の等量を超えるTiやNbを添加していたが、そのため炭化物が阻害して十分にフェライト組織の降伏強度が下げられなかった。そこで、炭素の等量か少し低い範囲でNbを添加することで、炭化物を鋼の降伏しやすい状態にすることができた。この場合、熱延での炭化物の析出状態が不安定であることから、冷間圧延で炭化物(NbC)の一部が溶解し、加熱段階(焼鈍段階)で炭化物が再析出することがアトムプローブなどの評価によって明らかになってきた。炭化物の溶解は、冷間圧延のひずみエネルギー、すなわち、冷間圧延率に依存し、再析出したときの炭化物の分散は、焼鈍工程での加熱速度に影響するため、その2つを最適にすることでフェライト単相でも従来にない低い降伏比が達成できたと考えられる。   Until now, from the viewpoint of deep drawability, Ti and Nb exceeding the equivalent amount of carbon have been added to reduce the amount of solid solution carbon to the limit. However, the carbides are inhibited and the yield strength of the ferrite structure is sufficiently reduced. I couldn't. Thus, by adding Nb in an amount equal to or slightly lower than that of carbon, the carbide was able to be brought into a state in which steel easily yielded. In this case, since the precipitation state of carbides in hot rolling is unstable, a part of the carbides (NbC) is melted by cold rolling, and the carbides are reprecipitated in the heating step (annealing step). It has become clear from such evaluations. Dissolution of carbides depends on the strain energy of cold rolling, that is, the cold rolling rate, and the dispersion of carbides when reprecipitated affects the heating rate in the annealing step, so optimize the two. Thus, it is considered that a lower yield ratio than ever before can be achieved even with a ferrite single phase.

以下に本発明を詳細に説明する。以下、特に断らない限り、元素の含有量は質量%で示している。   Hereinafter, the present invention will be described in detail. Hereinafter, unless otherwise specified, the contents of the elements are shown by mass%.

まず、本発明の鋼スラブの成分組成を限定した理由について説明する。   First, the reason for limiting the component composition of the steel slab of the present invention will be described.

C:0.0040〜0.0120%
Cは後述のNbとともに本発明における重要な元素である。自動車外板パネルの良好な深絞り性を得るためには過剰な添加は好ましいものではないことを考慮して、上限を0.0120%とする。Cは深絞り性の観点からは低いほど好ましいが、NbCの析出制御を利用する観点から0.0040%以上の添加が必要である。C含有量は、好ましくは0.0050%以上である。また、C含有量は、好ましくは0.0110%以下である。
C: 0.0040 to 0.0120%
C is an important element in the present invention together with Nb described later. The upper limit is set to 0.0120% in consideration that excessive addition is not preferable in order to obtain good deep drawability of an automobile outer panel. C is preferably as low as possible from the viewpoint of deep drawability, but 0.0040% or more is required from the viewpoint of utilizing the control of NbC precipitation. C content is preferably 0.0050% or more. Further, the C content is preferably 0.0110% or less.

Si:0.70%以下
Siは深絞り性を大きく低下させずに固溶強化できる効果がある。上記効果を得るためには、Siは0.20%以上含有することが好ましく、より好ましくは0.35%以上含有する。一方Siを0.70%を超えて含有すると、熱延時に赤スケールが発生するため、鋼板とした時の表面外観を悪くする。また溶融亜鉛めっきを施す際にめっきの濡れ性を悪くしてめっきむらの発生を招き、めっき品質が劣化するので、Si含有量は0.70%以下とする。Si含有量は、好ましくは0.50%以下である。
Si: 0.70% or less Si has the effect of solid solution strengthening without significantly lowering the deep drawability. In order to obtain the above effects, it is preferable that Si is contained at 0.20% or more, more preferably 0.35% or more. On the other hand, if the content of Si exceeds 0.70%, red scale is generated at the time of hot rolling, so that the surface appearance of the steel sheet is deteriorated. Further, when hot-dip galvanizing is performed, the wettability of the plating is deteriorated, which causes uneven plating and deteriorates the plating quality. Therefore, the Si content is set to 0.70% or less. The Si content is preferably 0.50% or less.

Mn:0.50〜1.80%
Mnは、高強度化に有効であるとともに、Sによる熱間割れを防止するのに有効な元素でもある。このような観点からMnは0.50%以上含有する必要がある。Mnは、好ましくは0.55%以上、より好ましくは1.00%以上含有させる。また一方で、過度の添加は深絞り性および溶接性を劣化させるのでMn含有量は1.80%を上限とする。Mn含有量は、好ましくは1.40%以下である。
Mn: 0.50 to 1.80%
Mn is an element that is effective in increasing the strength and is also effective in preventing hot cracking due to S. From such a viewpoint, Mn needs to be contained at 0.50% or more. Mn is preferably contained at least 0.55%, more preferably at least 1.00%. On the other hand, excessive addition deteriorates deep drawability and weldability, so that the upper limit of the Mn content is 1.80%. The Mn content is preferably 1.40% or less.

P:0.005〜0.05%
Pは固溶強化の効果がある。しかしながら0.005%未満ではその効果が現れないだけでなく、製鋼工程に於いて脱りんコストの上昇を招く。したがって、Pは0.005%以上含有するものとする。一方0.05%を超える過剰な添加は、Pが粒界に偏析し、耐二次加工脆性および溶接性を劣化させる。従ってPの含有量の上限を0.05%とする。P含有量は、好ましくは0.010%以上である。また、P含有量は、好ましくは0.03%以下である。
P: 0.005 to 0.05%
P has the effect of solid solution strengthening. However, if the content is less than 0.005%, not only the effect is not exhibited, but also the dephosphorization cost increases in the steel making process. Therefore, P should be contained at 0.005% or more. On the other hand, an excessive addition exceeding 0.05% causes P to segregate at the grain boundary, thereby deteriorating secondary work brittleness resistance and weldability. Therefore, the upper limit of the P content is set to 0.05%. The P content is preferably 0.010% or more. Further, the P content is preferably 0.03% or less.

S:0.01%以下
Sは不純物であり、熱間割れの原因になる他、鋼中で介在物として存在し鋼板の諸特性を劣化させるので、できるだけ低減することが好ましいが、0.01%までは許容できるため、S含有量は0.01%以下とする。S含有量は、好ましくは0.005%以下である。
S: 0.01% or less S is an impurity and causes hot cracking. In addition, S is present as an inclusion in steel and deteriorates various properties of the steel sheet. % Is acceptable, so the S content is set to 0.01% or less. The S content is preferably 0.005% or less.

Al:0.005〜0.3%
Alは鋼の脱酸元素として有用である他、固溶Nを固定して耐常温時効性を向上させる作用があるため、0.005%以上含有するものとする。一方、0.3%を超える添加は高合金化によるコスト増を招き、さらに表面欠陥を誘発するので、Al含有量は0.3%以下とする。Al含有量は、好ましくは0.015%以上である。また、Al含有量は、好ましくは0.15%以下である。
Al: 0.005 to 0.3%
Al is useful as a deoxidizing element of steel, and has an effect of fixing solid solution N to improve aging resistance at room temperature. Therefore, Al is contained in an amount of 0.005% or more. On the other hand, the addition exceeding 0.3% causes an increase in cost due to high alloying and further induces surface defects. Therefore, the Al content is set to 0.3% or less. The Al content is preferably 0.015% or more. Further, the Al content is preferably 0.15% or less.

N:0.005%以下
Nは多すぎると耐常温時効性を劣化させ、多量のAlやTi添加が必要となるため、できるだけ低減することが好ましく、上限を0.005%とする。N含有量は、好ましくは0.0030%以下である。
N: 0.005% or less If N is too much, the aging resistance at normal temperature is deteriorated and a large amount of Al or Ti needs to be added. Therefore, it is preferable to reduce as much as possible, and the upper limit is made 0.005%. The N content is preferably 0.0030% or less.

Nb:0.025〜0.110%
Nbは熱延板組織の微細化および熱延板中にNbCとしてCを析出固定させる作用を有し、深絞り性に寄与する元素である。このような観点からNbは0.025%以上含有するものとする。一方で、過剰なNbの添加はコストアップ、熱延負荷が大きくなる。またNbCが多量になると降伏強度が高くなるためNb含有量は0.110%以下とする。
Nb: 0.025 to 0.110%
Nb is an element that has a function of miniaturizing the structure of the hot-rolled sheet and precipitating and fixing C as NbC in the hot-rolled sheet, and contributing to deep drawability. From such a viewpoint, Nb is contained at 0.025% or more. On the other hand, excessive addition of Nb increases the cost and increases the hot rolling load. Further, since the yield strength increases as the NbC content increases, the Nb content is set to 0.110% or less.

NbとCの原子比が0.80以上1.10以下
本発明においては、NbとCの原子比を制御することが重要である。下記(1)式で示されるNbとCの原子比が、0.80未満では、固溶炭素が熱延段階で多く存在し、冷延焼鈍後の深絞り性が低下する。また、冷延焼鈍材の固溶炭素の存在は降伏強度を上げるので好ましくない。そのためNbとCの原子比は、0.80以上1.10以下とする必要がある。NbとCの原子比は、好ましくは0.85以上である。また、NbとCの原子比は、好ましくは1.05以下である。
(12/93)×(Nb/C) ・・・(1)
ただし、上記(1)式におけるNb、Cは、各元素の含有量(質量%)を表す。
Atomic ratio of Nb and C is 0.80 or more and 1.10 or less In the present invention, it is important to control the atomic ratio of Nb and C. When the atomic ratio of Nb to C represented by the following formula (1) is less than 0.80, a large amount of solute carbon is present at the hot rolling stage, and the deep drawability after cold rolling annealing is reduced. Further, the presence of solute carbon in the cold-rolled annealed material is not preferable because it increases the yield strength. Therefore, the atomic ratio between Nb and C needs to be 0.80 or more and 1.10 or less. The atomic ratio between Nb and C is preferably 0.85 or more. The atomic ratio between Nb and C is preferably 1.05 or less.
(12/93) × (Nb / C) (1)
However, Nb and C in the above formula (1) represent the contents (% by mass) of each element.

以上が本発明の鋼スラブの基本成分である。また、本発明では上記した成分以外の残部は鉄および不可避的不純物の組成とする。   The above are the basic components of the steel slab of the present invention. Further, in the present invention, the balance other than the above-mentioned components has a composition of iron and inevitable impurities.

本発明の鋼スラブの組成は、上記成分の他に、さらにB:0.0010%以下を含有することができる。   The composition of the steel slab of the present invention may further contain B: 0.0010% or less in addition to the above components.

B:0.0010%以下
Bは鋼の二次加工脆性を向上する作用をもつ元素であり、必要に応じて含有できる。しかしその含有量が0.0010%を超えるとその効果が飽和するためB含有量は0.0010%以下が好ましい。B含有量は、より好ましくは0.0008%以下である。
B: 0.0010% or less B is an element having an effect of improving the brittleness of secondary working of steel, and can be contained as necessary. However, if the content exceeds 0.0010%, the effect is saturated, so the B content is preferably 0.0010% or less. The B content is more preferably 0.0008% or less.

なお、前記不可避的不純物としては、目的とする特性に影響を及ぼさない範囲で、V、Mo、Cuを合計で0.1%以下の範囲で添加できる。   As the unavoidable impurities, V, Mo, and Cu can be added in a total amount of 0.1% or less as long as the desired characteristics are not affected.

本発明の鋼板は、電気めっき、あるいは溶融めっきなどの表面処理を施した、いわゆるめっき鋼板をも含むものである。めっきとは、純亜鉛の他、合金を形成する元素、亜鉛を主成分として合金元素を添加した亜鉛系合金めっき、あるいはAlやAlを主成分として合金元素を添加したAl系合金めっき、Mg、Niやこれらの元素を含む合金など、従来鋼板表面に施されているめっき層も含む。   The steel sheet of the present invention also includes a so-called plated steel sheet which has been subjected to a surface treatment such as electroplating or hot-dip plating. Plating is, in addition to pure zinc, an element that forms an alloy, zinc-based alloy plating in which zinc is the main component and an alloy element is added, or Al-based alloy plating in which Al or Al is the main component and an alloy element is added, Mg, It also includes a plating layer conventionally applied to the surface of a steel sheet, such as Ni or an alloy containing these elements.

なお、本発明における鋼板の成分組成は、上記の鋼スラブの組成と同様である。   The composition of the steel sheet in the present invention is the same as the composition of the steel slab.

次に、本発明の鋼板の製造方法について説明する。なお、以下の説明において、特に断らない限り、温度は、鋼スラブ、熱延板等の表面温度とする。   Next, a method for manufacturing a steel sheet according to the present invention will be described. In the following description, unless otherwise specified, the temperature is the surface temperature of a steel slab, a hot rolled sheet, or the like.

本発明では、熱間圧延工程において、上記組成を有する鋼スラブに仕上圧延出側温度を880℃以上とする仕上圧延を施す。   In the present invention, in the hot rolling step, the steel slab having the above composition is subjected to finish rolling in which the finish-rolling exit temperature is 880 ° C. or higher.

本発明の製造方法で使用する鋼スラブは、成分のマクロ偏析を防止すべく連続鋳造法で製造することが望ましいが、造塊法や薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造した後、いったん室温まで冷却し、その後再度加熱する従来法に加え、冷却せず温片のままで加熱炉に装入し熱間圧延する直送圧延、或いはわずかの保熱をおこなった後に直ちに熱間圧延する直送圧延・直接圧延などの省エネルギプロセスも問題なく適用できる。   The steel slab used in the manufacturing method of the present invention is desirably manufactured by a continuous casting method in order to prevent macro segregation of components, but may be manufactured by an ingot making method or a thin slab casting method. In addition to the conventional method in which steel slabs are manufactured and then cooled to room temperature and then heated again, direct-rolling in which hot slabs are placed in a heating furnace without cooling and hot-rolled, or a slight heat retention The energy saving processes, such as direct rolling and direct rolling, in which hot rolling is performed immediately after the rolling, can be applied without any problem.

鋼スラブ加熱温度は、析出物を粗大化させることにより{111}再結晶集合組織を発達させて深絞り性を改善するため、低い方が望ましい。しかし加熱温度が1000℃未満では圧延荷重が増大し熱間圧延時におけるトラブル発生の危険性が増大するので、鋼スラブ加熱温度は1000℃以上にすることが好ましい。なお、酸化重量の増加に伴うスケールロスの増大などから、鋼スラブ加熱温度の上限は1300℃とすることが好適である。   The steel slab heating temperature is desirably lower because the precipitates are coarsened to develop {111} recrystallization texture and improve deep drawability. However, if the heating temperature is lower than 1000 ° C., the rolling load increases, and the risk of occurrence of trouble during hot rolling increases, so the steel slab heating temperature is preferably set to 1000 ° C. or higher. Note that the upper limit of the heating temperature of the steel slab is preferably set to 1300 ° C. because of an increase in scale loss due to an increase in oxidation weight.

上記条件で加熱された鋼スラブに粗圧延および仕上圧延を行う熱間圧延を施す。ここで、鋼スラブは粗圧延によりシートバーとされる。なお、粗圧延の条件は特に規定する必要はなく、常法に従っておこなえばよい。また、鋼スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱する所謂シートバーヒーターを活用することは有効な方法であることは言うまでもない。   The steel slab heated under the above conditions is subjected to hot rolling for performing rough rolling and finish rolling. Here, the steel slab is turned into a sheet bar by rough rolling. It should be noted that the conditions for the rough rolling need not be particularly specified, and may be performed according to a conventional method. It is needless to say that utilizing a so-called sheet bar heater for heating the sheet bar is an effective method from the viewpoint of lowering the heating temperature of the steel slab and preventing troubles during hot rolling.

次いで、シートバーを仕上圧延して熱延板とする。本発明では、仕上圧延出側温度(FT)は880℃以上とする。これは冷間圧延および再結晶焼鈍後に優れた深絞り性が得られる微細な熱延板組織を得るためである。FTが880℃未満では組織が加工組織を有し冷延焼鈍後に{111}集合組織が発達しないだけでなく、熱間圧延時の圧延負荷が高くなる。従ってFTは880℃以上とする。一方FTが980℃を超えると組織が粗大化しこれもまた冷延焼鈍後の{111}再結晶集合組織の形成および発達を妨げるおそれがあり深絞り性が確保できないおそれがある。従ってFTは980℃以下にすることが好ましい。   Next, the sheet bar is finish-rolled to obtain a hot-rolled sheet. In the present invention, the finish rolling exit side temperature (FT) is 880 ° C. or higher. This is for obtaining a fine hot-rolled sheet structure capable of obtaining excellent deep drawability after cold rolling and recrystallization annealing. If the FT is less than 880 ° C., not only does the structure have a worked structure and the {111} texture does not develop after cold rolling annealing, but also the rolling load during hot rolling increases. Therefore, FT is set to 880 ° C. or higher. On the other hand, if the FT exceeds 980 ° C., the structure becomes coarse, which may hinder the formation and development of the {111} recrystallized texture after cold rolling annealing, and may not ensure the deep drawability. Therefore, FT is preferably set to 980 ° C. or lower.

また、熱間圧延時の圧延荷重を低減するため仕上圧延の一部または全部のパス間で潤滑圧延としてもよい。潤滑圧延をおこなうことは鋼板形状の均一化や材質の均質化の観点からも有効である。潤滑圧延の際の摩擦係数は0.10〜0.25の範囲とするのが好ましい。さらに、相前後するシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることも好ましい。連続圧延プロセスを適用することは熱間圧延の操業安定性の観点からも望ましい。   In order to reduce the rolling load at the time of hot rolling, lubricating rolling may be performed between some or all of the passes of finish rolling. Performing lubricating rolling is also effective from the viewpoint of uniformizing the shape of the steel sheet and homogenizing the material. The coefficient of friction during lubrication rolling is preferably in the range of 0.10 to 0.25. Further, it is also preferable to adopt a continuous rolling process in which successive sheet bars are joined and finish rolling is continuously performed. Applying the continuous rolling process is also desirable from the viewpoint of the operational stability of hot rolling.

巻き取り温度(CT):550℃以上670℃以下
コイル巻取温度については、550℃以上670℃以下とする。この温度範囲が熱延板中にNbCを析出させるのに好適な温度範囲であるとともに、特にCTが前記上限を超えると結晶粒が粗大化し強度低下を招くとともに冷延焼鈍後の深絞り性を妨げることになる。熱延段階で生成したNbCは一部を冷間圧延で溶解させて、焼鈍後に降伏強度を低くするようにNbCを制御する必要がある。そのため巻き取り温度の上限を670℃とする。
Winding temperature (CT): 550 ° C or more and 670 ° C or less The coil winding temperature is 550 ° C or more and 670 ° C or less. This temperature range is a suitable temperature range for precipitating NbC in the hot-rolled sheet, and particularly when the CT exceeds the upper limit, the crystal grains become coarse and the strength is reduced, and the deep drawability after cold rolling annealing is increased. Will hinder. It is necessary to control the NbC generated in the hot-rolling stage so that a part of the NbC is melted by cold rolling and the yield strength after annealing is reduced. Therefore, the upper limit of the winding temperature is set to 670 ° C.

上記熱間圧延工程後、熱延板に冷間圧延を施し冷延板とする冷間圧延工程を施す。なお、熱間圧延工程後、冷間圧延工程前に、熱延板を酸洗してもよい。酸洗は通常の条件にておこなえばよい。   After the above-mentioned hot rolling step, the hot-rolled sheet is subjected to cold rolling to form a cold-rolled sheet. The hot rolled sheet may be pickled after the hot rolling step and before the cold rolling step. The pickling may be performed under ordinary conditions.

冷間圧延率(CR):65%以上92%以下
冷間圧延工程は低降伏比を得るためのNbCの分布状態を制御するため重要な工程となる。冷間圧延工程では、熱延段階で析出したNbCを冷間加工により分断し細かい不安定なNbCを溶解させる必要があり、CRは少なくとも65%以上とする。また深絞り性の観点からも高冷延圧下率が一般に有効であり、圧下率(冷間圧延率)が65%未満では{111}再結晶集合組織が発達せず、優れた深絞り性を得ることができない。一方、CRが92%を超えるとその効果が飽和するばかりでなく、冷間圧延時のロールへの負荷も高まるため、上限を92%とする。
Cold rolling ratio (CR): 65% or more and 92% or less The cold rolling step is an important step for controlling the distribution state of NbC for obtaining a low yield ratio. In the cold rolling process, NbC precipitated in the hot rolling stage needs to be cut by cold working to dissolve fine and unstable NbC, and the CR is at least 65% or more. Also, from the viewpoint of deep drawability, a high cold rolling reduction is generally effective. If the reduction (cold rolling reduction) is less than 65%, {111} recrystallization texture does not develop and excellent deep drawability is obtained. I can't get it. On the other hand, if the CR exceeds 92%, not only the effect is saturated, but also the load on the roll during cold rolling increases, the upper limit is set to 92%.

焼鈍温度:760℃以上950℃以下の温度域の焼鈍温度T
次いで、上記冷間圧延工程を施した冷延板を加熱し、760℃以上950℃以下の温度域の焼鈍温度Tで焼鈍をおこなう焼鈍工程を施す。この焼鈍工程では少なくとも再結晶を行わせる必要がある。このため760℃以上の温度域での焼鈍が最低必要である。一方950℃を超える高温では再結晶粒が著しく粗大化し、特性が著しく劣化する。このため焼鈍工程での焼鈍は、760℃以上950℃以下の温度域の焼鈍温度Tで行う。焼鈍温度Tは、800℃以上が好ましい。また、焼鈍温度Tは、900℃以下が好ましい。
Annealing temperature: Annealing temperature T in the temperature range from 760 ° C to 950 ° C
Next, the cold-rolled sheet that has been subjected to the cold rolling step is heated and subjected to an annealing step of annealing at an annealing temperature T in a temperature range of 760 ° C. or more and 950 ° C. or less. In this annealing step, it is necessary to perform at least recrystallization. For this reason, annealing in a temperature range of 760 ° C. or more is required at a minimum. On the other hand, at a high temperature exceeding 950 ° C., the recrystallized grains become extremely coarse, and the characteristics are significantly deteriorated. Therefore, the annealing in the annealing step is performed at an annealing temperature T in a temperature range of 760 ° C. or more and 950 ° C. or less. The annealing temperature T is preferably 800 ° C. or higher. Further, the annealing temperature T is preferably 900 ° C. or less.

冷間圧延工程での板厚真ひずみεtと、焼鈍工程での650℃から焼鈍温度Tまでの加熱速度HR(℃/s)との関係が、下記(2)式を満たす。
−14.0≦ln(HR)−5(εt)≦−8.0 ・・・(2)
ただし、上記(2)式におけるεtは、下記(3)式で算出される。
εt=−ln(1−CR/100) ・・・(3)
ただし、上記(3)式におけるCRは、冷間圧延工程における冷間圧延率(%)である。
The relationship between the true thickness strain εt in the cold rolling step and the heating rate HR (° C./s) from 650 ° C. to the annealing temperature T in the annealing step satisfies the following equation (2).
−14.0 ≦ ln (HR) −5 (εt) ≦ −8.0 (2)
However, εt in the above equation (2) is calculated by the following equation (3).
εt = -ln (1-CR / 100) (3)
Here, CR in the above equation (3) is a cold rolling rate (%) in the cold rolling step.

低降伏比を得るためには、最終的な焼鈍段階でのNbCの分布を制御する必要がある。この場合、冷間加工のエネルギーにより分断、消失した状態とした後、焼鈍工程での加熱の段階でNbCの生成、成長状態を制御することが必要であり、冷間圧延工程での冷間圧延率と、焼鈍工程での加熱速度の両方を制御する必要がある。焼鈍工程での加熱速度は、炭素やNbの拡散を考えると650℃未満での加熱速度を制御することはほとんど影響なく、650℃から焼鈍温度(焼鈍温度T)までの加熱速度が重要となる。   In order to obtain a low yield ratio, it is necessary to control the distribution of NbC in the final annealing step. In this case, it is necessary to control the generation and growth state of NbC at the stage of heating in the annealing step after being divided and disappeared by the energy of the cold working, and the cold rolling in the cold rolling step is required. It is necessary to control both the rate and the heating rate in the annealing step. Regarding the heating rate in the annealing step, considering the diffusion of carbon and Nb, controlling the heating rate at less than 650 ° C. has almost no effect, and the heating rate from 650 ° C. to the annealing temperature (annealing temperature T) is important. .

本発明者が検討を行った結果、冷間圧延工程での板厚真ひずみεtと、焼鈍工程での650℃から焼鈍温度Tまでの加熱速度HR(℃/s)との関係を上記(2)式を満たすものとすることで、冷延焼鈍後の鋼板の降伏比を非常に低くすることができることを見出した。焼鈍工程での加熱速度が遅い場合は、冷間加工のエネルギーの影響は鈍感となるが、焼鈍工程での加熱速度が速くなると、冷間圧延工程での加工率をより上げる必要がある。   As a result of the study made by the present inventors, the relationship between the true thickness strain εt in the cold rolling process and the heating rate HR (° C./s) from 650 ° C. to the annealing temperature T in the annealing process is described in the above (2). By satisfying the expression, it has been found that the yield ratio of the steel sheet after cold rolling annealing can be made extremely low. When the heating rate in the annealing step is low, the effect of the energy of the cold working is insensitive, but when the heating rate in the annealing step is high, the working ratio in the cold rolling step needs to be further increased.

なお、焼鈍工程での650℃から焼鈍温度Tまでの加熱速度HR(℃/s)は、上記(2)式を満たす限り、特に限定されないが、生産効率等の点からは、1.0℃/s以上が好ましい。また、通板安定性等の点からは、30℃/s以下が好ましい。   The heating rate HR (° C./s) from 650 ° C. to the annealing temperature T in the annealing step is not particularly limited as long as the above-mentioned formula (2) is satisfied, but from the viewpoint of production efficiency and the like, 1.0 ° C. / S or more is preferable. In addition, from the viewpoint of threading stability and the like, the temperature is preferably 30 ° C / s or less.

上記焼鈍工程後の冷却速度は特に規定するものではないが、望ましくは焼鈍温度Tから300℃まで5℃/s以上の平均冷却速度で冷却することが好ましく、過時効処理を施す場合は、焼鈍温度Tから過時効処理温度までを平均冷却速度が5℃/s以上になるようにすることが好ましい。   Although the cooling rate after the above-mentioned annealing step is not particularly specified, it is preferable to cool from the annealing temperature T to 300 ° C. at an average cooling rate of 5 ° C./s or more. It is preferable that the average cooling rate from the temperature T to the overaging temperature is 5 ° C./s or more.

また、上記焼鈍工程の後に電気めっき処理、あるいは溶融めっき処理などのめっき処理を施し、鋼板表面にめっき層を形成しても良い。   After the annealing step, a plating process such as an electroplating process or a hot-dip plating process may be performed to form a plating layer on the surface of the steel sheet.

例えば、めっき処理として、自動車用鋼板に多くもちいられる溶融亜鉛めっき処理をおこなう際には、上記焼鈍工程を連続溶融めっきラインにておこない、焼鈍工程後の冷却に引き続いて溶融亜鉛めっき浴に浸漬して、表面に溶融亜鉛めっき層を形成すればよく、或いはさらに合金化処理をおこない、合金化溶融亜鉛めっき鋼板を製造してもよい。その場合、溶融めっきのポットから出た後、或いはさらに合金化処理した後の冷却においても、300℃までの平均冷却速度が5℃/s以上になるように冷却することが好ましい。   For example, as a plating process, when performing a hot-dip galvanizing process often used for automotive steel sheets, perform the above-described annealing process in a continuous hot-dip galvanizing line, and immerse it in a hot-dip galvanizing bath following cooling after the annealing process. Then, a hot-dip galvanized steel sheet may be manufactured by forming a hot-dip galvanized layer on the surface or by further performing an alloying treatment. In that case, it is preferable that the cooling after leaving the hot-dip plating pot or after further alloying treatment is performed so that the average cooling rate up to 300 ° C. is 5 ° C./s or more.

また、上記焼鈍工程後の冷却までを焼鈍ラインでおこない、一旦室温まで冷却した後、溶融めっきラインにて溶融めっきを施し、或いはさらに合金化処理をおこなっても良い。   Further, the process up to the cooling after the annealing step may be performed in an annealing line, and once cooled to room temperature, hot-dip plating may be performed in a hot-dip plating line, or alloying may be further performed.

ここで、めっき層は純亜鉛および亜鉛系合金めっきに限らず、AlやAl系合金めっきなど、従来、鋼板表面に施されている各種めっき層とすることも勿論可能である。   Here, the plating layer is not limited to pure zinc and zinc-based alloy plating, and it is of course possible to use various plating layers conventionally applied to the steel sheet surface, such as Al and Al-based alloy plating.

また、上記鋼板(冷延焼鈍板およびめっき鋼板)には形状矯正、表面粗度等の調整の目的で調質圧延またはレベラー加工を施してもよい。調質圧延或いはレベラー加工の伸び率は合計で0.5%未満の範囲内であることが好ましい。伸び率が0.5%以上であると降伏強度が増加し、プレス時の面ひずみが発生しやすくなる。   Further, the steel sheet (a cold-rolled annealed sheet and a plated steel sheet) may be subjected to temper rolling or leveler processing for the purpose of shape correction, adjustment of surface roughness and the like. It is preferable that the elongation percentage of the temper rolling or leveling is within a range of less than 0.5% in total. If the elongation is 0.5% or more, the yield strength increases, and surface distortion during pressing is likely to occur.

次に、本発明の実施例について説明する。
表1に示す組成の鋼スラブを1250℃に加熱し粗圧延してシートバーとし、次いで表2に示す条件の仕上圧延を施す熱間圧延工程により熱延板とした。これらの熱延板を酸洗した後、表2に示す冷間圧延率で冷間圧延工程を施し冷延板とした。引き続きこれら冷延板に連続焼鈍ラインにて、表2に示す条件で連続焼鈍をおこなった。さらに得られた鋼板(冷延焼鈍板)に伸び率0.2%の調質圧延を施した。
Next, examples of the present invention will be described.
A steel slab having the composition shown in Table 1 was heated to 1250 ° C. and roughly rolled to form a sheet bar, and then a hot-rolled sheet was subjected to a finish rolling under the conditions shown in Table 2 by hot rolling. After pickling these hot rolled sheets, a cold rolling step was performed at a cold rolling rate shown in Table 2 to obtain a cold rolled sheet. Subsequently, continuous annealing was performed on these cold-rolled sheets under the conditions shown in Table 2 in a continuous annealing line. Further, the obtained steel sheet (cold rolled annealed sheet) was subjected to temper rolling at an elongation of 0.2%.

得られた冷延焼鈍板について、引張特性およびr値を測定した。測定方法は下記の通りである。   With respect to the obtained cold-rolled annealed sheet, the tensile properties and the r value were measured. The measuring method is as follows.

(1)引張特性
各得られた冷延焼鈍板から圧延方向に対して90°方向(C方向)にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/minで引張試験をおこない、降伏応力(YS)、引張強さ(TS)を求めた。また、前記YS、TSから、降伏比(YR)を、(YS/TS)×100により求めた。
(1) Tensile properties A JIS No. 5 tensile test piece was sampled from each of the obtained cold-rolled annealed sheets in a direction (C direction) at 90 ° to the rolling direction, and a crosshead speed of 10 mm / Then, a tensile test was carried out in a minimum time, and a yield stress (YS) and a tensile strength (TS) were determined. Further, the yield ratio (YR) was obtained from (YS / TS) × 100 from the YS and TS.

(2)r値測定
各得られた冷延焼鈍板の圧延方向(L方向)、圧延方向に対し45°方向(D方向)、圧延方向に対し90°方向(C方向)からJIS5号引張試験片を採取した。これらの試験片に10%の単軸引張歪を付与した時の各試験片の幅歪と板厚歪を求め、JIS Z 2254の規定に準拠して平均r値(平均塑性歪比)を求め、これをr値とした。なお、このr値が大きいほど、深絞り性に優れると評価できる。
(2) r value measurement JIS No. 5 tensile test of each obtained cold rolled annealed sheet from the rolling direction (L direction), 45 ° direction (D direction) with respect to the rolling direction, and 90 ° direction (C direction) with respect to the rolling direction Pieces were collected. When 10% uniaxial tensile strain is applied to these test pieces, the width strain and the thickness strain of each test piece are obtained, and the average r value (average plastic strain ratio) is obtained in accordance with JIS Z 2254. This was taken as the r value. In addition, it can be evaluated that the larger the r value is, the more excellent the deep drawing property is.

Figure 0006658708
Figure 0006658708

Figure 0006658708
Figure 0006658708

表2より明らかなとおり、本発明例では、いずれもYRが50%以下の低降伏比を有する鋼板が得られた。また、本発明例では、いずれも平均r値が1.3以上の鋼板が得られた。これに対し、本発明の範囲を外れる条件で製造した比較例では、YRが十分に低い鋼板は得られなかった。なお、本発明例の鋼板について組織観察を行ったところ、本発明の鋼板はいずれもフェライト単相組織を有していた。   As is clear from Table 2, in each of the examples of the present invention, a steel sheet having a low yield ratio with a YR of 50% or less was obtained. In each of the examples of the present invention, a steel sheet having an average r value of 1.3 or more was obtained. On the other hand, in Comparative Examples manufactured under conditions outside the range of the present invention, a steel sheet having a sufficiently low YR could not be obtained. In addition, when the structure | tissue observation was performed about the steel plate of this invention example, all the steel plates of this invention had ferrite single phase structure.

本発明によれば、YR50%以下で平均r値が1.3以上の高r値を有する冷延鋼板を安価にかつ安定して製造することが可能となり産業上格段の効果を奏する。例えば本発明の冷延鋼板を自動車外板パネル用部品に適用した場合、これまで面ひずみが厳格に管理されて合格が困難であった部位もプレス成型後の表面品質が確保可能となり、また従来の外板パネル用鋼板よりも高強度化が可能であることから自動車車体の衝突安全性や軽量化に十分寄与できるという効果がある。また自動車部品に限らず家電部品としても適用可能である。   According to the present invention, a cold rolled steel sheet having a high r value of YR of 50% or less and an average r value of 1.3 or more can be manufactured inexpensively and stably, which has a remarkable industrial effect. For example, when the cold-rolled steel sheet of the present invention is applied to a part for an automobile outer panel, it is possible to secure the surface quality after press molding even in a part where the surface strain has been strictly controlled and difficult to pass. Since it is possible to make the strength higher than that of the steel plate for an outer panel panel, there is an effect that it can sufficiently contribute to collision safety and weight reduction of an automobile body. In addition, the present invention can be applied not only to automobile parts but also to home electric parts.

Claims (3)

質量%で、
C:0.0040〜0.0120%、
Si:0.70%以下、
Mn:0.50〜1.80%、
P:0.005〜0.05%、
S:0.01%以下、
Al:0.005〜0.3%、
N:0.005%以下、
Nb:0.025〜0.110%
を含有し、かつ、
下記(1)式で示されるNbとCの原子比が0.80以上1.10以下であり、残部がFeおよび不可避的不純物である組成を有する鋼スラブに、
仕上圧延出側温度を880℃以上とする仕上圧延を施し、550℃以上670℃以下で巻き取り、熱延板とする熱間圧延工程と、
該熱延板に冷間圧延率65%以上92%以下の冷間圧延を施し冷延板とする冷間圧延工程と、
該冷延板を加熱し、760℃以上950℃以下の温度域の焼鈍温度Tで焼鈍を行う焼鈍工程と、を有し、
冷間圧延工程での板厚真ひずみεtと、焼鈍工程での650℃から焼鈍温度Tまでの加熱速度HR(℃/s)との関係が下記(2)式を満たす、低降伏比を有する鋼板の製造方法。
(12/93)×(Nb/C) ・・・(1)
ただし、上記(1)式におけるNb、Cは、各元素の含有量(質量%)を表す。
−14.0≦ln(HR)−5(εt)≦−8.0 ・・・(2)
ただし、上記(2)式におけるεtは、下記(3)式で算出される。
εt=−ln(1−CR/100) ・・・(3)
ただし、上記(3)式におけるCRは、冷間圧延工程における冷間圧延率(%)である。
In mass%,
C: 0.0040 to 0.0120%,
Si: 0.70% or less,
Mn: 0.50 to 1.80%,
P: 0.005 to 0.05%,
S: 0.01% or less,
Al: 0.005 to 0.3%,
N: 0.005% or less,
Nb: 0.025 to 0.110%
Containing, and
In a steel slab having an atomic ratio of Nb to C represented by the following formula (1) of 0.80 or more and 1.10 or less and a balance of Fe and unavoidable impurities,
A hot rolling step of performing finish rolling at a finish-rolling exit temperature of 880 ° C. or higher, winding at 550 ° C. or higher and 670 ° C. or lower, and forming a hot-rolled sheet;
A cold rolling step of subjecting the hot-rolled sheet to cold rolling at a cold rolling rate of 65% or more and 92% or less to form a cold-rolled sheet;
An annealing step of heating the cold-rolled sheet and performing annealing at an annealing temperature T in a temperature range of 760 ° C. or more and 950 ° C. or less,
A steel sheet having a low yield ratio, in which the relationship between the true thickness strain εt in the cold rolling step and the heating rate HR (° C./s) from 650 ° C. to the annealing temperature T in the annealing step satisfies the following expression (2). Manufacturing method.
(12/93) × (Nb / C) (1)
However, Nb and C in the above formula (1) represent the contents (% by mass) of each element.
−14.0 ≦ ln (HR) −5 (εt) ≦ −8.0 (2)
However, εt in the above equation (2) is calculated by the following equation (3).
εt = -ln (1-CR / 100) (3)
Here, CR in the above equation (3) is a cold rolling rate (%) in the cold rolling step.
前記組成に加えて、さらに、鋼スラブが、質量%で、
B:0.0010%以下
を含有する、請求項1に記載の低降伏比を有する鋼板の製造方法。
In addition to the composition, the steel slab further comprises,
The method for producing a steel sheet having a low yield ratio according to claim 1, wherein the steel sheet contains B: 0.0010% or less.
さらに、前記焼鈍工程後に、鋼板表面にめっき処理を行う、請求項1または2に記載の低降伏比を有する鋼板の製造方法。   The method for producing a steel sheet having a low yield ratio according to claim 1 or 2, wherein a plating treatment is performed on the surface of the steel sheet after the annealing step.
JP2017183135A 2017-09-25 2017-09-25 Method for producing steel sheet having low yield ratio Active JP6658708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017183135A JP6658708B2 (en) 2017-09-25 2017-09-25 Method for producing steel sheet having low yield ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017183135A JP6658708B2 (en) 2017-09-25 2017-09-25 Method for producing steel sheet having low yield ratio

Publications (2)

Publication Number Publication Date
JP2019059963A JP2019059963A (en) 2019-04-18
JP6658708B2 true JP6658708B2 (en) 2020-03-04

Family

ID=66178447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017183135A Active JP6658708B2 (en) 2017-09-25 2017-09-25 Method for producing steel sheet having low yield ratio

Country Status (1)

Country Link
JP (1) JP6658708B2 (en)

Also Published As

Publication number Publication date
JP2019059963A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
EP3372703B1 (en) Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
EP2415894B1 (en) Steel sheet excellent in workability and method for producing the same
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
TW565621B (en) Cold-rolled steel sheet and galvanized steel sheet having strain age hardenability property and method for producing the same
JP5983896B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP6766190B2 (en) Ultra-high-strength, high-ductility steel sheet with excellent yield strength and its manufacturing method
JP5217395B2 (en) High strength cold-rolled steel sheet with small in-plane anisotropy of elongation and method for producing the same
KR101607041B1 (en) Method for producing high-strength cold-rolled steel sheet having excellent anti-aging property and bake hardening property
WO2015059902A1 (en) High-strength steel sheet with small in-plane anisotropy of elongation and manufacturing method therefor
JP6443555B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP2013181183A (en) High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same
JP4337604B2 (en) Strain aging treatment method for high-tensile steel sheet and method for producing high-strength structural member
JP4293020B2 (en) Manufacturing method of high-strength steel sheet with excellent hole expandability
JP5381154B2 (en) Cold-rolled steel sheet excellent in strength-ductility balance after press working and paint baking and method for producing the same
JP4434198B2 (en) Manufacturing method of thin steel sheet for processing excellent in low-temperature bake hardenability and aging resistance
JP5678695B2 (en) High strength steel plate and manufacturing method thereof
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP5071125B2 (en) High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape
WO2013084477A1 (en) High-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
JP6658708B2 (en) Method for producing steel sheet having low yield ratio
JP4380353B2 (en) High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
JP2004043884A (en) Thin steel sheet for working having excellent low temperature seizure hardenability and aging resistance
JP5251206B2 (en) High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6658708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250