JP2019107660A - Calculation method of rough rolling time of steel plate, calculation device of the same, and manufacturing method of steel plate - Google Patents

Calculation method of rough rolling time of steel plate, calculation device of the same, and manufacturing method of steel plate Download PDF

Info

Publication number
JP2019107660A
JP2019107660A JP2017241384A JP2017241384A JP2019107660A JP 2019107660 A JP2019107660 A JP 2019107660A JP 2017241384 A JP2017241384 A JP 2017241384A JP 2017241384 A JP2017241384 A JP 2017241384A JP 2019107660 A JP2019107660 A JP 2019107660A
Authority
JP
Japan
Prior art keywords
steel plate
rough rolling
thick steel
time
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017241384A
Other languages
Japanese (ja)
Other versions
JP6822390B2 (en
Inventor
円仁 高見
Marohito Takami
円仁 高見
豪 横倉
Go Yokokura
豪 横倉
啓悟 大杉
Keigo Osugi
啓悟 大杉
昭博 奥野
Akihiro Okuno
昭博 奥野
浩紀 河野
Hiroki Kono
浩紀 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017241384A priority Critical patent/JP6822390B2/en
Publication of JP2019107660A publication Critical patent/JP2019107660A/en
Application granted granted Critical
Publication of JP6822390B2 publication Critical patent/JP6822390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

To provide a calculation method of rough rolling time of a steel plate and a calculation device of the same in which rough rolling time of a steel plate can be accurately calculated regardless of variation of facility state or operation state.SOLUTION: A calculation device 10 of rough rolling time of a steel plate comprises: a database 11 storing data regarding specifications of steel plates rolled in the past and number of rough rolling passes thereof; and a DBM server 12 which constructs a regression equation model representing a relationship between the specifications of the steel plate and the number of rough rolling passes by use of specifications of steel plates rolled in the past and number of rough rolling passes thereof stored in the database 11, calculates number of rough rolling passes of a steel plate of a processing object by entering data of specification of the steel plate of the processing object into the regression equation model, calculates time required for rough rolling of the steel plate of the processing object as a pure rolling time on the basis of the calculated number of rough rolling passes, and calculates rough rolling time of the steel plate of the processing object by adding the pure rolling time, and turn time and width read-in time of the steel plate of the processing object.SELECTED DRAWING: Figure 2

Description

本発明は、リバース式粗圧延機と仕上圧延機とを有する厚鋼板の圧延ラインにおける厚鋼板の粗圧延時間を算出する厚鋼板の粗圧延時間算出方法、厚鋼板の粗圧延時間算出装置、及び厚鋼板の製造方法に関する。   The present invention calculates a rough rolling time calculation method of thick steel plate for calculating the rough rolling time of thick steel plate in a rolling line of thick steel plate having reverse rough rolling mill and finish rolling machine, rough rolling time calculation device of thick steel plate, The present invention relates to a method of manufacturing a thick steel plate.

リバース式粗圧延機と仕上圧延機とを有する厚鋼板の圧延ラインは、1台の圧延機で粗圧延から仕上圧延までを行う厚鋼板の圧延ラインと比較して、生産能率が高いという特徴を有している。リバース式粗圧延機と仕上圧延機とを有する厚鋼板の圧延ラインでは、まず、鋼素材であるスラブが、加熱炉で加熱された後にリバース式粗圧延機で粗圧延される。なお、粗圧延の際には、スラブを水平面内で90°転回して圧延する幅出し圧延も実施される。そして、粗圧延後のスラブは、仕上圧延機において製品厚まで仕上圧延される。なお、仕上圧延を特定の温度域で実施するために、リバース式粗圧延機と仕上圧延機との間にスラブの温度調整のための冷却処理や保持処理が実施されることもある。また、仕上圧延によって得られた厚鋼板に対して必要に応じて加速冷却を実施することもある。   The rolling line of thick steel plate with reverse roughing mill and finishing rolling machine has the feature that production efficiency is high compared with the rolling line of thick steel plate which performs rough rolling to finish rolling with one rolling mill Have. In a rolling line of a thick steel plate having a reverse rough rolling mill and a finishing rolling mill, first, a slab which is a steel material is heated by a heating furnace and then roughly rolled by the reverse rough rolling mill. In rough rolling, width rolling is also carried out, in which the slab is rolled 90 ° in a horizontal plane. Then, the slab after rough rolling is finish-rolled to a product thickness in a finish-rolling mill. In order to carry out finish rolling in a specific temperature range, a cooling process or holding process may be carried out between the reverse rough rolling mill and the finish rolling mill for temperature control of the slab. In addition, accelerated cooling may be performed on a thick steel plate obtained by finish rolling, as necessary.

このような厚鋼板の圧延ラインでは、スラブを加熱する加熱炉として連続式加熱炉が広く用いられている。連続式加熱炉は、複数のスラブを搬送しつつ加熱する炉であり、炉の先頭にあるスラブが炉外に順に抽出される。連続式加熱炉においてスラブを効率よく加熱するためには、スラブの在炉時間(加熱時間)を求め、スラブの温度が在炉時間でちょうど目標温度となるようにスラブを加熱すればよい。目標温度までの加熱に最低限必要な時間が圧延の順番待ち時間より短い場合、スラブの在炉時間は圧延の順番待ち時間となる。このため、いま連続式加熱炉に装入したスラブの在炉時間は既に装入されている各スラブの圧延時間の和となる。このため、リバース式粗圧延機と仕上圧延機とを有する厚鋼板の圧延ラインでは、連続式加熱炉からリバース式粗圧延機までの工程は全てのスラブが通過する工程であるので、スラブの在炉時間を求める上で粗圧延に要する時間(粗圧延時間)を精度よく算出することが、スラブの加熱効率(燃料原単位)、結果的には厚鋼板の歩留まりを向上させる上で極めて重要である。   In such a thick steel plate rolling line, a continuous heating furnace is widely used as a heating furnace for heating a slab. A continuous heating furnace is a furnace which heats while conveying a plurality of slabs, and the slab at the head of the furnace is extracted in order outside the furnace. In order to heat the slab efficiently in the continuous heating furnace, the in-furnace time (heating time) of the slab may be determined, and the slab may be heated so that the temperature of the slab is just the target temperature in the in-furnace time. If the minimum time required for heating to the target temperature is shorter than the rolling turn waiting time, the slab in-furnace time becomes the rolling turn waiting time. For this reason, the standing time of the slabs charged to the continuous heating furnace is the sum of the rolling times of the slabs already charged. For this reason, in a rolling line of thick steel plate having a reverse rough rolling mill and a finishing rolling mill, the steps from the continuous heating furnace to the reverse rough rolling mill are steps in which all the slabs pass, so Accurately calculating the time required for rough rolling (rough rolling time) to determine the furnace time is extremely important in improving the heating efficiency of the slab (fuel basis unit) and consequently the yield of thick steel plate is there.

このような背景から、特許文献1には、厚鋼板の製品品質の違いを考慮して厚鋼板の総圧延時間を算出する発明が記載されている。   From such a background, Patent Document 1 describes an invention for calculating the total rolling time of a thick steel plate in consideration of the difference in product quality of the thick steel plate.

特開2014−28394号公報JP, 2014-28394, A

しかしながら、特許文献1に記載の発明は、設備状態や操業状況の変化に起因する通板速度や圧延荷重の変化に伴う圧延時間の変化を考慮していないために、設備状態や操業状況が変化した場合、圧延時間を精度よく算出することができない。なお、このような問題を解決するために、設備状態や操業状況の変化毎に圧延時間の補正係数を予め求めておき、この補正係数を用いて圧延時間を補正する方法も考えられる。しかしながら、この方法では、多くの労力が必要になると共に、想定した変化以外の変化が生じた場合には圧延時間を精度よく算出できない。   However, the invention described in Patent Document 1 does not consider the change in rolling time due to the change in threading speed or rolling load caused by the change in equipment condition or operation condition, so the equipment condition or operation condition changes. If so, the rolling time can not be calculated accurately. In addition, in order to solve such a problem, the method of calculating | requiring the correction coefficient of rolling time beforehand for every change of an installation state or an operation condition, and correcting rolling time using this correction coefficient is also considered. However, with this method, much labor is required, and the rolling time can not be accurately calculated if a change other than the expected change occurs.

本発明は、上記課題に鑑みてなされたものであって、その目的は、設備状態や操業状況が変化した場合であっても厚鋼板の粗圧延時間を精度よく算出可能な厚鋼板の粗圧延時間算出方法及び厚鋼板の粗圧延時間算出装置を提供することにある。また、本発明の他の目的は、厚鋼板を歩留まりよく製造可能な厚鋼板の製造方法を提供することにある。   This invention is made in view of the said subject, Comprising: The objective is rough-rolling of the thick steel plate which can calculate the rough-rolling time of a thick steel plate accurately, even when an installation state or an operating condition changes. It is providing a time calculation method and a rough rolling time calculation device for thick steel plates. Another object of the present invention is to provide a method of manufacturing a thick steel plate capable of manufacturing a thick steel plate with high yield.

本発明に係る厚鋼板の粗圧延時間算出方法は、リバース式粗圧延機と仕上圧延機とを有する厚鋼板の圧延ラインにおける厚鋼板の粗圧延時間を算出する厚鋼板の粗圧延時間算出方法であって、データベースに格納されている過去に圧延された厚鋼板の諸元及び粗圧延パス回数のデータを用いて、厚鋼板の諸元と粗圧延パス回数との関係を示す回帰式モデルを構築するステップと、処理対象の厚鋼板の諸元のデータを前記回帰式モデルに入力することによって処理対象の厚鋼板の粗圧延パス回数を算出し、算出された粗圧延パス回数に基づいて処理対象の厚鋼板の粗圧延に要する時間を純圧延時間として算出するステップと、前記純圧延時間と処理対象の厚鋼板のターン時間及び幅読み込み時間との和を処理対象の厚鋼板の粗圧延時間として算出するステップと、を含むことを特徴とする。   The method of calculating the rough rolling time of thick steel plate according to the present invention is a method of calculating the rough rolling time of thick steel plate which calculates the rough rolling time of thick steel plate in the rolling line of thick steel plate having reverse roughing mill and finish rolling machine. Build a regression model that shows the relationship between the specifications of thick steel plate and the number of rough rolling passes, using data of the specifications of the thick steel plate rolled in the past and the number of rough rolling passes stored in the database Calculating the number of rough rolling passes of the thick steel plate to be processed by inputting the data of the specifications of the thick steel plate to be processed into the regression model, and calculating the number of rough rolling passes based on the calculated number of rough rolling passes Calculating the time required for the rough rolling of the thick steel plate as a pure rolling time, and the sum of the pure rolling time and the turn time and width reading time of the thick steel plate to be treated as the rough rolling time of the thick steel plate to be treated Calculation Characterized in that it comprises the steps of, a.

本発明に係る厚鋼板の粗圧延時間算出方法は、上記発明において、処理対象の厚鋼板の諸元及び粗圧延パス回数のデータを過去に圧延された厚鋼板の諸元及び粗圧延パス回数のデータとして前記データベースに格納するステップを含むことを特徴とする。   In the rough rolling time calculation method of a thick steel plate according to the present invention, in the above-described invention, the specifications of the thick steel plate to be treated and the data of the number of rough rolling passes are Storing the data as data in the database.

本発明に係る厚鋼板の粗圧延時間算出装置は、リバース式粗圧延機と仕上圧延機とを有する厚鋼板の圧延ラインにおける厚鋼板の粗圧延時間を算出する厚鋼板の粗圧延時間算出装置であって、過去に圧延された厚鋼板の諸元及び粗圧延パス回数のデータを格納するデータベースと、前記データベースに格納されている過去に圧延された厚鋼板の諸元及び粗圧延パス回数のデータを用いて、厚鋼板の諸元と粗圧延パス回数との関係を示す回帰式モデルを構築し、処理対象の厚鋼板の諸元のデータを前記回帰式モデルに入力することによって処理対象の厚鋼板の粗圧延パス回数を算出し、算出された粗圧延パス回数に基づいて処理対象の厚鋼板の粗圧延に要する時間を純圧延時間として算出し、純圧延時間と処理対象の厚鋼板のターン時間及び幅読み込み時間との和を処理対象の厚鋼板の粗圧延時間として算出するデータベースモデリングサーバと、を備えることを特徴とする。   The rough rolling time calculation device for thick steel plate according to the present invention is a rough rolling time calculation device for thick steel plate which calculates rough rolling time of thick steel plate in a rolling line of thick steel plate having reverse rough rolling mill and finish rolling mill. There is a database storing data of the specifications of the thick steel plate rolled in the past and the number of rough rolling passes, and data of the specifications of the thick steel plate rolled in the past stored in the database and the number of rough rolling passes Is used to construct a regression model that indicates the relationship between the specifications of the thick steel plate and the number of rough rolling passes, and the data of the specifications of the thick steel plate to be processed is input to the regression model. The number of rough rolling passes of the steel plate is calculated, and the time required for the rough rolling of the thick steel plate to be treated is calculated as a pure rolling time based on the calculated number of rough rolling passes, and the pure rolling time and the turn of the thick steel plate to be treated Time and width And database modeling server that calculates a rough rolling time thick steel sum processed with time narrowing seen, characterized in that it comprises a.

本発明に係る厚鋼板の製造方法は、本発明に係る厚鋼板の粗圧延時間算出方法によって算出された粗圧延時間に基づいて前記圧延ラインで圧延するスラブを加熱する加熱炉を制御しながら厚鋼板を製造するステップを含むことを特徴とする。   A method of manufacturing a thick steel plate according to the present invention controls a heating furnace for heating a slab to be rolled in the rolling line based on a rough rolling time calculated by the method of calculating a rough rolling time of a thick steel plate according to the present invention. It is characterized by including the step of manufacturing a steel plate.

本発明に係る厚鋼板の粗圧延時間算出方法及び厚鋼板の粗圧延時間算出装置によれば、設備状態や操業状況が変化した場合であっても粗圧延時間を精度よく算出することができる。また、本発明に係る厚鋼板の製造方法によれば、厚鋼板を歩留まりよく製造することができる。   According to the rough rolling time calculation method of a thick steel plate and the rough rolling time calculation device of a thick steel plate according to the present invention, the rough rolling time can be accurately calculated even when the equipment state or the operation condition changes. Moreover, according to the method of manufacturing a thick steel plate according to the present invention, a thick steel plate can be manufactured with a high yield.

図1は、本発明の一実施形態である厚鋼板の粗圧延時間算出装置が適用される圧延ラインの構成を示す模式図である。FIG. 1 is a schematic view showing a configuration of a rolling line to which a rough rolling time calculation device for thick steel plate which is an embodiment of the present invention is applied. 図2は、本発明の一実施形態である厚鋼板の粗圧延時間算出装置の構成を示す模式図である。FIG. 2: is a schematic diagram which shows the structure of the rough rolling time calculation apparatus of the thick steel plate which is one Embodiment of this invention. 図3は、本発明の一実施形態である粗圧延時間算出処理の流れを示すフローチャートである。FIG. 3 is a flowchart showing the flow of rough rolling time calculation processing according to an embodiment of the present invention. 図4は、従来技術及び本発明によって算出された粗圧延時間と粗圧延時間の実績値との関係を示す散布図である。FIG. 4 is a scatter diagram showing the relationship between the rough rolling time calculated by the prior art and the present invention and the actual value of the rough rolling time.

以下、図面を参照して、本発明の一実施形態である厚鋼板の粗圧延時間算出装置の構成及びその動作について説明する。   Hereinafter, with reference to the drawings, the configuration and operation of a rough rolling time calculation device for thick steel plate which is an embodiment of the present invention will be described.

〔ライン構成〕
まず、図1を参照して、本発明の一実施形態である厚鋼板の粗圧延時間算出装置が適用される圧延ラインの構成について説明する。
〔line formation〕
First, with reference to FIG. 1, the structure of the rolling line to which the rough rolling time calculation apparatus of the thick steel plate which is one Embodiment of this invention is applied is demonstrated.

図1は、本発明の一実施形態である厚鋼板の粗圧延時間算出装置が適用される圧延ラインの構成を示す模式図である。図1に示すように、本発明の一実施形態である厚鋼板の粗圧延時間算出装置が適用される圧延ライン1は、加熱炉2、リバース式粗圧延機3、仕上圧延機4、及び加速冷却装置5を主な構成要素として備えている。この圧延ライン1では、まず、鋼素材であるスラブSが、連続式加熱炉である加熱炉2で加熱された後にリバース式粗圧延機3で粗圧延される。そして、粗圧延後のスラブSは、仕上圧延機4において製品厚まで仕上圧延された後、必要に応じて加速冷却装置4で加速冷却される。これにより、厚鋼板Pが製造される。   FIG. 1 is a schematic view showing a configuration of a rolling line to which a rough rolling time calculation device for thick steel plate which is an embodiment of the present invention is applied. As shown in FIG. 1, a rolling line 1 to which a rough rolling time calculation device for thick steel plate according to an embodiment of the present invention is applied includes a heating furnace 2, a reverse rough rolling mill 3, a finishing rolling mill 4, and acceleration. A cooling device 5 is provided as a main component. In the rolling line 1, first, the slab S which is a steel material is heated by the heating furnace 2 which is a continuous heating furnace and then roughly rolled by the reverse rough rolling mill 3. Then, the slab S after rough rolling is finish-rolled to a product thickness in a finish-rolling mill 4 and then accelerated and cooled by an accelerated cooling device 4 as necessary. Thereby, the thick steel plate P is manufactured.

〔装置構成〕
次に、図2を参照して、本発明の一実施形態である厚鋼板の粗圧延時間算出装置の構成について説明する。
〔Device configuration〕
Next, with reference to FIG. 2, the structure of the rough rolling time calculation apparatus of the thick steel plate which is one Embodiment of this invention is demonstrated.

図2は、本発明の一実施形態である厚鋼板の粗圧延時間算出装置の構成を示す模式図である。図2に示すように、本発明の一実施形態である厚鋼板の粗圧延時間算出装置10は、データベース11と、DBM(DataBase Modeling)サーバ12と、を主な構成要素として備えている。   FIG. 2: is a schematic diagram which shows the structure of the rough rolling time calculation apparatus of the thick steel plate which is one Embodiment of this invention. As shown in FIG. 2, the rough rolling time calculation device 10 for a thick steel plate according to an embodiment of the present invention includes a database 11 and a DBM (DataBase Modeling) server 12 as main components.

データベース11は、図1に示す圧延ライン1において圧延されたスラブS(以下、過去材と表記)の諸元(重量、加熱炉抽出温度、厚さ、中間厚さ(粗圧延終了後の厚さ)、仕上狙い温度、仕上幅、仕上長さ、仕上厚等)、粗圧延パス回数の実績値(以下、実績粗圧延パス回数と表記)、及びターン時間(スラブSを幅方向及び長さ方向に圧延するために転回するのに要する時間)の実績値(以下、実績ターン時間と表記)のデータを格納している。   The data base 11 includes the specifications (weight, heating furnace extraction temperature, thickness, intermediate thickness (thickness after rough rolling) of slabs S (hereinafter referred to as past materials) rolled in the rolling line 1 shown in FIG. 1 ), Target finish temperature, finish width, finish length, finish thickness etc., actual values of rough rolling pass number (hereinafter referred to as actual rough rolling pass number), and turn time (slab S in width direction and length direction) The data of the actual value (hereinafter referred to as actual turn time) of the time required to turn for rolling is stored.

DBMサーバ12は、ワークステーション等の情報処理装置によって構成され、データベース11との間で情報通信可能なようにデータベース11と電気的に接続されている。DBMサーバ12は、情報処理装置内のCPU(Central Processing Unit)等の演算処理装置がコンピュータプログラムを実行することにより、後述する粗圧延時間算出処理等の各種処理を実行する。   The DBM server 12 is configured by an information processing apparatus such as a workstation and is electrically connected to the database 11 so as to be able to communicate information with the database 11. The DBM server 12 executes various processes such as a rough rolling time calculation process described later when an arithmetic processing unit such as a central processing unit (CPU) in the information processing apparatus executes a computer program.

このような構成を有する厚鋼板の粗圧延時間算出装置10では、DBMサーバ12が、以下に示す粗圧延時間算出処理を実行することにより、設備状態や操業状況が変化した場合であってもスラブSの粗圧延時間を精度よく算出する。以下、図3に示すフローチャートを参照して、粗圧延時間算出処理を実行する際のDBMサーバ12の動作について説明する。   In the rough rolling time calculation device 10 for a thick steel plate having such a configuration, the DBM server 12 executes the rough rolling time calculation processing described below, and the slab is obtained even if the equipment state or the operating condition changes. The rough rolling time of S is accurately calculated. The operation of the DBM server 12 when executing the rough rolling time calculation process will be described below with reference to the flowchart shown in FIG.

〔粗圧延時間算出処理〕
図3は、本発明の一実施形態である粗圧延時間算出処理の流れを示すフローチャートでる。図3に示すフローチャートは、DBMサーバ12に対して処理対象のスラブS(以下、当材と表記)の諸元に関する情報が入力されたタイミングで開始となり、粗圧延時間算出処理はステップS1の処理に進む。
[Rough rolling time calculation process]
FIG. 3 is a flow chart showing a flow of rough rolling time calculation processing according to an embodiment of the present invention. The flowchart shown in FIG. 3 starts at the timing when information on the specifications of the slab S (hereinafter referred to as the material) to be processed is input to the DBM server 12, and the rough rolling time calculation process is the process of step S1. Go to

ステップS1の処理では、DBMサーバ12が、データベース11内に格納されている過去材の諸元、実績粗圧延パス回数、及び実績ターン時間のデータを読み込む。これにより、ステップS1の処理は完了し、粗圧延時間算出処理はステップS2の処理に進む。   In the process of step S1, the DBM server 12 reads data of the specifications of past material stored in the database 11, the number of actual rough rolling passes, and the actual turn time. Thus, the process of step S1 is completed, and the rough rolling time calculation process proceeds to the process of step S2.

ステップS2の処理では、DBMサーバ12が、ステップS1の処理において読み込んだデータを用いて過去材の諸元と粗圧延パス回数との関係を示す回帰式モデル(予測モデル)を構築する.具体的には、一般に、スラブSの諸元に基づいて構築される粗圧延パス回数の回帰式モデルは非線形となり、非線形の回帰式モデルを構築するためには多くの計算量を要する。そこで、本実施形態では、連続な非線形関数は微小区間内では線形近似できることに着目して計算量の削減と高速化を図る。つまり、諸元空間内において当材の諸元近傍にあるデータのみを用いて回帰式モデルを構築する。   In the process of step S2, the DBM server 12 constructs a regression model (prediction model) indicating the relationship between the specifications of the past material and the number of rough rolling passes using the data read in the process of step S1. Specifically, a regression model of the number of rough rolling passes constructed based on the specifications of the slab S is generally non-linear, and a large amount of calculation is required to construct a non-linear regression model. So, in this embodiment, reduction and speeding up of calculation amount are achieved focusing on the fact that a continuous non-linear function can be linearly approximated within a minute section. That is, a regression model is constructed using only data in the specification space in the vicinity of the specification of the material.

詳しくは、データベース11内にデータが格納されている過去材の数をn点、諸元の種類をm種類、i(=1〜n)番目の過去材が有する諸元をm×1行列X,X=(X,…,X)とし、過去材の実績粗圧延パス回数を1×n行列Yとする。このとき、以下の数式(1)に示す線形回帰式は、以下の数式(2)で示される最小問題を解き、パラメータα,βの値を求めることで導出できる。但し、αは1×mの係数行列であり、βは1×nの定数行列である。 Specifically, the number of past materials whose data is stored in the database 11 is n, the type of specifications is m types, and the specifications of the i (= 1 to n) -th past materials are m × 1 matrix X Let i , X = (X 1 ,..., X n ), and let the number of actual rough rolling passes of past material be 1 × n matrix Y. At this time, the linear regression equation shown in the following equation (1) can be derived by solving the minimum problem shown in the following equation (2) and finding the values of the parameters α and β. Where α is a 1 × m coefficient matrix and β is a 1 × n constant matrix.

詳しくは、データベース11内にデータが格納されている過去材の数をn点、諸元の種類をm種類、i(=1〜n)番目の過去材が有する諸元をm×1行列X,X=(X,…,X)とし、過去材の実績粗圧延パス回数を1×n行列Yとする。この過去材データをもとにして、或る諸元を有する材の粗圧延パス回数を最適化することを考える。或る諸元x(xはm×1行列)を有する材について粗圧延パス回数y(yはスカラー値)の最適値を以下の数式(1)に示す線形回帰式で求めるためには、以下の数式(2)で示される最小問題を解き、パラメータα,βの値を求めればよい。但し、αは1×mの係数行列であり、βはそのすべての要素の値がスカラー値βである1×nの定数行列である。 Specifically, the number of past materials whose data is stored in the database 11 is n, the type of specifications is m types, and the specifications of the i (= 1 to n) -th past materials are m × 1 matrix X Let i , X = (X 1 ,..., X n ), and let the number of actual rough rolling passes of past material be 1 × n matrix Y. Based on the past material data, it is considered to optimize the number of rough rolling passes of a material having certain specifications. In order to obtain the optimum value of the rough rolling pass number y (y is a scalar value) for a material having certain parameters x (x is an m × 1 matrix) by the linear regression equation shown in the following equation (1), It is sufficient to solve the minimum problem shown by the equation (2) of and calculate the values of the parameters α and β. Is a 1 × m coefficient matrix, and β is a 1 × n constant matrix in which the values of all the elements thereof are scalar values β * .

Figure 2019107660
Figure 2019107660

Figure 2019107660
Figure 2019107660

次に、当材の諸元行列をA(=(a,…,a))、諸元空間内における過去材から当材までの距離をLとすると、距離Lは以下の数式(3)に示すn×1行列となる。 Next, assuming that the specification matrix of the material is A (= (a 1 ,..., A m )) and the distance from the past material to the material in the specification space is L, the distance L is It becomes n × 1 matrix shown in).

Figure 2019107660
Figure 2019107660

次に、数式(3)に示す距離Lに対して重み行列Wを以下に示す数式(4)で定義する。但し、数式(4)中、Lは行列Lのi(=1〜n)行目、σ(L)は行列Lの標準偏差、pは定数を示す。 Next, a weighting matrix W is defined by the following equation (4) for the distance L shown by the equation (3). However, shown in Equation (4), L i is the matrix L i (= 1~n) th row, sigma (L) is the standard deviation of the matrix L, p and constant.

Figure 2019107660
Figure 2019107660

重み行列Wは当材の諸元を中心とするガウス関数である。従って、重み行列Wによる重み付けを行うことにより、当材の諸元周りの微小空間内における線形近似を行うことができる。すなわち、数式(2)内の(Y−αX−β)は1×n行列であり、この(Y−αX−β)をKとおくと、数式(2)に示す最小問題は以下の数式(5)のように表される。   The weighting matrix W is a Gaussian function centered on the specifications of the material. Therefore, by weighting with the weighting matrix W, linear approximation in a minute space around the specifications of the material can be performed. That is, (Y-αX-β) in Formula (2) is a 1 × n matrix, and if (Y-αX-β) is K, the minimum problem shown in Formula (2) is It is expressed as 5).

Figure 2019107660
Figure 2019107660

このように、線形回帰の最小化目的関数に重みを付与することにより、非線形関数である粗圧延パス回数を要求点回りで近似した回帰式モデルを構築できる。この回帰式モデルは全て演算処理装置による自動計算によって構築できる。これにより、ステップS2の処理は完了し、粗圧延時間算出処理はステップS3の処理に進む。   As described above, by assigning weights to the minimization objective function of linear regression, it is possible to construct a regression model in which the number of rough rolling passes which is a non-linear function is approximated around the required point. This regression equation model can all be constructed by automatic calculation by an arithmetic processing unit. Thus, the process of step S2 is completed, and the rough rolling time calculation process proceeds to the process of step S3.

ステップS3の処理では、DBMサーバ12が、ステップS2の処理において構築した回帰式モデルに当材の諸元のデータを入力することにより、当材の粗圧延時間を予測する。これにより、ステップS3の処理は完了し、粗圧延時間算出処理はステップS4の処理に進む。   In the process of step S3, the DBM server 12 predicts the rough rolling time of the material by inputting data of specifications of the material into the regression model constructed in the process of step S2. Thus, the process of step S3 is completed, and the rough rolling time calculation process proceeds to the process of step S4.

ステップS4の処理では、DBMサーバ12が、当材の諸元のデータを用いて、ステップS3の処理において算出された粗圧延パス回数でスラブSを所定の厚さに粗圧延するための圧延スケジュール(各粗圧延パスにおけるスラブSの搬送速度及び圧延荷重)を算出する。そして、DBMサーバ12は、算出された圧延スケジュールに基づいて当材の粗圧延時間を純圧延時間として算出し、算出された純圧延時間と当材のターン時間及び幅読み込み時間(スラブSが所定の寸法幅まで圧延できているか否かを測定する時間)との和を当材の粗圧延時間として算出する。なお、本実施形態では、当材のターン時間として、データベース11内に格納されている実績ターン時間の平均値を用いる。また、幅読み込みは全自動で行われるため、幅読み込み時間はスラブSに関係なく一定であるとみなして、予め与えられた時間を幅読み込み時間とする。これにより、ステップS4の処理は完了し、粗圧延時間算出処理はステップS5の処理に進む。   In the process of step S4, a rolling schedule for the DBM server 12 to roughly roll the slab S to a predetermined thickness with the number of rough rolling passes calculated in the process of step S3 using data of specifications of the material (Conveying speed and rolling load of slab S in each rough rolling pass) are calculated. Then, the DBM server 12 calculates the rough rolling time of the material as a pure rolling time based on the calculated rolling schedule, and the calculated pure rolling time and the turn time and width reading time of the material (slab S is predetermined The time with which it is measured whether or not it can be rolled to the dimension width of 2) is calculated as the rough rolling time of this material. In the present embodiment, the average value of the actual turn times stored in the database 11 is used as the turn time of the material. Further, since the width reading is performed fully automatically, the width reading time is considered to be constant regardless of the slab S, and a predetermined time is set as the width reading time. Thus, the process of step S4 is completed, and the rough rolling time calculation process proceeds to the process of step S5.

ステップS5の処理では、DBMサーバ12が、当材の諸元、粗圧延パス回数、及びターン時間の実績値のデータをデータベース11内に格納する。なお、データベース11内のデータ点数が所定数以上である場合、DBMサーバ12は、最も古いデータを削除することが望ましい。これにより、ステップS5の処理は完了し、一連の粗圧延時間算出処理は終了する。   In the process of step S5, the DBM server 12 stores data of the material of the material, the number of rough rolling passes, and the actual value of the turn time in the database 11. When the number of data points in the database 11 is equal to or more than a predetermined number, the DBM server 12 desirably deletes the oldest data. Thereby, the process of step S5 is completed and a series of rough rolling time calculation processes are complete | finished.

以上の説明から明らかなように、DBMサーバ12が、データベース11に格納されている過去材の諸元及び粗圧延パス回数のデータを用いて、過去材の諸元と粗圧延パス回数との関係を示す回帰式モデルを構築し、当材の諸元のデータを回帰式モデルに入力することによって当材の粗圧延パス回数を算出し、算出された粗圧延パス回数に基づいて当材の粗圧延に要する時間を純圧延時間として算出し、純圧延時間と当材のターン時間及び幅読み込み時間との和を当材の粗圧延時間として算出するので、設備状態や操業状況が変化した場合であっても当材の粗圧延時間を精度よく算出することができる。   As apparent from the above description, the DBM server 12 uses the data of the past material specifications and the number of rough rolling passes stored in the database 11 to determine the relationship between the specifications of the past material and the number of rough rolling passes. The regression model is constructed and the data of the specification of the material is input to the regression model to calculate the number of rough rolling passes of the material, and the rough of the material is calculated based on the calculated number of rough rolling passes. The time required for rolling is calculated as the pure rolling time, and the sum of the pure rolling time and the turn time and width reading time of the material is calculated as the rough rolling time of the material. Even if there is, the rough rolling time of the material can be calculated with high accuracy.

また、粗圧延時間算出処理によって算出された粗圧延時間に基づいて圧延ライン1で圧延するスラブSを加熱する加熱炉2を制御しながら厚鋼板Pを製造することにより、厚鋼板Pを歩留まりよく製造することができる。   Also, by manufacturing the thick steel plate P while controlling the heating furnace 2 that heats the slab S rolled in the rolling line 1 based on the rough rolling time calculated by the rough rolling time calculation process, the thick steel plate P is obtained with high yield. It can be manufactured.

本発明の効果を確認するために、10978本の厚鋼板の圧延データについて従来技術及び本発明を用いて粗圧延時間を予測した。図4(a),(b)はそれぞれ、従来技術及び本発明によって予測された粗圧延時間(既設粗圧延時間予測及びDBMによる粗圧延時間予測)と粗圧延時間の実績値(実績粗圧延時間)との関係を示す散布図であり、図中の直線上に点がある場合、予測値と実績値とが一致していることを意味する。図4(a),(b)に示すように、従来技術及び本発明の決定係数はそれぞれ0.03及び0.22となり、従来技術及び本発明の誤差の標準偏差はそれぞれ38.8秒及び30.8秒(実績粗圧延時間の平均値は117.9秒)となった。このことから、本発明によれば、粗圧延時間を精度よく算出できることが確認された。   In order to confirm the effect of this invention, rough rolling time was estimated using the prior art and this invention about the rolling data of 10978 thick steel plates. 4 (a) and 4 (b) show the actual values (rough results rough rolling time) of rough rolling time predicted by the prior art and the present invention (prediction rough rolling time prediction and rough rolling time prediction by DBM) and rough rolling time, respectively. When there is a point on the straight line in the figure, it means that the predicted value and the actual value match. As shown in FIGS. 4A and 4B, the determination coefficients of the prior art and the present invention are 0.03 and 0.22, respectively, and the standard deviations of the errors of the prior art and the present invention are 38.8 seconds and It became 30.8 seconds (average value of actual rough rolling time is 117.9 seconds). From this, it was confirmed that according to the present invention, the rough rolling time can be calculated with high accuracy.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。   The embodiment to which the invention made by the present inventors has been applied has been described above, but the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operation techniques and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1 圧延ライン
2 加熱炉
3 リバース式粗圧延機
4 仕上圧延機
5 加速冷却装置
10 厚鋼板の粗圧延時間算出装置
11 データベース
12 DBM(DataBase Modeling)サーバ
S スラブ
P 厚鋼板
DESCRIPTION OF SYMBOLS 1 rolling line 2 heating furnace 3 reverse rough rolling mill 4 finish rolling mill 5 accelerated cooling device 10 coarse steel rolling time calculating device 11 database 12 DBM (DataBase Modeling) server S slab P thick steel plate

Claims (4)

リバース式粗圧延機と仕上圧延機とを有する厚鋼板の圧延ラインにおける厚鋼板の粗圧延時間を算出する厚鋼板の粗圧延時間算出方法であって、
データベースに格納されている過去に圧延された厚鋼板の諸元及び粗圧延パス回数のデータを用いて、厚鋼板の諸元と粗圧延パス回数との関係を示す回帰式モデルを構築するステップと、
処理対象の厚鋼板の諸元のデータを前記回帰式モデルに入力することによって処理対象の厚鋼板の粗圧延パス回数を算出し、算出された粗圧延パス回数に基づいて処理対象の厚鋼板の粗圧延に要する時間を純圧延時間として算出するステップと、
前記純圧延時間と処理対象の厚鋼板のターン時間及び幅読み込み時間との和を処理対象の厚鋼板の粗圧延時間として算出するステップと、
を含むことを特徴とする厚鋼板の粗圧延時間算出方法。
A rough rolling time calculation method of thick steel plate for calculating rough rolling time of thick steel plate in a rolling line of thick steel plate having reverse rough rolling mill and finish rolling mill,
Constructing a regression model indicating the relationship between the specifications of the thick steel plate and the number of rough rolling passes using the specifications of the thick steel plate rolled in the past and the data of the number of rough rolling passes stored in the database; ,
The number of rough rolling passes of the thick steel plate to be treated is calculated by inputting data of specifications of the thick steel plate to be treated into the regression model, and the thick steel plate to be treated is calculated based on the calculated number of rough rolling passes. Calculating a time required for rough rolling as a pure rolling time;
Calculating the sum of the pure rolling time and the turn time and width reading time of the thick steel plate to be treated as the rough rolling time of the thick steel plate to be treated;
The rough rolling time calculation method of the thick steel plate characterized by including.
処理対象の厚鋼板の諸元及び粗圧延パス回数のデータを過去に圧延された厚鋼板の諸元及び粗圧延パス回数のデータとして前記データベースに格納するステップを含むことを特徴とする請求項1に記載の厚鋼板の粗圧延時間算出方法。   Storing the specification of the thick steel plate to be processed and the data of the number of rough rolling passes in the database as the data of the thick steel plate rolled in the past and the number of rough rolling passes; The rough rolling time calculation method of the thick steel plate as described in. リバース式粗圧延機と仕上圧延機とを有する厚鋼板の圧延ラインにおける厚鋼板の粗圧延時間を算出する厚鋼板の粗圧延時間算出装置であって、
過去に圧延された厚鋼板の諸元及び粗圧延パス回数のデータを格納するデータベースと、
前記データベースに格納されている過去に圧延された厚鋼板の諸元及び粗圧延パス回数のデータを用いて、厚鋼板の諸元と粗圧延パス回数との関係を示す回帰式モデルを構築し、処理対象の厚鋼板の諸元のデータを前記回帰式モデルに入力することによって処理対象の厚鋼板の粗圧延パス回数を算出し、算出された粗圧延パス回数に基づいて処理対象の厚鋼板の粗圧延に要する時間を純圧延時間として算出し、純圧延時間と処理対象の厚鋼板のターン時間及び幅読み込み時間との和を処理対象の厚鋼板の粗圧延時間として算出するデータベースモデリングサーバと、
を備えることを特徴とする厚鋼板の粗圧延時間算出装置。
A rough rolling time calculation device for thick steel plate which calculates rough rolling time of thick steel plate in a rolling line of thick steel plate having reverse rough rolling mill and finishing rolling machine,
A database for storing data of the specifications of the steel plate rolled in the past and the number of rough rolling passes;
By using the data of the specification of the thick steel plate and the number of rough rolling passes that were rolled in the past and stored in the database, a regression model indicating the relationship between the specification of the thick steel and the number of rough rolling passes is constructed. The number of rough rolling passes of the thick steel plate to be treated is calculated by inputting data of specifications of the thick steel plate to be treated into the regression model, and the thick steel plate to be treated is calculated based on the calculated number of rough rolling passes. A database modeling server which calculates the time required for rough rolling as a pure rolling time and calculates the sum of the pure rolling time and the turn time and width reading time of the thick steel plate to be treated as the rough rolling time of the thick steel plate to be treated;
An apparatus for calculating a rough rolling time of a thick steel plate, comprising:
請求項1又は2に記載の厚鋼板の粗圧延時間算出方法によって算出された粗圧延時間に基づいて前記圧延ラインで圧延するスラブを加熱する加熱炉を制御しながら厚鋼板を製造するステップを含むことを特徴とする厚鋼板の製造方法。   The step which manufactures a thick steel plate, controlling the heating furnace which heats the slab rolled by the said rolling line based on the rough rolling time calculated by the rough rolling time calculation method of the thick steel plate of Claim 1 or 2 A method of manufacturing a thick steel plate characterized by
JP2017241384A 2017-12-18 2017-12-18 Rough rolling time calculation method for thick steel sheets, rough rolling time calculation device for thick steel sheets, and manufacturing method for thick steel sheets Active JP6822390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017241384A JP6822390B2 (en) 2017-12-18 2017-12-18 Rough rolling time calculation method for thick steel sheets, rough rolling time calculation device for thick steel sheets, and manufacturing method for thick steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017241384A JP6822390B2 (en) 2017-12-18 2017-12-18 Rough rolling time calculation method for thick steel sheets, rough rolling time calculation device for thick steel sheets, and manufacturing method for thick steel sheets

Publications (2)

Publication Number Publication Date
JP2019107660A true JP2019107660A (en) 2019-07-04
JP6822390B2 JP6822390B2 (en) 2021-01-27

Family

ID=67178555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017241384A Active JP6822390B2 (en) 2017-12-18 2017-12-18 Rough rolling time calculation method for thick steel sheets, rough rolling time calculation device for thick steel sheets, and manufacturing method for thick steel sheets

Country Status (1)

Country Link
JP (1) JP6822390B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589268A (en) * 1984-04-25 1986-05-20 Kawasaki Steel Corporation Method of controlling mill pacing
JP2003320407A (en) * 2002-05-08 2003-11-11 Daido Steel Co Ltd Pass schedule design system
JP2010240663A (en) * 2009-04-01 2010-10-28 Sumitomo Metal Ind Ltd Method of deciding rolling pass schedule of steel plate and method of manufacturing steel plate
JP2013145521A (en) * 2012-01-16 2013-07-25 Nippon Steel & Sumitomo Metal Method, device and program for predicting efficiency of manufacturing process
JP2017144463A (en) * 2016-02-17 2017-08-24 Jfeスチール株式会社 Heating furnace extraction interval determination device, manufacturing apparatus of steel plate, heating furnace extraction interval determination method, and manufacturing method of steel plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589268A (en) * 1984-04-25 1986-05-20 Kawasaki Steel Corporation Method of controlling mill pacing
JP2003320407A (en) * 2002-05-08 2003-11-11 Daido Steel Co Ltd Pass schedule design system
JP2010240663A (en) * 2009-04-01 2010-10-28 Sumitomo Metal Ind Ltd Method of deciding rolling pass schedule of steel plate and method of manufacturing steel plate
JP2013145521A (en) * 2012-01-16 2013-07-25 Nippon Steel & Sumitomo Metal Method, device and program for predicting efficiency of manufacturing process
JP2017144463A (en) * 2016-02-17 2017-08-24 Jfeスチール株式会社 Heating furnace extraction interval determination device, manufacturing apparatus of steel plate, heating furnace extraction interval determination method, and manufacturing method of steel plate

Also Published As

Publication number Publication date
JP6822390B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP5012660B2 (en) Product quality prediction and control method
US9732396B2 (en) Method for operating a continuous annealing line for the processing of a rolled good
JP5462750B2 (en) Molten steel temperature management method, apparatus and program
JP5704040B2 (en) Product quality management method and product quality management device
KR101516476B1 (en) Apparatus for calculating set value, method of calculating set value, and program recording medium for calculating set value
JP7503150B2 (en) System and method for controlling a production facility consisting of several facility parts, in particular for producing industrial products such as metal semi-finished products - Patents.com
JP2007188306A (en) Scheduling apparatus considering the probability distribution of processing time
JP2012040593A (en) Device for controlling finishing temperature in hot rolling
CN105414205B (en) PLC-based online predication method for temperatures of steel plates
JP5003362B2 (en) Product quality control method and control device
JP6021450B2 (en) Heating furnace operation support system
JP6641867B2 (en) Power consumption prediction method, apparatus and program
JP2020157327A (en) Control method for outlet side temperature of finished steel sheet, control device therefor and production method for steel sheet
JP6020263B2 (en) Rolling load learning control device and learning control method, and metal plate manufacturing method using the same
JP2019107660A (en) Calculation method of rough rolling time of steel plate, calculation device of the same, and manufacturing method of steel plate
JP6652095B2 (en) Method of rolling steel sheet and method of manufacturing steel sheet
JP2010235972A (en) Manufacturing controller and manufacturing method for high tension steel sheet
JP6075309B2 (en) Heating furnace control method and control apparatus
JP2010207900A (en) Method of predicting deformation resistance in hot rolling
JP5007630B2 (en) Product quality control method and control device
JP6460004B2 (en) Heating furnace extraction interval determination device, steel plate manufacturing apparatus, heating furnace extraction interval determination method, and steel plate manufacturing method
JP6375741B2 (en) Control method of molten steel temperature in steelmaking factory
JP5581600B2 (en) Determination method of heating furnace extraction interval
JP2014079778A (en) Manufacturing method and manufacturing apparatus of hot rolled steel sheet
JP2022170101A (en) Rolling load prediction method, rolling control method and rolling load prediction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201221

R150 Certificate of patent or registration of utility model

Ref document number: 6822390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250