JP2019059963A - Manufacturing method of steel sheet having low yield ratio - Google Patents

Manufacturing method of steel sheet having low yield ratio Download PDF

Info

Publication number
JP2019059963A
JP2019059963A JP2017183135A JP2017183135A JP2019059963A JP 2019059963 A JP2019059963 A JP 2019059963A JP 2017183135 A JP2017183135 A JP 2017183135A JP 2017183135 A JP2017183135 A JP 2017183135A JP 2019059963 A JP2019059963 A JP 2019059963A
Authority
JP
Japan
Prior art keywords
cold
rolling
less
annealing
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017183135A
Other languages
Japanese (ja)
Other versions
JP6658708B2 (en
Inventor
金晴 奥田
Kaneharu Okuda
金晴 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017183135A priority Critical patent/JP6658708B2/en
Publication of JP2019059963A publication Critical patent/JP2019059963A/en
Application granted granted Critical
Publication of JP6658708B2 publication Critical patent/JP6658708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a manufacturing method of a steel sheet having a low yield ratio.SOLUTION: The manufacturing method of a steel sheet having a low yield ratio comprises: a hot rolling step of finish rolling a steel slab having a predetermined composition at a finish rolling temperature of 880°C or higher and coiling at 550°C or higher and 670°C or lower to form a hot rolled sheet; a cold rolling step of cold rolling the hot rolled sheet with a cold rolling reduction of 65% or more and 92% or less to form a cold rolled sheet; and an annealing step of heating the cold rolled sheet and annealing at an annealing temperature T in a temperature range of 760°C or higher and 950°C or lower. The relationship between a thickness true strain εt in the cold rolling step and a heating rate HR(°C/s) from 650°C to the annealing temperature T in the annealing step satisfies a following equation(2). -14.0≤ln(HR)-5(εt)≤-8.0(2). However, note that εt in the equation(2) is calculated by the following equation(3). εt=-ln(1-CR/100)(3). However, note that CR in the equation(3) is a cold-rolling reduction(%) in the cold-rolling step.SELECTED DRAWING: None

Description

本発明は、低降伏比を有する鋼板の製造方法に関する。本発明は、特に、自動車の外板パネル等の使途に有用な、引張強度(TS)が270MPa以上500MPa未満の強度でかつ降伏強度が低く、プレス成型時にしわが発生しにくい冷延鋼板の製造方法に関するものである。   The present invention relates to a method of manufacturing a steel sheet having a low yield ratio. The present invention is particularly useful for applications such as automobile outer panel, etc., manufacture of a cold rolled steel sheet having a tensile strength (TS) of not less than 270 MPa and less than 500 MPa and a low yield strength and less generation of wrinkles during press molding. It relates to the method.

近年、地球環境保全の観点から、COの排出量を規制するため、自動車の燃費改善が要求されている。加えて、衝突時に乗員の安全を確保するため、自動車車体の衝突特性を中心にした安全性向上も要求されている。このように、自動車車体の軽量化および自動車車体の強化が積極的に進められている。 In recent years, in order to regulate the amount of CO 2 emission from the viewpoint of global environmental protection, improvement of automobile fuel consumption is required. In addition, in order to ensure the safety of the occupant in the event of a collision, there is also a demand for improved safety centered on the collision characteristics of the car body. Thus, weight reduction of the car body and reinforcement of the car body are actively promoted.

自動車車体の軽量化と強化を同時に満たすには、剛性に問題とならない範囲で部品素材を高強度化し、板厚を減ずることによる軽量化が効果的であると言われており、最近では高張力鋼板が自動車部品に積極的に使用されている。   In order to satisfy the weight reduction and reinforcement of the car body simultaneously, it is said that the weight reduction by increasing the strength of the component material and reducing the thickness is effective, as long as there is no problem with rigidity, and recently high tension Steel plates are actively used in auto parts.

軽量化効果は使用する鋼板が高強度であるほど大きくなるため、自動車業界では、例えば内板および外板用のパネル用材料として引張強度(TS)390MPa以上の鋼板を使用する動向にある。   The weight reduction effect increases as the strength of the steel plate used increases, so in the automobile industry, for example, there is a trend to use a steel plate with a tensile strength (TS) of 390 MPa or more as a panel material for inner and outer plates.

一方、鋼板を素材とする自動車部品の多くは、プレス加工によって成形されるため、自動車用鋼板には優れたプレス成形性を有していることが必要とされる。しかしながら、高強度鋼板は、通常の軟鋼板に比べて成形性が劣化するため、自動車の軽量化を進める上での課題も多い。外板用のパネル用材料ではプレス後の表面品質が厳格に管理され、例えばドアの取っ手回りの面ひずみと呼ばれる局所的な凹凸をなくすことが重要である。   On the other hand, many automobile parts made of steel plates are formed by press processing, and therefore, steel plates for automobiles are required to have excellent press formability. However, high-strength steel plates deteriorate formability compared to ordinary mild steel plates, and so there are many problems in promoting weight reduction of automobiles. In panel materials for exterior panels, it is important to strictly control the surface quality after pressing, for example, to eliminate local irregularities called surface strain around the handle of the door.

このような面ひずみに対しては、降伏強度を下げる必要があり、引張強度(TS)に対する降伏強度(YS)の比である降伏比YR[=(YS/TS)×100]を下げる試みがなされている。   For such surface strain, it is necessary to lower the yield strength, and an attempt is made to lower the yield ratio YR [= (YS / TS) × 100] which is the ratio of the yield strength (YS) to the tensile strength (TS). It is done.

例えば、特許文献1には、伸びフランジ性に優れ、低YS特性であるプレス成形性に優れた鋼板とその製造方法が開示されている。特許文献1では、C:0.0040〜0.015wt%、Nb:0.04〜0.25wt%で、Nb/(7.75×C)=1.5〜2.5と炭素をNbで十分に固定し、焼鈍段階で、再結晶温度以上に加熱して、0.3×Nb/(7.75×C)−0.25≦張力T≦2.0と張力を制御することで、粒界近傍にNbCの低密度領域を形成し、低YS化を達成している。   For example, Patent Document 1 discloses a steel plate excellent in stretch flangeability and excellent in press formability that is a low YS characteristic and a method of manufacturing the same. In patent document 1, C: 0.0040 to 0.015 wt%, Nb: 0.04 to 0.25 wt%, Nb / (7.75 × C) = 1.5 to 2.5, and carbon with Nb By fixing sufficiently and heating in the annealing stage above the recrystallization temperature, by controlling the tension with 0.3 × Nb / (7.75 × C) −0.25 ≦ tension T ≦ 2.0, A low density region of NbC is formed in the vicinity of grain boundaries to achieve low YS.

また、特許文献2に開示された鋼板は、フェライト組織に主としてマルテンサイトからなる第2相を適量分散させた組織を有しており、従来のIF鋼等の固溶強化鋼よりYPは低減される。また、前記鋼板は高いBHを有し耐デント性にも優れる。しかしながら、ドア等の部品においてこの鋼板をプレス成形すると、従来の340MPa級焼付硬化型鋼板より面ひずみの発生量が大きくなることから、より一層の低YP化が必要とされている。   Further, the steel plate disclosed in Patent Document 2 has a structure in which a second phase consisting mainly of martensite is dispersed in a suitable amount in a ferrite structure, and YP is reduced compared to a solid solution-strengthened steel such as a conventional IF steel. Ru. Moreover, the said steel plate has high BH and is excellent also in dent resistance. However, when this steel plate is press-formed in parts such as doors, the amount of generation of surface strain is larger than that of a conventional 340 MPa grade bake-hardened steel plate, and thus further reduction in YP is required.

特許文献3には、所定の成分を有する熱延板を冷間圧延し、Ac点以上Ac点以下の温度範囲で焼鈍した後、3〜20℃/sの冷却速度で550〜750℃の温度範囲まで1次冷却し、さらに100℃/s以上の冷却速度で200℃以下まで2次冷却する鋼板の製造方法が開示されている。しかし特許文献3に記載の方法は、焼鈍後に急速冷却を必要とするので、めっき処理を施さない連続焼鈍ラインでは適用できるが、焼鈍後の冷却中に450〜500℃に保持された亜鉛めっき浴に浸漬してめっき処理を施す連続溶融亜鉛めっきラインにおいては適用するのが原理的に難しい。 In Patent Document 3, a hot-rolled sheet having a predetermined component is cold-rolled and annealed in a temperature range of Ac 1 to Ac 3 points, and then at a cooling rate of 3 to 20 ° C./s at a temperature of 550 to 750 ° C. A method of producing a steel sheet is disclosed, in which primary cooling is performed to a temperature range of 1. and secondary cooling to 200 ° C. or less at a cooling rate of 100 ° C./s or more. However, since the method described in Patent Document 3 requires rapid cooling after annealing, it can be applied to a continuous annealing line not subjected to plating treatment, but a zinc plating bath maintained at 450 to 500 ° C. during cooling after annealing. In principle, it is difficult to apply in a continuous hot dip galvanizing line which is subjected to plating treatment by immersion in

特開2001−131681号公報JP 2001-131681 A 特公昭62−40405号公報Japanese Patent Publication No. 62-40405 特開2006−233294号公報JP, 2006-233294, A

本発明は、低降伏比を有する鋼板の製造方法を提供することを目的とする。
なお、本発明における低降伏比を有する鋼板とは、降伏比(YR)が50%以下の鋼板を意味する。
An object of the present invention is to provide a method for producing a steel sheet having a low yield ratio.
The steel plate having a low yield ratio in the present invention means a steel plate having a yield ratio (YR) of 50% or less.

従来、深絞り性を向上させるためにNbとCの原子比である(12/93)×(Nb/C)[前記Nb、Cは、各元素の含有量(質量%)]を1.0よりも十分高くしていたが、NbCによる析出物が多いと、その分散を制御することで降伏強度(YS)を低く、また析出強化で引張強度(TS)を高めることができるものの、降伏比(YR)を50%以下とすることは困難であった。そこでさらなる検討を行ったところ、十分に低い降伏比を有する鋼板とするためには、NbとCの原子比を0.8以上1.1以下の限られた範囲とし、冷間圧延工程での冷間圧延率と焼鈍工程での加熱速度を制御することが重要であることを見出した。   Conventionally, in order to improve deep drawability, the atomic ratio of Nb to C (12/93) × (Nb / C) [Nb and C each represents the content (mass%) of each element] of 1.0 Although it is sufficiently higher than that of NbC, it is possible to lower the yield strength (YS) by controlling the dispersion and to increase the tensile strength (TS) by precipitation strengthening when the amount of NbC precipitates is large, but the yield ratio is high. It was difficult to make (YR) 50% or less. Therefore, as a result of further investigation, in order to obtain a steel plate having a sufficiently low yield ratio, the atomic ratio of Nb and C is set to a limited range of 0.8 or more and 1.1 or less, and It has been found that it is important to control the cold rolling rate and the heating rate in the annealing process.

本発明は、このような知見に基づいてなされたものであり、以下の構成を有する。
[1]質量%で、
C:0.0040〜0.0120%、
Si:0.70%以下、
Mn:0.50〜1.80%、
P:0.005〜0.05%、
S:0.01%以下、
Al:0.005〜0.3%、
N:0.005%以下、
Nb:0.025〜0.110%
を含有し、かつ、
下記(1)式で示されるNbとCの原子比が0.80以上1.10以下であり、残部がFeおよび不可避的不純物である組成を有する鋼スラブに、
仕上圧延出側温度を880℃以上とする仕上圧延を施し、550℃以上670℃以下で巻き取り、熱延板とする熱間圧延工程と、
該熱延板に冷間圧延率65%以上92%以下の冷間圧延を施し冷延板とする冷間圧延工程と、
該冷延板を加熱し、760℃以上950℃以下の温度域の焼鈍温度Tで焼鈍を行う焼鈍工程と、を有し、
冷間圧延工程での板厚真ひずみεtと、焼鈍工程での650℃から焼鈍温度Tまでの加熱速度HR(℃/s)との関係が下記(2)式を満たす、低降伏比を有する鋼板の製造方法。
(12/93)×(Nb/C) ・・・(1)
ただし、上記(1)式におけるNb、Cは、各元素の含有量(質量%)を表す。
−14.0≦ln(HR)−5(εt)≦−8.0 ・・・(2)
ただし、上記(2)式におけるεtは、下記(3)式で算出される。
εt=−ln(1−CR/100) ・・・(3)
ただし、上記(3)式におけるCRは、冷間圧延工程における冷間圧延率(%)である。
[2]前記組成に加えて、さらに、鋼スラブが、質量%で、
B:0.0010%以下
を含有する、[1]に記載の低降伏比を有する鋼板の製造方法。
[3]さらに、前記焼鈍工程後に、鋼板表面にめっき処理を行う、[1]または[2]に記載の低降伏比を有する鋼板の製造方法。
The present invention has been made based on such findings and has the following configurations.
[1] mass%,
C: 0.0040 to 0.0120%,
Si: 0.70% or less,
Mn: 0.50 to 1.80%,
P: 0.005 to 0.05%,
S: 0.01% or less,
Al: 0.005 to 0.3%,
N: 0.005% or less,
Nb: 0.025 to 0.110%
Contains and
In a steel slab having a composition in which the atomic ratio of Nb to C is 0.80 or more and 1.10 or less and the balance is Fe and an unavoidable impurity represented by the following formula (1):
Finish rolling The finish rolling is performed at a temperature of 880 ° C. or higher, and wound at 550 ° C. or more and 670 ° C. or less to form a hot rolled sheet;
A cold rolling step of subjecting the hot-rolled sheet to cold rolling at a cold rolling ratio of 65% to 92% to obtain a cold-rolled sheet;
And annealing the cold-rolled sheet at an annealing temperature T in a temperature range of 760 ° C. or more and 950 ° C. or less.
A steel sheet having a low yield ratio, wherein the relationship between the thickness true strain εt in the cold rolling process and the heating rate HR (° C./s) from 650 ° C. to the annealing temperature T in the annealing process satisfies the following equation (2) Manufacturing method.
(12/93) x (Nb / C) (1)
However, Nb and C in said Formula (1) represent content (mass%) of each element.
−14.0 ≦ ln (HR) −5 (εt) ≦ −8.0 (2)
However, εt in the above equation (2) is calculated by the following equation (3).
εt = −ln (1-CR / 100) (3)
However, CR in the said (3) Formula is a cold-rolling rate (%) in a cold-rolling process.
[2] In addition to the above-mentioned composition, further, the steel slab is, by mass%,
B: The manufacturing method of the steel plate which has a low yield ratio as described in [1] which contains 0.0010% or less.
[3] The method for producing a steel sheet having a low yield ratio according to [1] or [2], wherein the steel sheet surface is further plated after the annealing step.

本発明によれば、低降伏比を有する鋼板の製造方法を提供することができる。
本発明の製造方法により製造された鋼板は、従来にない低い降伏比を有する。また、MoやCr等の合金元素の添加を制限していることから、めっき性や表面外観が良好である。よって、自動車外板用鋼板として好適に用いることができる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the steel plate which has a low yield ratio can be provided.
The steel plate produced by the production method of the present invention has an unprecedented low yield ratio. Moreover, since the addition of alloy elements such as Mo and Cr is limited, the plating property and the surface appearance are good. Therefore, it can be suitably used as a steel plate for automobile outer plates.

本発明は、C含有量がC:0.0040〜0.0120%の範囲において、NbとCの原子比である(12/93)×(Nb/C)が0.80≦(12/93)×(Nb/C)≦1.10と従来のIF鋼よりも、低いレベルで炭素を固定し、冷間圧延工程での冷間圧延率と、焼鈍工程での加熱速度を制御することで、フェライト単相鋼で従来にない低い降伏比を達成できることを見出してなされたものである。この理由については、必ずしも明らかではないが、次のように考えられる。   In the present invention, when the C content is in the range of C: 0.0040 to 0.0120%, the atomic ratio of Nb to C (12/93) × (Nb / C) is 0.80 ≦ (12/93). ) Fix carbon at a lower level than the conventional IF steel with x (Nb / C) 1. 1.10, and control the cold rolling rate in the cold rolling process and the heating rate in the annealing process It has been found that ferrite single phase steel can achieve an unprecedented low yield ratio. Although the reason for this is not necessarily clear, it is considered as follows.

これまで深絞り性の観点から、固溶炭素を極限まで減少させるために炭素の等量を超えるTiやNbを添加していたが、そのため炭化物が阻害して十分にフェライト組織の降伏強度が下げられなかった。そこで、炭素の等量か少し低い範囲でNbを添加することで、炭化物を鋼の降伏しやすい状態にすることができた。この場合、熱延での炭化物の析出状態が不安定であることから、冷間圧延で炭化物(NbC)の一部が溶解し、加熱段階(焼鈍段階)で炭化物が再析出することがアトムプローブなどの評価によって明らかになってきた。炭化物の溶解は、冷間圧延のひずみエネルギー、すなわち、冷間圧延率に依存し、再析出したときの炭化物の分散は、焼鈍工程での加熱速度に影響するため、その2つを最適にすることでフェライト単相でも従来にない低い降伏比が達成できたと考えられる。   In the past, from the viewpoint of deep drawability, Ti and Nb were added in excess of the equivalent of carbon in order to reduce the solid solution carbon to the limit, but the carbides inhibit this and the yield strength of the ferrite structure is lowered sufficiently. It was not done. Therefore, by adding Nb in the equal amount or slightly lower range of carbon, it was possible to make the carbide easy to yield. In this case, since the precipitation state of carbides in hot rolling is unstable, a part of the carbide (NbC) is dissolved in cold rolling, and the carbides are reprecipitated in the heating stage (the annealing stage). It has become clear by such evaluations. The dissolution of carbides depends on the strain energy of cold rolling, that is, the cold rolling rate, and the dispersion of carbides upon reprecipitation influences the heating rate in the annealing process, so the two are optimized. It is considered that even a single ferrite phase could achieve an unprecedented low yield ratio.

以下に本発明を詳細に説明する。以下、特に断らない限り、元素の含有量は質量%で示している。   The present invention will be described in detail below. Hereinafter, the content of the element is indicated by mass% unless otherwise specified.

まず、本発明の鋼スラブの成分組成を限定した理由について説明する。   First, the reason for limiting the component composition of the steel slab of the present invention will be described.

C:0.0040〜0.0120%
Cは後述のNbとともに本発明における重要な元素である。自動車外板パネルの良好な深絞り性を得るためには過剰な添加は好ましいものではないことを考慮して、上限を0.0120%とする。Cは深絞り性の観点からは低いほど好ましいが、NbCの析出制御を利用する観点から0.0040%以上の添加が必要である。C含有量は、好ましくは0.0050%以上である。また、C含有量は、好ましくは0.0110%以下である。
C: 0.0040 to 0.0120%
C is an important element in the present invention together with Nb described later. The upper limit is made 0.0120%, considering that excessive addition is not preferable in order to obtain good deep drawability of automobile skin panels. C is preferably as low as possible from the viewpoint of deep drawability, but from the viewpoint of utilizing precipitation control of NbC, addition of 0.0040% or more is necessary. The C content is preferably 0.0050% or more. The C content is preferably 0.0110% or less.

Si:0.70%以下
Siは深絞り性を大きく低下させずに固溶強化できる効果がある。上記効果を得るためには、Siは0.20%以上含有することが好ましく、より好ましくは0.35%以上含有する。一方Siを0.70%を超えて含有すると、熱延時に赤スケールが発生するため、鋼板とした時の表面外観を悪くする。また溶融亜鉛めっきを施す際にめっきの濡れ性を悪くしてめっきむらの発生を招き、めっき品質が劣化するので、Si含有量は0.70%以下とする。Si含有量は、好ましくは0.50%以下である。
Si: 0.70% or less Si has the effect of enabling solid solution strengthening without significantly reducing deep drawability. In order to acquire the said effect, it is preferable to contain Si 0.20% or more, More preferably, it contains 0.35% or more. On the other hand, if Si is contained in excess of 0.70%, a red scale is generated during hot rolling, which deteriorates the surface appearance of the steel plate. In addition, since the wettability of the plating is deteriorated when the hot dip galvanizing is performed to cause generation of uneven plating and the plating quality is deteriorated, the Si content is set to 0.70% or less. The Si content is preferably 0.50% or less.

Mn:0.50〜1.80%
Mnは、高強度化に有効であるとともに、Sによる熱間割れを防止するのに有効な元素でもある。このような観点からMnは0.50%以上含有する必要がある。Mnは、好ましくは0.55%以上、より好ましくは1.00%以上含有させる。また一方で、過度の添加は深絞り性および溶接性を劣化させるのでMn含有量は1.80%を上限とする。Mn含有量は、好ましくは1.40%以下である。
Mn: 0.50 to 1.80%
Mn is effective not only for strengthening but also for preventing hot cracking due to S. From such a viewpoint, Mn needs to be contained at 0.50% or more. Mn is contained preferably at least 0.55%, more preferably at least 1.00%. On the other hand, the excessive addition thereof degrades deep drawability and weldability, so the Mn content is limited to 1.80%. The Mn content is preferably 1.40% or less.

P:0.005〜0.05%
Pは固溶強化の効果がある。しかしながら0.005%未満ではその効果が現れないだけでなく、製鋼工程に於いて脱りんコストの上昇を招く。したがって、Pは0.005%以上含有するものとする。一方0.05%を超える過剰な添加は、Pが粒界に偏析し、耐二次加工脆性および溶接性を劣化させる。従ってPの含有量の上限を0.05%とする。P含有量は、好ましくは0.010%以上である。また、P含有量は、好ましくは0.03%以下である。
P: 0.005 to 0.05%
P has the effect of solid solution strengthening. However, if it is less than 0.005%, not only the effect does not appear but also the dephosphorization cost is increased in the steel making process. Therefore, P is contained at 0.005% or more. On the other hand, excessive addition exceeding 0.05% causes P to segregate at grain boundaries and degrades resistance to secondary processing brittleness and weldability. Therefore, the upper limit of the content of P is 0.05%. The P content is preferably 0.010% or more. The P content is preferably 0.03% or less.

S:0.01%以下
Sは不純物であり、熱間割れの原因になる他、鋼中で介在物として存在し鋼板の諸特性を劣化させるので、できるだけ低減することが好ましいが、0.01%までは許容できるため、S含有量は0.01%以下とする。S含有量は、好ましくは0.005%以下である。
S: 0.01% or less S is an impurity and is a cause of hot cracking, and is present as inclusions in steel to degrade various properties of the steel sheet, so it is preferable to reduce as much as possible, but 0.01 Since it is acceptable up to%, the S content is made 0.01% or less. The S content is preferably 0.005% or less.

Al:0.005〜0.3%
Alは鋼の脱酸元素として有用である他、固溶Nを固定して耐常温時効性を向上させる作用があるため、0.005%以上含有するものとする。一方、0.3%を超える添加は高合金化によるコスト増を招き、さらに表面欠陥を誘発するので、Al含有量は0.3%以下とする。Al含有量は、好ましくは0.015%以上である。また、Al含有量は、好ましくは0.15%以下である。
Al: 0.005 to 0.3%
In addition to being useful as a deoxidizing element of steel, Al also has the effect of fixing solid solution N to improve the normal temperature aging resistance, and therefore it should be contained 0.005% or more. On the other hand, addition exceeding 0.3% causes cost increase due to high alloying, and further causes surface defects, so the Al content is made 0.3% or less. The Al content is preferably 0.015% or more. Moreover, Al content is preferably 0.15% or less.

N:0.005%以下
Nは多すぎると耐常温時効性を劣化させ、多量のAlやTi添加が必要となるため、できるだけ低減することが好ましく、上限を0.005%とする。N含有量は、好ましくは0.0030%以下である。
N: 0.005% or less When N is too large, the normal temperature aging resistance is deteriorated and a large amount of Al or Ti is required to be added. Therefore, it is preferable to reduce as much as possible, and the upper limit is made 0.005%. The N content is preferably 0.0030% or less.

Nb:0.025〜0.110%
Nbは熱延板組織の微細化および熱延板中にNbCとしてCを析出固定させる作用を有し、深絞り性に寄与する元素である。このような観点からNbは0.025%以上含有するものとする。一方で、過剰なNbの添加はコストアップ、熱延負荷が大きくなる。またNbCが多量になると降伏強度が高くなるためNb含有量は0.110%以下とする。
Nb: 0.025 to 0.110%
Nb is an element contributing to the deep drawability, having the function of refining the hot rolled sheet structure and depositing and fixing C as NbC in the hot rolled sheet. From such a viewpoint, Nb is contained at 0.025% or more. On the other hand, the addition of excessive Nb increases the cost and increases the hot rolling load. When the amount of NbC is large, the yield strength is high, so the Nb content is 0.110% or less.

NbとCの原子比が0.80以上1.10以下
本発明においては、NbとCの原子比を制御することが重要である。下記(1)式で示されるNbとCの原子比が、0.80未満では、固溶炭素が熱延段階で多く存在し、冷延焼鈍後の深絞り性が低下する。また、冷延焼鈍材の固溶炭素の存在は降伏強度を上げるので好ましくない。そのためNbとCの原子比は、0.80以上1.10以下とする必要がある。NbとCの原子比は、好ましくは0.85以上である。また、NbとCの原子比は、好ましくは1.05以下である。
(12/93)×(Nb/C) ・・・(1)
ただし、上記(1)式におけるNb、Cは、各元素の含有量(質量%)を表す。
In the present invention, it is important to control the atomic ratio of Nb to C in the present invention. When the atomic ratio of Nb and C shown in the following formula (1) is less than 0.80, a large amount of solid solution carbon is present at the hot rolling stage, and the deep drawability after cold rolling annealing decreases. Further, the presence of solid solution carbon in the cold rolled annealed material is not preferable because it raises the yield strength. Therefore, the atomic ratio of Nb and C needs to be 0.80 or more and 1.10 or less. The atomic ratio of Nb to C is preferably 0.85 or more. The atomic ratio of Nb to C is preferably 1.05 or less.
(12/93) x (Nb / C) (1)
However, Nb and C in said Formula (1) represent content (mass%) of each element.

以上が本発明の鋼スラブの基本成分である。また、本発明では上記した成分以外の残部は鉄および不可避的不純物の組成とする。   The above is the basic component of the steel slab of the present invention. In the present invention, the balance other than the above-described components is a composition of iron and unavoidable impurities.

本発明の鋼スラブの組成は、上記成分の他に、さらにB:0.0010%以下を含有することができる。   The composition of the steel slab of the present invention can further contain B: 0.0010% or less in addition to the above components.

B:0.0010%以下
Bは鋼の二次加工脆性を向上する作用をもつ元素であり、必要に応じて含有できる。しかしその含有量が0.0010%を超えるとその効果が飽和するためB含有量は0.0010%以下が好ましい。B含有量は、より好ましくは0.0008%以下である。
B: 0.0010% or less B is an element having an effect of improving the secondary processing brittleness of steel, and can be contained as necessary. However, since the effect is saturated when the content exceeds 0.0010%, the B content is preferably 0.0010% or less. The B content is more preferably 0.0008% or less.

なお、前記不可避的不純物としては、目的とする特性に影響を及ぼさない範囲で、V、Mo、Cuを合計で0.1%以下の範囲で添加できる。   In addition, as said unavoidable impurity, V, Mo, and Cu can be added in the range which is 0.1% or less in total in the range which does not affect the target characteristics.

本発明の鋼板は、電気めっき、あるいは溶融めっきなどの表面処理を施した、いわゆるめっき鋼板をも含むものである。めっきとは、純亜鉛の他、合金を形成する元素、亜鉛を主成分として合金元素を添加した亜鉛系合金めっき、あるいはAlやAlを主成分として合金元素を添加したAl系合金めっき、Mg、Niやこれらの元素を含む合金など、従来鋼板表面に施されているめっき層も含む。   The steel plate of the present invention includes a so-called plated steel plate which has been subjected to surface treatment such as electroplating or hot-dip plating. Plating refers to pure zinc, an element that forms an alloy, zinc-based alloy plating to which an alloy element is mainly added with zinc, or Al-based alloy plating to which an alloy element is mainly added with Al or Al, Mg, It also includes a plating layer conventionally applied to the surface of a steel sheet, such as Ni or an alloy containing these elements.

なお、本発明における鋼板の成分組成は、上記の鋼スラブの組成と同様である。   The component composition of the steel plate in the present invention is the same as the composition of the above-described steel slab.

次に、本発明の鋼板の製造方法について説明する。なお、以下の説明において、特に断らない限り、温度は、鋼スラブ、熱延板等の表面温度とする。   Next, the method of manufacturing the steel plate of the present invention will be described. In the following description, the temperature is a surface temperature of a steel slab, a hot-rolled sheet or the like unless otherwise specified.

本発明では、熱間圧延工程において、上記組成を有する鋼スラブに仕上圧延出側温度を880℃以上とする仕上圧延を施す。   In the present invention, in the hot rolling step, the steel slab having the above composition is subjected to finish rolling at a finish rolling outlet temperature of 880 ° C. or higher.

本発明の製造方法で使用する鋼スラブは、成分のマクロ偏析を防止すべく連続鋳造法で製造することが望ましいが、造塊法や薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造した後、いったん室温まで冷却し、その後再度加熱する従来法に加え、冷却せず温片のままで加熱炉に装入し熱間圧延する直送圧延、或いはわずかの保熱をおこなった後に直ちに熱間圧延する直送圧延・直接圧延などの省エネルギプロセスも問題なく適用できる。   The steel slab used in the production method of the present invention is preferably produced by a continuous casting method in order to prevent macrosegregation of the components, but may be produced by an agglomerating method or a thin slab casting method. Also, after the steel slab is manufactured, it is cooled to room temperature and then reheated, and then added to the conventional method without heating, as it is warm, directly loaded into a heating furnace and hot rolled, or slight heat retention It is also possible to apply an energy saving process such as direct feed rolling or direct rolling in which hot rolling is immediately performed after the

鋼スラブ加熱温度は、析出物を粗大化させることにより{111}再結晶集合組織を発達させて深絞り性を改善するため、低い方が望ましい。しかし加熱温度が1000℃未満では圧延荷重が増大し熱間圧延時におけるトラブル発生の危険性が増大するので、鋼スラブ加熱温度は1000℃以上にすることが好ましい。なお、酸化重量の増加に伴うスケールロスの増大などから、鋼スラブ加熱温度の上限は1300℃とすることが好適である。   It is desirable that the steel slab heating temperature be as low as possible to improve the deep drawability by developing {111} recrystallization texture by coarsening precipitates. However, if the heating temperature is less than 1000 ° C., the rolling load increases and the risk of trouble occurrence during hot rolling increases, so it is preferable to set the steel slab heating temperature to 1000 ° C. or more. In addition, it is preferable to set the upper limit of the steel slab heating temperature to 1300 ° C., because the scale loss increases with the increase of the oxidation weight.

上記条件で加熱された鋼スラブに粗圧延および仕上圧延を行う熱間圧延を施す。ここで、鋼スラブは粗圧延によりシートバーとされる。なお、粗圧延の条件は特に規定する必要はなく、常法に従っておこなえばよい。また、鋼スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱する所謂シートバーヒーターを活用することは有効な方法であることは言うまでもない。   The steel slab heated under the above conditions is subjected to hot rolling for rough rolling and finish rolling. Here, the steel slab is made into a sheet bar by rough rolling. The conditions for rough rolling do not need to be particularly defined, and may be determined according to a conventional method. Further, it is needless to say that it is an effective method to utilize a so-called sheet bar heater which heats a sheet bar from the viewpoint of lowering the steel slab heating temperature and preventing troubles during hot rolling.

次いで、シートバーを仕上圧延して熱延板とする。本発明では、仕上圧延出側温度(FT)は880℃以上とする。これは冷間圧延および再結晶焼鈍後に優れた深絞り性が得られる微細な熱延板組織を得るためである。FTが880℃未満では組織が加工組織を有し冷延焼鈍後に{111}集合組織が発達しないだけでなく、熱間圧延時の圧延負荷が高くなる。従ってFTは880℃以上とする。一方FTが980℃を超えると組織が粗大化しこれもまた冷延焼鈍後の{111}再結晶集合組織の形成および発達を妨げるおそれがあり深絞り性が確保できないおそれがある。従ってFTは980℃以下にすることが好ましい。   Next, the sheet bar is finish-rolled to form a hot-rolled sheet. In the present invention, the finish rolling outlet temperature (FT) is 880 ° C. or higher. This is to obtain a fine hot-rolled sheet structure which can obtain excellent deep drawability after cold rolling and recrystallization annealing. When the FT is less than 880 ° C., the structure has a worked structure and not only does not develop a {111} texture after cold rolling annealing, but also the rolling load at the time of hot rolling becomes high. Therefore, FT is 880 ° C. or higher. On the other hand, when FT exceeds 980 ° C., the structure becomes coarse, which may also hinder the formation and development of {111} recrystallization texture after cold rolling annealing, and there is a possibility that deep drawability can not be secured. Therefore, it is preferable to set FT to 980 ° C. or less.

また、熱間圧延時の圧延荷重を低減するため仕上圧延の一部または全部のパス間で潤滑圧延としてもよい。潤滑圧延をおこなうことは鋼板形状の均一化や材質の均質化の観点からも有効である。潤滑圧延の際の摩擦係数は0.10〜0.25の範囲とするのが好ましい。さらに、相前後するシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることも好ましい。連続圧延プロセスを適用することは熱間圧延の操業安定性の観点からも望ましい。   Moreover, in order to reduce the rolling load at the time of hot rolling, lubricating rolling may be performed between some or all of the passes of finish rolling. Lubricated rolling is also effective from the viewpoint of the uniformity of the steel sheet shape and the homogenization of the material. The coefficient of friction in lubricated rolling is preferably in the range of 0.10 to 0.25. Furthermore, it is also preferable to join continuous sheet bars and to set it as the continuous rolling process which carries out finish rolling continuously. Applying a continuous rolling process is also desirable from the viewpoint of the operation stability of hot rolling.

巻き取り温度(CT):550℃以上670℃以下
コイル巻取温度については、550℃以上670℃以下とする。この温度範囲が熱延板中にNbCを析出させるのに好適な温度範囲であるとともに、特にCTが前記上限を超えると結晶粒が粗大化し強度低下を招くとともに冷延焼鈍後の深絞り性を妨げることになる。熱延段階で生成したNbCは一部を冷間圧延で溶解させて、焼鈍後に降伏強度を低くするようにNbCを制御する必要がある。そのため巻き取り温度の上限を670℃とする。
Winding temperature (CT): 550 ° C. or more and 670 ° C. or less The coil winding temperature is 550 ° C. or more and 670 ° C. or less. While this temperature range is a temperature range suitable for precipitating NbC in the hot-rolled sheet, particularly when the CT exceeds the above upper limit, the crystal grains become coarse and the strength is lowered, and the deep drawability after cold rolling annealing is It will interfere. It is necessary to partially dissolve NbC produced in the hot rolling stage by cold rolling and control NbC so as to lower the yield strength after annealing. Therefore, the upper limit of the winding temperature is set to 670 ° C.

上記熱間圧延工程後、熱延板に冷間圧延を施し冷延板とする冷間圧延工程を施す。なお、熱間圧延工程後、冷間圧延工程前に、熱延板を酸洗してもよい。酸洗は通常の条件にておこなえばよい。   After the hot rolling step, the hot rolled sheet is subjected to cold rolling to perform a cold rolling step to form a cold rolled sheet. The hot rolled sheet may be pickled after the hot rolling step and before the cold rolling step. Pickling may be performed under normal conditions.

冷間圧延率(CR):65%以上92%以下
冷間圧延工程は低降伏比を得るためのNbCの分布状態を制御するため重要な工程となる。冷間圧延工程では、熱延段階で析出したNbCを冷間加工により分断し細かい不安定なNbCを溶解させる必要があり、CRは少なくとも65%以上とする。また深絞り性の観点からも高冷延圧下率が一般に有効であり、圧下率(冷間圧延率)が65%未満では{111}再結晶集合組織が発達せず、優れた深絞り性を得ることができない。一方、CRが92%を超えるとその効果が飽和するばかりでなく、冷間圧延時のロールへの負荷も高まるため、上限を92%とする。
Cold rolling reduction (CR): 65% or more and 92% or less The cold rolling step is an important step for controlling the distribution of NbC in order to obtain a low yield ratio. In the cold rolling step, it is necessary to divide NbC precipitated in the hot rolling step by cold working to dissolve fine unstable NbC, and CR is at least 65% or more. Moreover, high cold rolling reduction is generally effective also from the viewpoint of deep drawability, and if the reduction ratio (cold rolling reduction) is less than 65%, the {111} recrystallization texture does not develop and excellent deep drawability is obtained. I can not get it. On the other hand, when CR exceeds 92%, not only the effect is saturated, but also the load on the roll during cold rolling is increased, so the upper limit is made 92%.

焼鈍温度:760℃以上950℃以下の温度域の焼鈍温度T
次いで、上記冷間圧延工程を施した冷延板を加熱し、760℃以上950℃以下の温度域の焼鈍温度Tで焼鈍をおこなう焼鈍工程を施す。この焼鈍工程では少なくとも再結晶を行わせる必要がある。このため760℃以上の温度域での焼鈍が最低必要である。一方950℃を超える高温では再結晶粒が著しく粗大化し、特性が著しく劣化する。このため焼鈍工程での焼鈍は、760℃以上950℃以下の温度域の焼鈍温度Tで行う。焼鈍温度Tは、800℃以上が好ましい。また、焼鈍温度Tは、900℃以下が好ましい。
Annealing temperature: Annealing temperature T in a temperature range of 760 ° C. or more and 950 ° C. or less
Next, the cold rolled sheet subjected to the cold rolling process is heated, and an annealing process is performed to perform annealing at an annealing temperature T in a temperature range of 760 ° C. or more and 950 ° C. or less. In this annealing step, at least recrystallization needs to be performed. For this reason, annealing at a temperature range of 760 ° C. or higher is at least necessary. On the other hand, when the temperature is higher than 950 ° C., the recrystallized grains are significantly coarsened and the characteristics are significantly degraded. For this reason, the annealing in the annealing step is performed at an annealing temperature T in a temperature range of 760 ° C. or more and 950 ° C. or less. The annealing temperature T is preferably 800 ° C. or more. The annealing temperature T is preferably 900 ° C. or less.

冷間圧延工程での板厚真ひずみεtと、焼鈍工程での650℃から焼鈍温度Tまでの加熱速度HR(℃/s)との関係が、下記(2)式を満たす。
−14.0≦ln(HR)−5(εt)≦−8.0 ・・・(2)
ただし、上記(2)式におけるεtは、下記(3)式で算出される。
εt=−ln(1−CR/100) ・・・(3)
ただし、上記(3)式におけるCRは、冷間圧延工程における冷間圧延率(%)である。
The relationship between the thickness true strain εt in the cold rolling process and the heating rate HR (° C./s) from 650 ° C. to the annealing temperature T in the annealing process satisfies the following formula (2).
−14.0 ≦ ln (HR) −5 (εt) ≦ −8.0 (2)
However, εt in the above equation (2) is calculated by the following equation (3).
εt = −ln (1-CR / 100) (3)
However, CR in the said (3) Formula is a cold-rolling rate (%) in a cold-rolling process.

低降伏比を得るためには、最終的な焼鈍段階でのNbCの分布を制御する必要がある。この場合、冷間加工のエネルギーにより分断、消失した状態とした後、焼鈍工程での加熱の段階でNbCの生成、成長状態を制御することが必要であり、冷間圧延工程での冷間圧延率と、焼鈍工程での加熱速度の両方を制御する必要がある。焼鈍工程での加熱速度は、炭素やNbの拡散を考えると650℃未満での加熱速度を制御することはほとんど影響なく、650℃から焼鈍温度(焼鈍温度T)までの加熱速度が重要となる。   In order to obtain a low yield ratio, it is necessary to control the distribution of NbC in the final annealing stage. In this case, it is necessary to control the formation of NbC and the growth state at the stage of heating in the annealing step after the division and disappearance by the energy of cold working, and the cold rolling in the cold rolling step It is necessary to control both the rate and the heating rate in the annealing process. The heating rate in the annealing step has almost no effect on controlling the heating rate below 650 ° C considering diffusion of carbon and Nb, and the heating rate from 650 ° C to the annealing temperature (annealing temperature T) is important .

本発明者が検討を行った結果、冷間圧延工程での板厚真ひずみεtと、焼鈍工程での650℃から焼鈍温度Tまでの加熱速度HR(℃/s)との関係を上記(2)式を満たすものとすることで、冷延焼鈍後の鋼板の降伏比を非常に低くすることができることを見出した。焼鈍工程での加熱速度が遅い場合は、冷間加工のエネルギーの影響は鈍感となるが、焼鈍工程での加熱速度が速くなると、冷間圧延工程での加工率をより上げる必要がある。   As a result of investigation by the inventor, the relationship between the thickness true strain εt in the cold rolling process and the heating rate HR (° C./s) from 650 ° C. to the annealing temperature T in the annealing process is the above (2) It was found that the yield ratio of the steel sheet after cold rolling annealing can be made very low by satisfying the formula. When the heating rate in the annealing step is slow, the effect of energy in cold working becomes insensitive, but when the heating rate in the annealing step is fast, it is necessary to further increase the working rate in the cold rolling step.

なお、焼鈍工程での650℃から焼鈍温度Tまでの加熱速度HR(℃/s)は、上記(2)式を満たす限り、特に限定されないが、生産効率等の点からは、1.0℃/s以上が好ましい。また、通板安定性等の点からは、30℃/s以下が好ましい。   The heating rate HR (° C./s) from 650 ° C. to the annealing temperature T in the annealing step is not particularly limited as long as the above equation (2) is satisfied, but from the point of production efficiency etc. / S or more is preferable. In addition, in view of passage stability and the like, 30 ° C./s or less is preferable.

上記焼鈍工程後の冷却速度は特に規定するものではないが、望ましくは焼鈍温度Tから300℃まで5℃/s以上の平均冷却速度で冷却することが好ましく、過時効処理を施す場合は、焼鈍温度Tから過時効処理温度までを平均冷却速度が5℃/s以上になるようにすることが好ましい。   The cooling rate after the above-mentioned annealing step is not particularly limited, but it is preferable to cool from the annealing temperature T to 300 ° C. at an average cooling rate of 5 ° C./s or more. It is preferable that the average cooling rate be 5 ° C./s or more from the temperature T to the overaging treatment temperature.

また、上記焼鈍工程の後に電気めっき処理、あるいは溶融めっき処理などのめっき処理を施し、鋼板表面にめっき層を形成しても良い。   In addition, after the annealing step, plating treatment such as electroplating treatment or hot-dip plating treatment may be performed to form a plating layer on the surface of the steel plate.

例えば、めっき処理として、自動車用鋼板に多くもちいられる溶融亜鉛めっき処理をおこなう際には、上記焼鈍工程を連続溶融めっきラインにておこない、焼鈍工程後の冷却に引き続いて溶融亜鉛めっき浴に浸漬して、表面に溶融亜鉛めっき層を形成すればよく、或いはさらに合金化処理をおこない、合金化溶融亜鉛めっき鋼板を製造してもよい。その場合、溶融めっきのポットから出た後、或いはさらに合金化処理した後の冷却においても、300℃までの平均冷却速度が5℃/s以上になるように冷却することが好ましい。   For example, when performing hot dip galvanizing treatment which is often used for automobile steel plates as plating treatment, the above annealing process is performed in a continuous hot dip plating line, and it is immersed in a hot dip galvanization bath following cooling after the annealing process. A hot-dip galvanized layer may be formed on the surface, or an alloying treatment may be further performed to produce an alloyed hot-dip galvanized steel sheet. In that case, it is preferable to cool so that the average cooling rate up to 300 ° C. is 5 ° C./s or more, even after cooling out after the hot-dip plating pot or after alloying treatment.

また、上記焼鈍工程後の冷却までを焼鈍ラインでおこない、一旦室温まで冷却した後、溶融めっきラインにて溶融めっきを施し、或いはさらに合金化処理をおこなっても良い。   The cooling after the annealing step may be performed on an annealing line, and once cooled to room temperature, hot-dip plating may be performed on a hot-dip plating line, or an alloying treatment may be further performed.

ここで、めっき層は純亜鉛および亜鉛系合金めっきに限らず、AlやAl系合金めっきなど、従来、鋼板表面に施されている各種めっき層とすることも勿論可能である。   Here, it goes without saying that the plating layer is not limited to pure zinc and zinc-based alloy plating, but may be various plating layers conventionally applied on the surface of a steel plate, such as Al or Al-based alloy plating.

また、上記鋼板(冷延焼鈍板およびめっき鋼板)には形状矯正、表面粗度等の調整の目的で調質圧延またはレベラー加工を施してもよい。調質圧延或いはレベラー加工の伸び率は合計で0.5%未満の範囲内であることが好ましい。伸び率が0.5%以上であると降伏強度が増加し、プレス時の面ひずみが発生しやすくなる。   Further, temper rolling or leveler processing may be applied to the above-mentioned steel plates (cold-rolled annealed plate and plated steel plate) for the purpose of shape correction, adjustment of surface roughness and the like. The elongation percentage of temper rolling or leveler processing is preferably within the range of less than 0.5% in total. When the elongation rate is 0.5% or more, the yield strength is increased, and surface strain at the time of pressing tends to occur.

次に、本発明の実施例について説明する。
表1に示す組成の鋼スラブを1250℃に加熱し粗圧延してシートバーとし、次いで表2に示す条件の仕上圧延を施す熱間圧延工程により熱延板とした。これらの熱延板を酸洗した後、表2に示す冷間圧延率で冷間圧延工程を施し冷延板とした。引き続きこれら冷延板に連続焼鈍ラインにて、表2に示す条件で連続焼鈍をおこなった。さらに得られた鋼板(冷延焼鈍板)に伸び率0.2%の調質圧延を施した。
Next, examples of the present invention will be described.
A steel slab having the composition shown in Table 1 is heated to 1250 ° C. and roughly rolled to form a sheet bar, and then a hot rolling process is performed by a hot rolling step of performing finish rolling under the conditions shown in Table 2. After pickling these hot rolled sheets, a cold rolling process was performed at a cold rolling ratio shown in Table 2 to obtain cold rolled sheets. Subsequently, these cold rolled sheets were subjected to continuous annealing under the conditions shown in Table 2 on a continuous annealing line. Furthermore, temper rolling having an elongation of 0.2% was applied to the obtained steel sheet (cold-rolled and annealed sheet).

得られた冷延焼鈍板について、引張特性およびr値を測定した。測定方法は下記の通りである。   The tensile properties and r value of the obtained cold rolled annealed sheet were measured. The measuring method is as follows.

(1)引張特性
各得られた冷延焼鈍板から圧延方向に対して90°方向(C方向)にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/minで引張試験をおこない、降伏応力(YS)、引張強さ(TS)を求めた。また、前記YS、TSから、降伏比(YR)を、(YS/TS)×100により求めた。
(1) Tensile properties From each cold-rolled annealed sheet obtained, a JIS No. 5 tensile test specimen is taken in the direction of 90 ° (C direction) with respect to the rolling direction, and the crosshead speed is 10 mm / in accordance with JIS Z 2241. A tensile test was performed at min to determine yield stress (YS) and tensile strength (TS). Further, the yield ratio (YR) was determined from (YS, TS) by (YS / TS) × 100.

(2)r値測定
各得られた冷延焼鈍板の圧延方向(L方向)、圧延方向に対し45°方向(D方向)、圧延方向に対し90°方向(C方向)からJIS5号引張試験片を採取した。これらの試験片に10%の単軸引張歪を付与した時の各試験片の幅歪と板厚歪を求め、JIS Z 2254の規定に準拠して平均r値(平均塑性歪比)を求め、これをr値とした。なお、このr値が大きいほど、深絞り性に優れると評価できる。
(2) r value measurement JIS5 tensile test from the rolling direction (L direction), 45 ° direction (D direction) to the rolling direction, and 90 ° direction (C direction) to the rolling direction of each cold rolled annealed sheet obtained A piece was taken. Determine the width strain and thickness strain of each test piece when applying 10% uniaxial tensile strain to these test pieces, and determine the average r value (average plastic strain ratio) according to the provisions of JIS Z 2254 , This was taken as r value. In addition, it can be evaluated that it is excellent in deep drawability, so that this r value is large.

Figure 2019059963
Figure 2019059963

Figure 2019059963
Figure 2019059963

表2より明らかなとおり、本発明例では、いずれもYRが50%以下の低降伏比を有する鋼板が得られた。また、本発明例では、いずれも平均r値が1.3以上の鋼板が得られた。これに対し、本発明の範囲を外れる条件で製造した比較例では、YRが十分に低い鋼板は得られなかった。なお、本発明例の鋼板について組織観察を行ったところ、本発明の鋼板はいずれもフェライト単相組織を有していた。   As is clear from Table 2, in each of the inventive examples, a steel sheet having a low yield ratio of 50% or less for YR was obtained. Further, in the examples of the present invention, steel plates having an average r value of 1.3 or more were obtained. On the other hand, in the comparative example manufactured on the conditions which remove | deviate from the range of this invention, the steel plate whose YR is low enough was not obtained. In addition, when structure | tissue observation was performed about the steel plate of the example of this invention, all the steel plates of this invention had a ferrite single phase structure.

本発明によれば、YR50%以下で平均r値が1.3以上の高r値を有する冷延鋼板を安価にかつ安定して製造することが可能となり産業上格段の効果を奏する。例えば本発明の冷延鋼板を自動車外板パネル用部品に適用した場合、これまで面ひずみが厳格に管理されて合格が困難であった部位もプレス成型後の表面品質が確保可能となり、また従来の外板パネル用鋼板よりも高強度化が可能であることから自動車車体の衝突安全性や軽量化に十分寄与できるという効果がある。また自動車部品に限らず家電部品としても適用可能である。   According to the present invention, it is possible to inexpensively and stably manufacture a cold rolled steel sheet having a high r value with an average r value of 1.3 or more at YR 50% or less, and the industrially remarkable effect is exhibited. For example, when the cold-rolled steel sheet of the present invention is applied to parts for automobile outer panel, the surface quality after press molding can be secured even at the part where the surface strain was strictly controlled and the pass was difficult until now Since it can be made higher in strength than the steel plate for outer panel, it has an effect of being able to sufficiently contribute to the collision safety and weight reduction of the automobile body. Moreover, it is applicable not only as an automotive component but as a household appliance component.

Claims (3)

質量%で、
C:0.0040〜0.0120%、
Si:0.70%以下、
Mn:0.50〜1.80%、
P:0.005〜0.05%、
S:0.01%以下、
Al:0.005〜0.3%、
N:0.005%以下、
Nb:0.025〜0.110%
を含有し、かつ、
下記(1)式で示されるNbとCの原子比が0.80以上1.10以下であり、残部がFeおよび不可避的不純物である組成を有する鋼スラブに、
仕上圧延出側温度を880℃以上とする仕上圧延を施し、550℃以上670℃以下で巻き取り、熱延板とする熱間圧延工程と、
該熱延板に冷間圧延率65%以上92%以下の冷間圧延を施し冷延板とする冷間圧延工程と、
該冷延板を加熱し、760℃以上950℃以下の温度域の焼鈍温度Tで焼鈍を行う焼鈍工程と、を有し、
冷間圧延工程での板厚真ひずみεtと、焼鈍工程での650℃から焼鈍温度Tまでの加熱速度HR(℃/s)との関係が下記(2)式を満たす、低降伏比を有する鋼板の製造方法。
(12/93)×(Nb/C) ・・・(1)
ただし、上記(1)式におけるNb、Cは、各元素の含有量(質量%)を表す。
−14.0≦ln(HR)−5(εt)≦−8.0 ・・・(2)
ただし、上記(2)式におけるεtは、下記(3)式で算出される。
εt=−ln(1−CR/100) ・・・(3)
ただし、上記(3)式におけるCRは、冷間圧延工程における冷間圧延率(%)である。
In mass%,
C: 0.0040 to 0.0120%,
Si: 0.70% or less,
Mn: 0.50 to 1.80%,
P: 0.005 to 0.05%,
S: 0.01% or less,
Al: 0.005 to 0.3%,
N: 0.005% or less,
Nb: 0.025 to 0.110%
Contains and
In a steel slab having a composition in which the atomic ratio of Nb to C is 0.80 or more and 1.10 or less and the balance is Fe and an unavoidable impurity represented by the following formula (1):
Finish rolling The finish rolling is performed at a temperature of 880 ° C. or higher, and wound at 550 ° C. or more and 670 ° C. or less to form a hot rolled sheet;
A cold rolling step of subjecting the hot-rolled sheet to cold rolling at a cold rolling ratio of 65% to 92% to obtain a cold rolled sheet;
And annealing the cold-rolled sheet at an annealing temperature T in a temperature range of 760 ° C. or more and 950 ° C. or less.
A steel sheet having a low yield ratio, wherein the relationship between the thickness true strain εt in the cold rolling process and the heating rate HR (° C./s) from 650 ° C. to the annealing temperature T in the annealing process satisfies the following equation (2) Manufacturing method.
(12/93) x (Nb / C) (1)
However, Nb and C in said Formula (1) represent content (mass%) of each element.
−14.0 ≦ ln (HR) −5 (εt) ≦ −8.0 (2)
However, εt in the above equation (2) is calculated by the following equation (3).
εt = −ln (1-CR / 100) (3)
However, CR in the said (3) Formula is a cold-rolling rate (%) in a cold-rolling process.
前記組成に加えて、さらに、鋼スラブが、質量%で、
B:0.0010%以下
を含有する、請求項1に記載の低降伏比を有する鋼板の製造方法。
In addition to the above composition, furthermore, the steel slab is, by mass%,
The manufacturing method of the steel plate with the low yield ratio of Claim 1 containing B: 0.0010% or less.
さらに、前記焼鈍工程後に、鋼板表面にめっき処理を行う、請求項1または2に記載の低降伏比を有する鋼板の製造方法。   Furthermore, the manufacturing method of the steel plate which has a low yield ratio of Claim 1 or 2 which performs a plating process on the steel plate surface after the said annealing process.
JP2017183135A 2017-09-25 2017-09-25 Method for producing steel sheet having low yield ratio Active JP6658708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017183135A JP6658708B2 (en) 2017-09-25 2017-09-25 Method for producing steel sheet having low yield ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017183135A JP6658708B2 (en) 2017-09-25 2017-09-25 Method for producing steel sheet having low yield ratio

Publications (2)

Publication Number Publication Date
JP2019059963A true JP2019059963A (en) 2019-04-18
JP6658708B2 JP6658708B2 (en) 2020-03-04

Family

ID=66178447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017183135A Active JP6658708B2 (en) 2017-09-25 2017-09-25 Method for producing steel sheet having low yield ratio

Country Status (1)

Country Link
JP (1) JP6658708B2 (en)

Also Published As

Publication number Publication date
JP6658708B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5983896B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP5408314B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
KR20120113791A (en) Method for producing high-strength steel plate having superior deep drawing characteristics
WO2013160928A1 (en) High-strength steel sheet and method for manufacturing same
JP2005187939A (en) High strength cold rolled steel sheet and method for production thereof
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP4735552B2 (en) Manufacturing method of high strength steel plate and high strength plated steel plate
JP5381154B2 (en) Cold-rolled steel sheet excellent in strength-ductility balance after press working and paint baking and method for producing the same
JP4613618B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and its manufacturing method
JP5678695B2 (en) High strength steel plate and manufacturing method thereof
JP2005256141A (en) Method for manufacturing high-strength steel sheet superior in hole expandability
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP6780804B1 (en) High-strength steel sheet and its manufacturing method
JP4506380B2 (en) Manufacturing method of high-strength steel sheet
JP4380353B2 (en) High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
JP4525386B2 (en) Manufacturing method of high-strength steel sheets with excellent shape freezing and deep drawability
JP4301045B2 (en) High-strength steel plate, plated steel plate, and production method thereof
JP6658708B2 (en) Method for producing steel sheet having low yield ratio
US20240043952A1 (en) Plated steel sheet having excellent strength, formability and surface property and method for manufacturing same
JP5251206B2 (en) High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method
JP2023549373A (en) High-strength galvanized steel sheet with excellent formability and its manufacturing method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6658708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250