JP2009263701A - Method for heating material to be heated - Google Patents

Method for heating material to be heated Download PDF

Info

Publication number
JP2009263701A
JP2009263701A JP2008112709A JP2008112709A JP2009263701A JP 2009263701 A JP2009263701 A JP 2009263701A JP 2008112709 A JP2008112709 A JP 2008112709A JP 2008112709 A JP2008112709 A JP 2008112709A JP 2009263701 A JP2009263701 A JP 2009263701A
Authority
JP
Japan
Prior art keywords
heating
heated
furnace
continuous
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008112709A
Other languages
Japanese (ja)
Other versions
JP5181803B2 (en
Inventor
Satoru Masuko
悟 益子
Hirosuke Karashima
広祐 辛島
Toshiaki Saito
俊明 齋藤
Hidetaka Ageo
英孝 上尾
Tatsuo Iwatani
達雄 岩谷
Eiichi Kuboyama
榮一 久保山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008112709A priority Critical patent/JP5181803B2/en
Publication of JP2009263701A publication Critical patent/JP2009263701A/en
Application granted granted Critical
Publication of JP5181803B2 publication Critical patent/JP5181803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous rolling facility which can correct a temperature distribution in a longitudinal direction of a slab that has been heated under such conditions as to deviate from an original heating condition in a heating furnace, to an appropriate temperature distribution, and roll the slab under the optimum heating condition, and to provide a method for heating the material to be heated by using the continuous rolling facility. <P>SOLUTION: The method for heating the material to be heated by using a continuous heating furnace which can selectively switch the heating condition for the material to be heated between a uniform heating condition and a gradient heating condition, and an induction heating device arranged right in front of a finish rolling mill includes heating the material which has been heated by the continuous heating furnace in the period of switching the heating condition of the continuous heating furnace between the uniform heating condition and the gradient heating condition, by the induction heating device so as to compensate an amount of the insufficient heating which has been generated along the longitudinal direction in the switching period. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、スラブ等を熱間圧延する際に、所定の温度まで加熱するための被加熱材の加熱方法に関するものである。   The present invention relates to a method for heating a material to be heated for heating to a predetermined temperature when a slab or the like is hot-rolled.

鋳造後のスラブ、ビレット、ブルーム等を、熱間圧延に好適な温度に加熱するものとして連続式加熱炉が用いられている。このような連続式加熱炉は、一般に予熱帯、加熱帯及び均熱帯から構成され、スラブ等の被加熱材を、予熱帯、加熱帯及び均熱帯を順次連続的に移動させることで、被加熱材を所定の温度に均一に加熱できるように構成されている。   A continuous heating furnace is used to heat slabs, billets, blooms and the like after casting to a temperature suitable for hot rolling. Such a continuous heating furnace is generally composed of a pre-tropical zone, a heating zone, and a soaking zone, and a heated material such as a slab is successively moved through the pre-tropical zone, the heating zone, and the soaking zone in order to be heated. The material can be heated uniformly to a predetermined temperature.

ところで最近では、スラブ等の被加熱材を全体的に均一に加熱するだけでなく、スラブの先端部と後端部との間で温度傾斜を持たせるように加熱することが行われている。
例えば、板厚の薄い圧延板を製造する場合、スラブの先端部を仕上げ圧延開始してからスラブ後端部を仕上げ圧延開始するまでの時間が長くなり、その間にスラブ後端部の温度低下が大きくなって、変形抵抗が大きくなり荷重変動による形状悪化を生じたり、所定の仕上圧延温度の下限値未満となってしまう場合があった。このような場合に、温度低下量を見越して、スラブの後端部の温度を先端部の温度より高くする傾斜加熱を行うと、スラブ後端部での荷重変動を小さくしたり、所定の仕上げ圧延温度範囲内で圧延することが可能となる。
Recently, not only the material to be heated, such as a slab, is heated uniformly, but it is also heated so as to have a temperature gradient between the front end portion and the rear end portion of the slab.
For example, when manufacturing a thin rolled sheet, the time from the start of finish rolling of the slab tip to the start of finish rolling of the slab rear end becomes longer, during which the temperature drop at the slab rear end In some cases, the deformation resistance is increased, the shape is deteriorated due to load fluctuation, or the temperature is lower than a predetermined lower limit of the finishing rolling temperature. In such a case, in anticipation of the amount of temperature decrease, if inclined heating is performed to make the temperature at the rear end of the slab higher than the temperature at the front end, the load fluctuation at the rear end of the slab can be reduced, or a predetermined finish can be achieved. It becomes possible to perform rolling within the rolling temperature range.

また、生産性を向上させるために、スラブ先端部が仕上げ圧延機に噛み込まれた後、徐々に速度を上げて熱間圧延を行う場合があり、圧延速度の上昇に伴って加工発熱量も多くなり、圧延後のスラブ(圧延鋼板)後端部の温度が高くなり、スケール疵が発生したり、仕上げ圧延温度の上限を超えてしまうことがある。このような場合に、仕上出側温度の上昇を見越して、スラブ後端部の温度を先端部の温度よりも低くする逆傾斜加熱を行うと、スラブ後端部の仕上げ圧延出側温度を所定の温度範囲内にすることができ、圧延鋼板の高品質化と生産性の向上を両立することが可能になる。   In addition, in order to improve productivity, after the slab tip is caught in the finish rolling mill, hot rolling may be performed at a gradually increased speed. The temperature increases at the rear end of the slab (rolled steel plate) after rolling, and scale wrinkles may occur or the upper limit of the finish rolling temperature may be exceeded. In such a case, in anticipation of an increase in the finish delivery temperature, if reverse gradient heating is performed to lower the temperature at the rear end of the slab to be lower than the temperature at the front end, the finish rolling exit temperature at the rear end of the slab is predetermined. This makes it possible to achieve both high quality and improved productivity of the rolled steel sheet.

従来の加熱炉として、例えば、下記特許文献1の図2に記載の加熱炉が知られている。この加熱炉は、炉長方向両側に交番燃焼する複数対の蓄熱式燃焼装置を配置し、加熱炉の炉長方向途中の幅方向に連続式燃焼装置を配置し、連続式燃焼装置の燃焼量を調整することで、スラブの炉幅方向の温度を均一または任意に制御している。   As a conventional heating furnace, for example, a heating furnace shown in FIG. This heating furnace has a plurality of pairs of regenerative combustion devices that alternately burn on both sides in the furnace length direction, a continuous combustion device in the width direction in the middle of the furnace length direction of the heating furnace, and the combustion amount of the continuous combustion device By adjusting the temperature, the temperature in the furnace width direction of the slab is uniformly or arbitrarily controlled.

また特許文献2に開示されている加熱炉は、炉長方向両側に交番燃焼する複数対の蓄熱式燃焼装置を配置し、一方の側の蓄熱式燃焼装置の燃焼時間を、他方の側の蓄熱式燃焼装置の燃焼時間よりも長くするか或いは短くすることで、スラブを傾斜加熱している。
特開平11−323431号公報 特開平9−53115号公報
Moreover, the heating furnace currently disclosed by patent document 2 arrange | positions the several pairs heat storage type combustion apparatus which carries out alternating combustion to the furnace length direction both sides, and sets the combustion time of the heat storage type combustion apparatus of one side to the heat storage of the other side. The slab is heated in an inclined manner by making it longer or shorter than the combustion time of the combustion chamber.
Japanese Patent Application Laid-Open No. 11-323431 JP 9-53115 A

しかしながら、特許文献1に記載の加熱炉では、燃焼量が調整可能な連続式燃焼装置であるルーフバーナーを加熱帯の炉幅方向に沿って一列に配置し、ルーフバーナーの更に下流側には、スラブを加熱炉幅方向(被加熱材長手方向)に均一に加熱するのが主たる用途の蓄熱式加熱装置を配置している。このため、加熱帯の炉内温度に傾斜を持たせにくくなり、さらに傾斜加熱または逆傾斜加熱したとしても、後段の均熱帯に設置した蓄熱式燃焼装置によって、炉幅方向に沿ってスラブが均一に加熱されてしまい、スラブの温度勾配を大きくすることが難しいという問題があった。   However, in the heating furnace described in Patent Document 1, the roof burners that are continuous combustion apparatuses capable of adjusting the combustion amount are arranged in a row along the furnace width direction of the heating zone, and further downstream of the roof burner, A regenerative heating device is mainly used for heating the slab uniformly in the heating furnace width direction (longitudinal direction of the material to be heated). For this reason, it becomes difficult to have a gradient in the furnace temperature of the heating zone, and even if the gradient heating or the reverse gradient heating is performed, the slab is uniform along the furnace width direction by the regenerative combustion device installed in the soaking zone of the latter stage There was a problem that it was difficult to increase the temperature gradient of the slab.

更に、特許文献2に記載の加熱炉では、本来はスラブを加熱炉幅方向に均一に加熱する用途の蓄熱式加熱装置の燃焼量を、制御可能な範囲で変えたとしても、スラブに大きな温度勾配をつけることは困難であった。   Furthermore, in the heating furnace described in Patent Document 2, even if the combustion amount of the regenerative heating apparatus for originally heating the slab uniformly in the width direction of the heating furnace is changed within a controllable range, the slab has a large temperature. It was difficult to create a gradient.

確実に傾斜加熱を行って被加熱材の先端部と後端部に温度差をつけるためには、加熱炉の抽出側の一定の領域に傾斜加熱ゾーンを設ける必要がある。   In order to reliably perform the gradient heating and create a temperature difference between the front end portion and the rear end portion of the material to be heated, it is necessary to provide an inclined heating zone in a certain region on the extraction side of the heating furnace.

ところで、実際の操業においては、均一加熱が必要な被均一加熱材と傾斜加熱が必要な被傾斜加熱材が連続して加熱炉に装入される。このため、被加熱材の種類に応じて、加熱炉の加熱条件を、均一加熱条件から傾斜加熱条件に変更するか、あるいは傾斜加熱条件から均一加熱条件に変更する必要がある。   By the way, in an actual operation, a uniform heating material that requires uniform heating and a gradient heating material that requires gradient heating are continuously charged into a heating furnace. For this reason, according to the kind of to-be-heated material, it is necessary to change the heating condition of a heating furnace from a uniform heating condition to a gradient heating condition, or to change from a gradient heating condition to a uniform heating condition.

加熱条件の変更に要する時間は、例えば炉幅方向の温度が一定である均一加熱条件から、炉幅方向の温度差が60℃である傾斜加熱条件に変更するためには、数十分間を要する場合がある。被均一加熱材と被傾斜加熱材を間隔をあけて加熱炉に装入すれば、それぞれの被加熱材を必要な加熱条件の通りに加熱することができるが、実際には生産性を低下させないために被均一加熱材と被傾斜加熱材は連続して装入されることが多く、加熱条件を変更中の数十分の間に、本来の加熱条件から外れた条件で被加熱材が加熱されることになり、条件が外れた部分、例えば、圧延鋼板の一部に、目標とする仕上圧延終了温度よりも低温の部分が発生し、これにより、必要とされる材質が得られず圧延鋼板の歩留まりが低下するという問題があった。   The time required for changing the heating condition is, for example, several tens of minutes in order to change from the uniform heating condition in which the temperature in the furnace width direction is constant to the inclined heating condition in which the temperature difference in the furnace width direction is 60 ° C. It may take. If the material to be heated and the material to be heated to be inclined are inserted into the heating furnace with an interval, each material to be heated can be heated according to the necessary heating conditions, but the productivity is not actually reduced. Therefore, the material to be heated and the material to be heated to be heated in many cases are continuously charged, and the material to be heated is heated under a condition deviating from the original heating condition for several tens of minutes while changing the heating condition. As a result, a part out of the condition, for example, a part of the rolled steel sheet, a part having a temperature lower than the target finish rolling end temperature is generated, and the required material cannot be obtained and rolled. There was a problem that the yield of the steel sheet was lowered.

本発明は上記事情に鑑みてなされたものであって、加熱炉において本来の加熱条件から外れた条件で加熱されたスラブに対し、スラブの長手方向の温度分布を適正な温度分布に補正してから、最適な加熱条件で圧延することが可能な連続圧延ライン及びその連続圧延ラインを用いた被加熱材の加熱方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and corrects the temperature distribution in the longitudinal direction of the slab to an appropriate temperature distribution for a slab heated in a heating furnace under conditions deviating from the original heating conditions. From the above, it is an object of the present invention to provide a continuous rolling line that can be rolled under optimum heating conditions and a method for heating a material to be heated using the continuous rolling line.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明の被加熱材の加熱方法は、被加熱材の長手方向が加熱炉内に設けた搬送路の搬送方向と直交するように被加熱材を装入して前記被加熱材を搬送路に沿って搬送させながら加熱する連続式加熱炉であって前記搬送路の途中から抽出部に至る間に炉幅方向の加熱条件を均一加熱または傾斜加熱に選択的に切換可能な加熱ゾーンを設けた連続式加熱炉と、仕上圧延機の直前に配置された誘導加熱装置とを用いた被加熱材の加熱方法であって、前記連続式加熱炉の切換可能な加熱ゾーンの加熱条件を均一加熱と傾斜加熱との間で切り換える切換期間中に前記連続式加熱炉によって加熱された被加熱材に対して、その長手方向に沿って生じた加熱不足量を補償するように、前記被加熱材を前記誘導加熱装置によって加熱することを特徴とする。
In order to achieve the above object, the present invention employs the following configuration.
In the heating method of the heated material of the present invention, the heated material is inserted so that the longitudinal direction of the heated material is orthogonal to the conveying direction of the conveying path provided in the heating furnace, and the heated material is used as the conveying path. A heating zone that is heated while being conveyed along a heating zone that can selectively switch the heating condition in the width direction of the furnace to uniform heating or inclined heating between the middle of the conveying path and the extraction section A heating method of a material to be heated using a continuous heating furnace and an induction heating device arranged immediately before a finishing rolling mill, wherein heating conditions of the switchable heating zone of the continuous heating furnace are uniform heating The material to be heated is compensated for the heating shortage generated along the longitudinal direction of the material to be heated by the continuous heating furnace during the switching period for switching between the inclined heating and the heating material. Heating is performed by an induction heating device.

また、本発明の被加熱材の加熱方法においては、前記連続式加熱炉によって加熱された被加熱材を前記連続式加熱炉の後段に設置された粗圧延機で粗圧延し、前記粗圧延機と前記仕上圧延機直前に配置された前記誘導加熱装置との間で、被加熱材の長手方向の温度分布測定し、測定された被加熱材の温度分布プロファイルと、目標とする温度分布プロファイルとを対比することによって、前記被加熱材の長手方向に沿って前記加熱不足量を算出し、計測された加熱不足量を補償するように前記被加熱材を前記誘導加熱装置によって加熱することが好ましい。   In the method for heating a material to be heated according to the present invention, the material to be heated heated by the continuous heating furnace is roughly rolled by a roughing mill installed at a subsequent stage of the continuous heating furnace. And the induction heating device disposed immediately before the finishing mill, the temperature distribution in the longitudinal direction of the heated material is measured, the measured temperature distribution profile of the heated material, and the target temperature distribution profile, It is preferable that the underheating amount is calculated along the longitudinal direction of the heated material by comparing the heated material with the induction heating device so as to compensate for the measured underheating amount. .

更に、本発明の被加熱材の加熱方法においては、前記連続式加熱炉が、前記被加熱材の搬送路の両側にあって装入部から抽出部の間に配置された交番燃焼する複数の蓄熱式燃焼装置と、前記搬送路の上側にあって、前記搬送路の途中から抽出部に至る間に連続して配置され、かつ、炉幅方向に沿って複数に分割された領域にそれぞれ配置されて前記領域毎に燃焼量の制御が可能な複数の連続式燃焼装置とを具備してなるものであって、前記複数の連続式燃焼装置の燃焼量を調整して、前記連続式加熱炉内の前記炉幅方向の温度分布を制御することで、前記被加熱材に対する加熱条件を均一加熱または傾斜加熱に選択的に切換可能とされているものであることが好ましい。   Furthermore, in the heating method of the material to be heated according to the present invention, the continuous heating furnace includes a plurality of alternating combustions disposed on both sides of the conveying path of the material to be heated and disposed between the charging portion and the extraction portion. A heat storage combustion device and an upper side of the conveyance path, which are continuously arranged from the middle of the conveyance path to the extraction unit, and are arranged in a plurality of regions divided along the furnace width direction. And a plurality of continuous combustion devices capable of controlling the combustion amount for each region, wherein the continuous heating furnace is configured to adjust the combustion amount of the plurality of continuous combustion devices. It is preferable that the heating condition for the material to be heated can be selectively switched to uniform heating or gradient heating by controlling the temperature distribution in the furnace width direction.

更にまた、本発明の被加熱材の加熱方法においては、前記連続式加熱炉の加熱ゾーンの加熱条件を均一加熱と傾斜加熱との間で切り替えるタイミングを、被加熱材が過加熱されないように制御することが好ましい。   Furthermore, in the heating method of the heated material of the present invention, the timing for switching the heating condition of the heating zone of the continuous heating furnace between uniform heating and inclined heating is controlled so that the heated material is not overheated. It is preferable to do.

本発明によれば、均一加熱と傾斜加熱との間の切換期間中の連続式加熱炉によって本来の加熱条件から外れた条件で加熱された被加熱材に対し、スラブの長手方向の温度分布を適正な温度分布に補正してから、最適な加熱条件で圧延することができ、品質に優れた圧延鋼板を製造できる。   According to the present invention, the temperature distribution in the longitudinal direction of the slab is applied to the material to be heated, which is heated under conditions deviating from the original heating conditions by the continuous heating furnace during the switching period between uniform heating and gradient heating. After correcting to an appropriate temperature distribution, rolling can be performed under optimum heating conditions, and a rolled steel sheet having excellent quality can be manufactured.

以下、図面を参照しながら、本発明の実施形態である被加熱材の加熱方法について説明する。尚、以下に示す図面は、本実施形態の被加熱材の加熱方法を実施するための設備の構成を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際の連続圧延ラインの寸法関係等とは異なる場合がある。
図1は、本発明の実施形態において好適に用いられる加熱設備を配設した連続圧延ラインを示す模式図であり、図2は、図1の連続熱延ラインに備えられた連続式加熱炉を示す斜視模式図である。また、図3は、前記連続式加熱炉の側面模式図であり、図4は、前記連続式加熱炉の平面模式図である。更に、図5は、図4のA−A’線に対応する断面模式図である。
Hereinafter, a method for heating a material to be heated, which is an embodiment of the present invention, will be described with reference to the drawings. The drawings shown below are for explaining the configuration of equipment for carrying out the heating method of the material to be heated according to the present embodiment, and the size, thickness, dimensions, etc. of each part shown in the drawings are actual. It may be different from the dimensional relationship of the continuous rolling line.
FIG. 1 is a schematic view showing a continuous rolling line provided with heating equipment suitably used in the embodiment of the present invention, and FIG. 2 shows a continuous heating furnace provided in the continuous hot rolling line of FIG. It is a perspective schematic diagram shown. FIG. 3 is a schematic side view of the continuous heating furnace, and FIG. 4 is a schematic plan view of the continuous heating furnace. FIG. 5 is a schematic cross-sectional view corresponding to the line AA ′ of FIG.

図1に示す連続圧延ライン101は、加熱したスラブ(被加熱材)をロールで上下に挟んで連続的に圧延し、最小1mm程度まで薄くしてこれを巻き取るものであって、スラブに対する加熱条件を均一加熱または傾斜加熱に選択的に切換可能な連続式加熱炉1と、連続式加熱炉1の下流側に設置され、連続式加熱炉1で加熱されたスラブを圧延して粗バー(被加熱材)にする粗圧延機11と、粗圧延機11の下流側に設置され、粗バーを更に所定の厚みまで連続して熱間仕上圧延する仕上圧延機21と、仕上圧延機21の直前に設置された誘導加熱装置31とから概略構成されている。
尚、粗バーは、スラブが粗圧延されてなるものであり、本実施形態ではスラブと粗バーの両方を被加熱材という場合がある。
A continuous rolling line 101 shown in FIG. 1 continuously rolls a heated slab (material to be heated) sandwiched between rolls, thins it to a minimum of about 1 mm, and winds it up. A continuous heating furnace 1 capable of selectively switching the condition to uniform heating or inclined heating, and a slab installed on the downstream side of the continuous heating furnace 1 and rolled by a rough bar ( A rough rolling mill 11 to be heated), a finishing mill 21 which is installed downstream of the rough rolling mill 11 and continuously hot-rolls the rough bar to a predetermined thickness, and the finishing mill 21 It is schematically configured from an induction heating device 31 installed immediately before.
Note that the coarse bar is obtained by roughly rolling a slab, and in this embodiment, both the slab and the coarse bar may be referred to as materials to be heated.

また、連続圧延ライン101には、粗バーの長手方向の温度分布を計測する温度計32と、温度計32に接続された計測手段33と、計測手段33に接続された制御手段34とが備えられている。温度計32は、粗圧延機11と誘導加熱装置31の間に設置されており、粗圧延機11の後ろにおいて粗バーの温度を測定する。また、制御手段34は誘導加熱装置31に接続されており、制御信号によって誘導加熱装置31の加熱量を制御できるようになっている。   Further, the continuous rolling line 101 includes a thermometer 32 for measuring the temperature distribution in the longitudinal direction of the rough bar, a measuring means 33 connected to the thermometer 32, and a control means 34 connected to the measuring means 33. It has been. The thermometer 32 is installed between the rough rolling mill 11 and the induction heating device 31, and measures the temperature of the coarse bar behind the rough rolling mill 11. The control means 34 is connected to the induction heating device 31 so that the heating amount of the induction heating device 31 can be controlled by a control signal.

更に、連続圧延ライン101には、連続式加熱炉1と粗圧延機11の間に連続式加熱炉1でスラブ表面に生じた酸化スケールの除去設備41が備えられている。また、仕上圧延機21の下流側には、熱間仕上圧延された熱延鋼板を冷却水により冷却する冷却装置42と、冷却装置42により冷却された圧延鋼板をロール状に巻き取る巻取機43とが備えられている。   Further, the continuous rolling line 101 is provided with a facility 41 for removing oxide scale generated on the slab surface in the continuous heating furnace 1 between the continuous heating furnace 1 and the rough rolling mill 11. Also, on the downstream side of the finish rolling mill 21, a cooling device 42 that cools the hot rolled steel sheet that has been hot finish rolled with cooling water, and a winder that winds the rolled steel sheet cooled by the cooling device 42 into a roll shape. 43.

連続式加熱炉1は、図2〜図5に示すように、装入部1A側から抽出部1B側に向けてスラブ(被加熱材)を順次搬送する搬送路2と、装入部1Aから抽出部1Bまでの間の搬送路2に沿って設けられた炉内室3と、搬送路2の搬送方向両側に配置された複数の蓄熱式燃焼装置4と、搬送路2の途中から抽出部に至る間の搬送路2の上側に配置された複数の連続式燃焼装置5とから概略構成されている。
連続式加熱炉1においては、スラブ(被加熱材)が搬送路2によって裝入部1A側から抽出部1B側に連続的に搬送される際に、まず、蓄熱式燃焼装置4によってスラブを所定温度まで均一加熱させる。次いで、幅方向に複数の領域に分割された連続式燃焼装置5の燃焼量を分割された領域毎に独立に制御することによって、スラブの長手方向に沿う温度が傾斜を持つようにスラブを傾斜加熱するか、スラブの長手方向に沿う温度が一定になるように均一加熱する。本実施形態に係る連続式加熱炉1は、連続式燃焼装置5の燃焼量を制御することで、スラブに対して選択的に均一加熱または傾斜加熱をすることが可能になっている。
As shown in FIGS. 2 to 5, the continuous heating furnace 1 includes a conveyance path 2 that sequentially conveys a slab (material to be heated) from the charging unit 1 </ b> A side to the extraction unit 1 </ b> B side, and a charging unit 1 </ b> A. A furnace chamber 3 provided along the conveyance path 2 up to the extraction unit 1B, a plurality of regenerative combustion devices 4 disposed on both sides in the conveyance direction of the conveyance path 2, and an extraction unit from the middle of the conveyance path 2 And a plurality of continuous combustion devices 5 arranged on the upper side of the conveying path 2.
In the continuous heating furnace 1, when a slab (material to be heated) is continuously conveyed from the insertion unit 1 </ b> A side to the extraction unit 1 </ b> B side by the conveyance path 2, first, the slab is predetermined by the regenerative combustion device 4. Heat uniformly to temperature. Next, the slab is inclined so that the temperature along the longitudinal direction of the slab has an inclination by independently controlling the combustion amount of the continuous combustion apparatus 5 divided into a plurality of areas in the width direction for each divided area. Heat or uniformly heat so that the temperature along the longitudinal direction of the slab is constant. The continuous heating furnace 1 according to the present embodiment can selectively uniformly heat or incline the slab by controlling the combustion amount of the continuous combustion device 5.

そして、連続式加熱炉1によって加熱処理されたスラブは、連続式加熱炉1の後段に配置された粗圧延機11及び仕上圧延機21によって熱間圧延される。   And the slab heat-processed by the continuous heating furnace 1 is hot-rolled by the rough rolling mill 11 and the finishing mill 21 arrange | positioned in the back | latter stage of the continuous heating furnace 1. FIG.

スラブ(被加熱材)は、連続式加熱炉1に備えられた搬送路2によって連続的に搬送される。搬送路2としては、例えば、スラブを連続的に搬送可能なウォーキングビーム装置等が用いられる。
また、スラブは、その長手方向が搬送方向とほぼ直交する方向に向けられた姿勢で搬送路2を搬送される。すなわち、スラブは、その長手方向が炉幅方向に沿うような姿勢で搬送される。
The slab (material to be heated) is continuously transported by the transport path 2 provided in the continuous heating furnace 1. As the conveyance path 2, for example, a walking beam device capable of continuously conveying a slab is used.
The slab is transported along the transport path 2 in a posture in which the longitudinal direction is oriented in a direction substantially orthogonal to the transport direction. That is, the slab is transported in such a posture that its longitudinal direction is along the furnace width direction.

次に、搬送路2の両側には、装入部1Aから抽出部1Bの間にかけて複数の蓄熱式燃焼装置4が配置されている。蓄熱式燃焼装置4は例えば、FDI型のリジェネバーナーを用いることができる。図2〜5に示す連続式加熱炉1においては、蓄熱式燃焼装置4のバーナー口が炉内室3の側壁面3aに配置されており、バーナー口からフレームFが炉幅方向に沿って吹き出されるようになっている。また、蓄熱式燃焼装置4は、搬送路2の上側及び下側において、搬送路2の搬送方向に沿って並んで配置されている。この構成によって、被加熱材が搬送路2を搬送される際に、被加熱材を、その上側及び下側から均一に加熱できるようになっている。   Next, on both sides of the conveyance path 2, a plurality of regenerative combustion apparatuses 4 are disposed between the charging unit 1 </ b> A and the extraction unit 1 </ b> B. For example, an FDI type regenerative burner can be used as the heat storage combustion device 4. In the continuous heating furnace 1 shown in FIGS. 2 to 5, the burner port of the regenerative combustion apparatus 4 is disposed on the side wall surface 3 a of the furnace chamber 3, and the frame F blows out from the burner port along the furnace width direction. It has come to be. The regenerative combustion apparatus 4 is arranged side by side along the conveyance direction of the conveyance path 2 on the upper side and the lower side of the conveyance path 2. With this configuration, when the material to be heated is conveyed through the conveyance path 2, the material to be heated can be heated uniformly from the upper side and the lower side.

但し、図2〜4に示すように、連続式燃焼装置5が配置された抽出部1B寄りの搬送路2の上側には蓄熱式燃焼装置4は配置されない。蓄熱式燃焼装置4が連続式燃焼装置5の配置領域に配置されると、蓄熱式燃焼装置4によって被加熱材が均一加熱されてしまい、傾斜加熱を行うことが困難になるので好ましくない。
一方、抽出部1B寄りの搬送路2の下側には、被加熱材の下面側を十分に加熱するために蓄熱式燃焼装置4を配置する。
However, as shown in FIGS. 2 to 4, the regenerative combustion apparatus 4 is not disposed on the upper side of the conveyance path 2 near the extraction unit 1 </ b> B where the continuous combustion apparatus 5 is disposed. If the regenerative combustion apparatus 4 is disposed in the region where the continuous combustion apparatus 5 is disposed, the material to be heated is uniformly heated by the regenerative combustion apparatus 4 and it becomes difficult to perform gradient heating, which is not preferable.
On the other hand, a regenerative combustion device 4 is disposed below the conveyance path 2 near the extraction unit 1B in order to sufficiently heat the lower surface side of the material to be heated.

次に、連続式燃焼装置5は、図2に示すように、搬送路2の上側にあって、搬送路2の途中から抽出部1Bまでの間で炉長方向に沿って連続して配置されている。ここで、連続して配置とは、複数の連続式燃焼装置5が所定の間隔を空けて並んで配置された状態をいう。連続式燃焼装置5は搬送路2の上側に位置しており、より具体的には連続式燃焼装置5のバーナー口が炉内室3の天井面3bに配置されている。連続式燃焼装置5が配置される天井面3bは、それ以外の天井面3cに比べて搬送路2に接近して配置されている。また、連続式燃焼装置5は、図2〜図5に示すように、炉幅方向に沿って4つに均等に分割された領域にそれぞれ配置されている。なお、後述するように、分割の数は3つ以上であることが好ましく、4つに限定されるものではない。これら連続式燃焼装置5は、燃焼量を自在に調整することが可能であって、各領域5A〜5D毎に燃焼量を制御できるようになっている。   Next, as shown in FIG. 2, the continuous combustion apparatus 5 is located on the upper side of the conveyance path 2 and is continuously arranged along the furnace length direction from the middle of the conveyance path 2 to the extraction unit 1B. ing. Here, “continuous arrangement” refers to a state in which a plurality of continuous combustion apparatuses 5 are arranged side by side with a predetermined interval. The continuous combustion device 5 is located above the conveyance path 2, and more specifically, the burner port of the continuous combustion device 5 is disposed on the ceiling surface 3 b of the furnace chamber 3. The ceiling surface 3b on which the continuous combustion device 5 is disposed is disposed closer to the conveyance path 2 than the other ceiling surface 3c. Moreover, the continuous combustion apparatus 5 is each arrange | positioned at the area | region divided | segmented equally into four along the furnace width direction, as shown in FIGS. As will be described later, the number of divisions is preferably three or more, and is not limited to four. These continuous combustion devices 5 can freely adjust the combustion amount, and can control the combustion amount for each of the regions 5A to 5D.

連続式燃焼装置5は、フレームを連続的に吹き出して燃焼する燃焼装置である。連続式燃焼装置5としては、例えば、炉内室3の天井面3bからフレームを下方に向けて吹き出させるルーフバーナーや、フレームを炉長方向に吹き出させる軸流バーナーのいずれでもよいが、好ましくはルーフバーナーがよい。   The continuous combustion device 5 is a combustion device that blows out a flame continuously and burns it. The continuous combustion device 5 may be, for example, either a roof burner that blows the frame downward from the ceiling surface 3b of the furnace chamber 3 or an axial burner that blows the frame in the furnace length direction. A roof burner is good.

連続式燃焼装置5の配置構成について更に詳細に説明すると、連続式燃焼装置5は、図2〜図4に示すように、搬送路2の途中から抽出部1Bまでの間の炉長方向に沿って連続して配置されている。連続式燃焼装置5の炉長方向に沿う配置長は、加熱炉1の全炉長に対して15%〜80%以下の割合が好ましい。すなわち、加熱炉1の全炉長をLとしたとき、連続式燃焼装置5が配置されている領域の長さは0.15L〜0.80Lの範囲が好ましい。   The arrangement configuration of the continuous combustion device 5 will be described in more detail. The continuous combustion device 5 is arranged along the furnace length direction from the middle of the conveyance path 2 to the extraction unit 1B as shown in FIGS. Are arranged consecutively. The arrangement length along the furnace length direction of the continuous combustion apparatus 5 is preferably 15% to 80% or less with respect to the total furnace length of the heating furnace 1. That is, when the total furnace length of the heating furnace 1 is L, the length of the region where the continuous combustion apparatus 5 is disposed is preferably in the range of 0.15L to 0.80L.

連続式燃焼装置5の炉長方向に沿う配置長を加熱炉1の全炉長に対してどの程度の割合にするかは、付与すべき被加熱材長手方向温度差と加熱炉1の炉内室3の温度差等から決められる。被加熱材長手方向温度差とは、加熱後の被加熱材の長手方向先端部と後端部の温度差である。炉内室3の温度差とは、炉幅方向に沿って連続式加熱装置5の燃焼量を制御した場合の搬送路2上における最高温度と最低温度の温度差であり、連続式燃焼装置5の必要な配置長の下限を決める場合には、燃焼装置の能力や加熱炉内の耐火物の耐久性などから決まる最大温度差で決める。図6には、被加熱材であるスラブを熱間圧延する場合の一般的な加熱条件での加熱炉1の全炉長に対する連続式燃焼装置5の炉長方向に沿う配置長の割合と、被加熱材の長手温度差との関係をグラフで示している。図6では、スラブの抽出温度が1150℃で、炉内壁温度差が約100℃の場合を示している。被加熱材長手方向温度差はこれまでの実績から約30℃つけられればよく、図6の条件であれば、運続式燃焼装置5の長手方向に沿う配置長の割合を15%以上にすればよいことがわかる。炉内室3の温度差が100℃よりも小さい場合は配置長の割合を大きくすればよいが、連続式燃焼装置5の配置長の割合が大きくなるほど省エネルギーに対しては不利になるため、80%を上限としている。   The proportion of the arrangement length along the furnace length direction of the continuous combustion apparatus 5 with respect to the total furnace length of the heating furnace 1 depends on the temperature difference in the longitudinal direction of the material to be applied and the furnace of the heating furnace 1. It is determined from the temperature difference of the chamber 3 or the like. The temperature difference in the longitudinal direction of the material to be heated is the temperature difference between the front end portion and the rear end portion in the longitudinal direction of the heated material after heating. The temperature difference in the furnace chamber 3 is a temperature difference between the highest temperature and the lowest temperature on the transfer path 2 when the combustion amount of the continuous heating device 5 is controlled along the furnace width direction. When determining the lower limit of the required arrangement length, the maximum temperature difference determined by the capacity of the combustion device and the durability of the refractory in the heating furnace is determined. In FIG. 6, the ratio of the arrangement length along the furnace length direction of the continuous combustion apparatus 5 to the total furnace length of the heating furnace 1 under the general heating conditions when hot rolling the slab as the material to be heated, The relationship with the longitudinal temperature difference of a to-be-heated material is shown with the graph. FIG. 6 shows a case where the slab extraction temperature is 1150 ° C. and the furnace wall temperature difference is about 100 ° C. The temperature difference in the longitudinal direction of the material to be heated may be about 30 ° C. from the past results. Under the conditions shown in FIG. 6, the ratio of the arrangement length along the longitudinal direction of the continuous combustion device 5 should be 15% or more. I understand that When the temperature difference in the furnace chamber 3 is smaller than 100 ° C., the ratio of the arrangement length may be increased. However, as the ratio of the arrangement length of the continuous combustion apparatus 5 increases, it becomes disadvantageous for energy saving. % Is the upper limit.

また、連続式燃焼装置5は、図2〜図5に示すように、炉幅方向に沿って分割された複数の領域5A〜5Dにそれぞれ配置されている。本実施形態では、領域の数が4つの例を示しているが、領域の数は3以上であることが好ましく、3〜5であればなおよい。
連続式燃焼装置5は、領域5A〜5D毎に燃焼量を調整できるようになっている。例えば、炉幅方向一端側の領域5Aにある連続式燃焼装置を、ある定格の燃焼量で燃焼させ、その隣の領域5Bにある連続式燃焼装置を領域5Aよりも少ない燃焼量で燃焼させ、以下同様に領域5C、5Dについても燃焼量を徐々に低下させることが可能になっている。これにより、連続式燃焼装置5の下の炉内室3の炉内温度を、炉幅方向に沿って傾斜させることができ、搬送路2上の炉内温度の最高温度と最低温度の温度差を、30℃以上にすることが可能になっている。
Moreover, the continuous combustion apparatus 5 is each arrange | positioned at several area | region 5A-5D divided | segmented along the furnace width direction, as shown in FIGS. In the present embodiment, an example in which the number of regions is four is shown, but the number of regions is preferably 3 or more, and more preferably 3 to 5.
The continuous combustion apparatus 5 can adjust the combustion amount for each of the regions 5A to 5D. For example, the continuous combustion device in the region 5A on one end side in the furnace width direction is burned with a certain rated combustion amount, and the continuous combustion device in the adjacent region 5B is burned with a smaller combustion amount than the region 5A, Similarly, the combustion amount can be gradually reduced in the regions 5C and 5D. Thereby, the furnace temperature of the furnace chamber 3 under the continuous combustion apparatus 5 can be inclined along the furnace width direction, and the temperature difference between the maximum temperature and the minimum temperature of the furnace temperature on the conveyance path 2. Can be made 30 ° C. or higher.

連続式燃焼装置の領域5A〜5D毎の燃焼量は、被加熱材の長手方向における目標温度分布に応じて調整する必要がある。例えば、被加熱材の長手方向における目標温度分布が、被加熱材の先端部の加熱目標温度をt℃とし、後端部の加熱目標温度をt℃(例えばt>t)としたとき、先端部と後端部との間における温度が被加熱材の長手方向に沿って所定の割合で変化する温度分布であったとする。この場合の連続式燃焼装置の領域5A〜5D毎の燃焼量は、被加熱材の加熱後の温度分布が目標温度分布に一致するように、連続式燃焼装置5の長手方向に沿う配置長の割合を勘案して、炉内室3の温度差が最適となるように調整すればよい。 The amount of combustion for each of the regions 5A to 5D of the continuous combustion apparatus needs to be adjusted according to the target temperature distribution in the longitudinal direction of the material to be heated. For example, the target temperature distribution in the longitudinal direction of the heated material is such that the heating target temperature at the front end of the heated material is t 1 ° C., and the heating target temperature at the rear end is t 2 ° C. (for example, t 1 > t 2 ). It is assumed that the temperature distribution between the front end portion and the rear end portion changes at a predetermined rate along the longitudinal direction of the material to be heated. In this case, the combustion amount for each of the regions 5A to 5D of the continuous combustion apparatus has an arrangement length along the longitudinal direction of the continuous combustion apparatus 5 so that the temperature distribution after heating of the material to be heated matches the target temperature distribution. The ratio may be adjusted so that the temperature difference in the furnace chamber 3 is optimal.

なお、燃焼量の制御は、上記のように領域5Aから領域5Dに向けて順次燃焼量を低下させる場合に限らず、領域5Aから領域5Dに向けて順次燃焼量を増加させてもよい。また、領域5A〜5Dの燃焼量をすべて同じにして均一加熱を行ってもよい。   Note that the control of the combustion amount is not limited to the case where the combustion amount is sequentially decreased from the region 5A to the region 5D as described above, and the combustion amount may be sequentially increased from the region 5A to the region 5D. Further, uniform heating may be performed with the same amount of combustion in the regions 5A to 5D.

また、連続式燃焼装置を炉長方向に沿って複数の領域に更に分割し、この炉長方向に沿って分割した領域毎に、炉幅方向の燃焼量を調整してもよい。   Further, the continuous combustion apparatus may be further divided into a plurality of regions along the furnace length direction, and the combustion amount in the furnace width direction may be adjusted for each region divided along the furnace length direction.

温度計32は、誘導加熱装置31の上流側で、粗バーの長手方向の温度分布を計測するために設置される。温度計32は、粗バーの搬送路の上方に設置されており、温度計32の下を移動する粗バーの温度を連続的に測定し、測定データを逐次計測手段33に送る。   The thermometer 32 is installed on the upstream side of the induction heating device 31 in order to measure the temperature distribution in the longitudinal direction of the coarse bar. The thermometer 32 is installed above the conveyance path of the coarse bar, continuously measures the temperature of the coarse bar moving under the thermometer 32, and sends the measurement data to the sequential measurement means 33.

計測手段33及び制御手段34はそれぞれ、演算部、記憶部及び信号入出力部を備えた電子計算機によって構成される。計測手段33及び制御手段34が一つの電子計算機に内蔵されていてもよく、各手段33、34が複数の電子計算機に分けられていてもよい。   The measuring means 33 and the control means 34 are each constituted by an electronic computer provided with a calculation unit, a storage unit, and a signal input / output unit. The measuring means 33 and the control means 34 may be built in one electronic computer, and each means 33 and 34 may be divided into a plurality of electronic computers.

計測手段33では、温度計32から送られた粗バー(被加熱材)の測定データに基づいて、粗バーの長手方向の温度分布プロファイルが作成される。この温度プロファイルは、粗バーの長さ、粗バーの先端部及び後端部の各温度、粗バーを長手方向に沿って多数の区分に分割した場合の各区分における温度等の複数のデータで構成される。   The measuring means 33 creates a temperature distribution profile in the longitudinal direction of the coarse bar based on the measurement data of the coarse bar (material to be heated) sent from the thermometer 32. This temperature profile consists of multiple data such as the length of the coarse bar, each temperature at the leading and trailing edges of the coarse bar, and the temperature in each segment when the coarse bar is divided into a number of segments along the longitudinal direction. Composed.

また、計測手段33の記憶部には、目標とする粗バーの温度分布プロファイルが記憶されている。この目標とする温度分布プロファイルは、仕上げ圧延温度が所定の温度となるための必要な仕上圧延機入側での温度であり、当該圧延材の板厚、圧下率、圧延時間、目標仕上圧延温度などの圧延条件前記測定データに基づいて作成された粗バーの長手方向の温度分布プロファイルと同様に、粗バーの長さ等の複数のデータで構成される。   The storage unit of the measuring unit 33 stores a target rough bar temperature distribution profile. This target temperature distribution profile is the temperature at the finishing mill entry side necessary for the finish rolling temperature to become a predetermined temperature, and the thickness, rolling reduction, rolling time, and target finishing rolling temperature of the rolled material. Like the temperature distribution profile in the longitudinal direction of the coarse bar created based on the measurement data, such as rolling conditions, etc., the rolling condition is composed of a plurality of data such as the length of the coarse bar.

また、計測手段33では、粗バーの長手方向の温度分布プロファイルと、目標とする温度分布プロファイルとを対比して、その長手方向に沿って生じた加熱不足量を算出される。そして、算出された加熱不足量のデータが制御手段34に送られるように構成されている。   Further, the measuring means 33 compares the temperature distribution profile in the longitudinal direction of the coarse bar with the target temperature distribution profile, and calculates the amount of insufficient heating generated along the longitudinal direction. Then, the calculated underheating amount data is sent to the control means 34.

制御手段34は、計測手段33から送られた加熱不足量のデータに基づいて、誘導加熱装置の加熱量を制御するように構成されている。   The control unit 34 is configured to control the heating amount of the induction heating device based on the data of the insufficient heating amount sent from the measuring unit 33.

誘導加熱装置31は、螺旋状に形成された加熱コイルの中心軸に沿って粗バーが通過するソレノイド型の加熱炉でもよく、コアに加熱コイルが巻き付けられてなる誘導加熱部が粗バーの上下方向に配置された上下分割型の加熱炉でもよいが、好ましくは上下分割型の誘導加熱装置がよい。誘導加熱装置31は、加熱コイルの通電量を制御することによって、粗バーに対する加熱量を細かく制御可能であり、例えば、粗バーの先端部の加熱量を最小とし、粗バーの後端部の加熱量を最大とし、先端部から後端部に至るまでの加熱量を徐々に増加させるような制御が可能である。   The induction heating device 31 may be a solenoid-type heating furnace in which a coarse bar passes along a central axis of a heating coil formed in a spiral shape, and an induction heating unit in which a heating coil is wound around a core is provided above and below the coarse bar. Although an upper and lower split type heating furnace arranged in the direction may be used, an upper and lower split type induction heating apparatus is preferable. The induction heating device 31 can finely control the heating amount for the coarse bar by controlling the energization amount of the heating coil. For example, the heating amount at the leading end of the coarse bar is minimized, Control that maximizes the amount of heating and gradually increases the amount of heating from the front end to the rear end is possible.

次に、本実施形態の加熱設備による被加熱材の加熱方法について説明する。
連続圧延ライン101においては、均一加熱された複数のスラブが圧延処理された後に、傾斜加熱された複数のスラブが圧延処理される場合がある。また、その逆の場合もある。実際の連続圧延ライン101では、生産効率の向上を図るべく、例えば、均一加熱される複数のスラブが連続式加熱炉1から抽出された直後に、連続式加熱炉1の加熱条件が均一加熱から傾斜加熱に切り換えられる。そして、切換後の連続式加熱炉から抽出されたスラブを傾斜加熱されたスラブとして取り扱い、均一加熱されたスラブに続けてこの傾斜加熱されたスラブを連続的に圧延するように生産計画が組まれる。
Next, the heating method of the to-be-heated material by the heating equipment of this embodiment is demonstrated.
In the continuous rolling line 101, after a plurality of uniformly heated slabs are subjected to a rolling process, the plurality of inclined slabs may be subjected to a rolling process. The reverse is also true. In the actual continuous rolling line 101, for example, immediately after a plurality of uniformly heated slabs are extracted from the continuous heating furnace 1, the heating condition of the continuous heating furnace 1 is changed from uniform heating to improve production efficiency. Switch to ramp heating. Then, the slab extracted from the continuous heating furnace after switching is handled as a slab heated by a gradient, and a production plan is made so that the slab heated by the gradient is continuously rolled following the slab heated uniformly. .

連続式加熱炉1において加熱条件を均一加熱から側斜加熱に変更するには、図2〜5に示す連続式燃焼装置5の燃焼量を領域5A〜5D毎に独立に調整することで、連続式燃焼装置5の下の炉内室3の炉内温度を、炉幅方向に沿って一定の状態(均一加熱)から、炉幅方向に沿って傾斜した状態(傾斜加熱)となるようにする。   In order to change the heating condition from the uniform heating to the side oblique heating in the continuous heating furnace 1, by continuously adjusting the combustion amount of the continuous combustion device 5 shown in FIGS. 2 to 5 for each of the regions 5A to 5D, The temperature in the furnace chamber 3 under the combustion chamber 5 is changed from a constant state (uniform heating) along the furnace width direction to a state inclined (tilted heating) along the furnace width direction. .

このときの連続式燃焼装置5の下の炉内室3の炉内温度の挙動を図7に示す。図7は、連続式加熱炉の炉幅方向燃焼量の切換経過時間と、連続式加熱炉の炉幅方向炉温差との関係を示すグラフである。図7の横軸の炉幅方向燃焼量の切換経過時間は、連続式加熱炉の加熱条件を均一加熱から傾斜加熱に切り換えた瞬間を0分とした場合の連続式加熱炉の稼働時間である。また、図7の縦軸である加熱炉幅方向温度差とは、搬送路2上における炉幅方向の最高温度と最低温度の温度差である。   FIG. 7 shows the behavior of the furnace temperature in the furnace chamber 3 below the continuous combustion apparatus 5 at this time. FIG. 7 is a graph showing the relationship between the switching elapsed time of the combustion amount in the furnace width direction of the continuous heating furnace and the furnace temperature difference in the furnace width direction of the continuous heating furnace. The elapsed time of switching of the combustion amount in the furnace width direction on the horizontal axis in FIG. 7 is the operating time of the continuous heating furnace when the time when the heating condition of the continuous heating furnace is switched from uniform heating to gradient heating is set to 0 minutes. . Moreover, the heating furnace width direction temperature difference which is the vertical axis in FIG. 7 is the temperature difference between the maximum temperature and the minimum temperature in the furnace width direction on the conveyance path 2.

また、均一加熱の条件は、連続式加熱装置5の各領域5A〜5Dにおける燃焼量(燃料供給量)を同一にして、炉内温度を炉幅方向に沿って一定の温度にする条件(炉幅方向温度差を0℃にする条件)である。一方、傾斜加熱の条件は、連続式加熱装置5の各領域5A〜5Dにおける燃焼量(燃料供給量)を個々に制御して、炉内温度の炉幅方向温度差を例えば90℃とする条件である。   The uniform heating is performed under the condition that the combustion amount (fuel supply amount) in each of the regions 5A to 5D of the continuous heating device 5 is the same, and the furnace temperature is set to a constant temperature along the furnace width direction (furnace The condition in which the temperature difference in the width direction is 0 ° C.). On the other hand, the gradient heating conditions are such that the combustion amount (fuel supply amount) in each of the regions 5A to 5D of the continuous heating device 5 is individually controlled so that the temperature difference in the furnace width direction is, for example, 90 ° C. It is.

図7に示すように、均一加熱から傾斜加熱に切り換えた直後は、炉幅方向温度差が0℃から40℃に拡大するが、その後、炉幅方向温度差の拡大幅が緩やかになり炉内の炉幅方向温度差が90℃に達するまで90分を要することがわかる。   As shown in FIG. 7, immediately after switching from uniform heating to gradient heating, the temperature difference in the furnace width direction increases from 0 ° C. to 40 ° C., but thereafter, the expansion width of the temperature difference in the furnace width direction becomes gentle and the furnace interior It can be seen that it takes 90 minutes for the temperature difference in the furnace width direction to reach 90 ° C.

また、図8には、連続式加熱炉の炉幅方向燃焼量の切換経過時間と、被加熱材の長手方向温度差との関係を示す。図8の横軸は、図7の横軸と同じである。また、図8の縦軸の被加熱材長手方向温度差とは、連続式加熱炉から抽出した直後の被加熱材の長手方向先端部と後端部の温度差である。傾斜加熱においては、連続式加熱炉から抽出した直後において、概ね30℃以上の温度差を得ることが必要とされている。
図8に示すように、均一加熱から傾斜加熱に切り換えた直後から被加熱材の長手方向温度差は徐々に大きくなって、温度偏差の目安となる30℃に達するまでには約25分を要することがわかる。本実施形態では、切換直後から25分を経過するまでの期間が切換期間となる。
Moreover, in FIG. 8, the relationship between the switching elapsed time of the furnace width direction combustion amount of a continuous heating furnace and the longitudinal direction temperature difference of a to-be-heated material is shown. The horizontal axis in FIG. 8 is the same as the horizontal axis in FIG. Moreover, the to-be-heated material longitudinal direction temperature difference of the vertical axis | shaft of FIG. 8 is a temperature difference of the longitudinal direction front-end | tip part and rear-end part of the to-be-heated material immediately after extracting from a continuous heating furnace. In the gradient heating, it is necessary to obtain a temperature difference of approximately 30 ° C. or more immediately after extraction from the continuous heating furnace.
As shown in FIG. 8, immediately after switching from uniform heating to gradient heating, the temperature difference in the longitudinal direction of the material to be heated gradually increases, and it takes about 25 minutes to reach 30 ° C., which is a standard for temperature deviation. I understand that. In this embodiment, the period from immediately after switching until 25 minutes has elapsed is the switching period.

このように、均一加熱から、長手方向温度差が30℃以上の傾斜加熱に至るまで、25分程度の切換期間を要するが、この切換期間の間には、長手方向温度差が30℃未満のスラブが、言い換えると傾斜加熱が不十分なスラブが連続式加熱炉から抽出され、そのまま仕上圧延機によって圧延される場合がある。   Thus, a switching period of about 25 minutes is required from uniform heating to gradient heating with a longitudinal temperature difference of 30 ° C. or more. During this switching period, the longitudinal temperature difference is less than 30 ° C. In other words, the slab, in other words, the slab with insufficient gradient heating is extracted from the continuous heating furnace and may be rolled as it is by a finishing mill.

本実施形態では、このような傾斜加熱が不十分なスラブ(粗バー)に対して、仕上圧延機21の直前に配置された誘導加熱装置31によって加熱不足分を補償する加熱を行う。図9に示すように、燃焼量切換時間が25分未満の切換期間中の連続式加熱炉によって加熱された、長手方向温度差が30℃未満であるスラブ(粗バー)に対して、誘導加熱装置による加熱を行うことで長手方向温度差を補償する。一方、燃焼量切換時間が25分以上経過して定常状態になった連続式加熱炉によって加熱された、長手方向温度差が30℃以上になるスラブ(粗バー)については、誘導加熱装置31による加熱は行う必要はない。   In the present embodiment, the slab (rough bar) with insufficient gradient heating is heated to compensate for the insufficient heating by the induction heating device 31 disposed immediately before the finish rolling mill 21. As shown in FIG. 9, induction heating is performed on a slab (coarse bar) having a longitudinal temperature difference of less than 30 ° C. heated by a continuous heating furnace during a switching period in which the combustion amount switching time is less than 25 minutes. The longitudinal temperature difference is compensated by heating by the apparatus. On the other hand, for slabs (coarse bars) having a longitudinal temperature difference of 30 ° C. or more heated by a continuous heating furnace that has reached a steady state after a combustion amount switching time of 25 minutes or longer, the induction heating device 31 Heating is not necessary.

以下、具体的な手順について図10及び図11を参照して説明する。
まず、切換期間中の連続式加熱炉によって加熱された傾斜加熱が不十分なスラブを、粗圧延機11によって圧延して粗バーとしてから、粗圧延機11と誘導加熱装置31の間に設置された温度計32によって、粗バーの長手方向に沿って粗バーの温度を計測する。計測されたデータは計測手段33に送られて、温度測定位置から誘導加熱装置31まで移送される間の温度低下量を考慮して、粗バーの長手方向に沿う温度プロファイルに加工される。このときの粗バーは、連続式加熱炉で長手方向の温度差が例えば10℃のものであり、その温度プロファイルは、図10の実線に示すように、粗バーの長手方向先端部から後端部にかけて徐々に温度が低くなるような温度変化を示すものとなる。
この温度プロファイルは、温度計32から計測手段33に対して送られた測定データに基づいて、計測手段33において作成される。
A specific procedure will be described below with reference to FIGS.
First, a slab with insufficient gradient heating heated by a continuous heating furnace during the switching period is rolled by a roughing mill 11 to form a rough bar, and then installed between the roughing mill 11 and the induction heating device 31. The temperature of the coarse bar is measured by the thermometer 32 along the longitudinal direction of the coarse bar. The measured data is sent to the measuring means 33 and processed into a temperature profile along the longitudinal direction of the coarse bar in consideration of the amount of temperature decrease during the transfer from the temperature measurement position to the induction heating device 31. The coarse bar at this time is a continuous heating furnace with a temperature difference in the longitudinal direction of, for example, 10 ° C., and the temperature profile is as shown by the solid line in FIG. The temperature changes so that the temperature gradually decreases over the portion.
This temperature profile is created in the measuring means 33 based on the measurement data sent from the thermometer 32 to the measuring means 33.

一方、目標とする温度プロファイル(以下、目標温度プロファイルという)は、例えば、仕上圧延が一定速圧延の場合、図10の点線に示すように、粗バーの長手方向先端部から後端部にかけて一定温度となる。また仕上圧延の途中から加速圧延される場合、加速圧延に伴う加工発熱が考慮され、目標温度プロファイルは図11の点線に示すようになる。これらの目標温度プロファイルは、予め計測手段の記憶部に記憶されている。   On the other hand, the target temperature profile (hereinafter referred to as the target temperature profile) is constant from the front end to the rear end in the longitudinal direction of the coarse bar, for example, when the finish rolling is constant speed rolling, as indicated by the dotted line in FIG. It becomes temperature. When accelerated rolling is performed in the middle of finish rolling, processing heat generated by accelerated rolling is taken into consideration, and the target temperature profile is as shown by the dotted line in FIG. These target temperature profiles are stored in advance in the storage unit of the measuring means.

そして、計測手段33の演算部において、測定された粗バーの温度プロファイルと、目標温度プロファイルとの対比が行われ、両プロファイルの差分が算出される。この差分、即ち図10、11の斜線部分が、粗バー(被加熱材)の長手方向に沿って生じた加熱不足量となる。   And in the calculating part of the measurement means 33, the measured temperature profile of the rough bar is compared with the target temperature profile, and the difference between both profiles is calculated. This difference, that is, the hatched portion in FIGS. 10 and 11, is an underheating amount generated along the longitudinal direction of the coarse bar (material to be heated).

次に、算出された加熱不足量のプロファイルは、制御手段34に送られる。制御手段では、加熱不足量のプロファイルに基づいて、誘導加熱装置31による加熱量を決定する。例えば、図10に示す例では、先端部から長手方向中央付近までの加熱は不要であるが、長手方向中央付近から後端部までは、目標温度以上となるように加熱量を徐々に高める。   Next, the calculated underheating amount profile is sent to the control means 34. In the control means, the heating amount by the induction heating device 31 is determined based on the profile of the insufficient heating amount. For example, in the example shown in FIG. 10, heating from the front end to the vicinity of the center in the longitudinal direction is unnecessary, but the heating amount is gradually increased from the vicinity of the center in the longitudinal direction to the rear end so as to be equal to or higher than the target temperature.

そして、制御手段34において決定された加熱量に基づいて、誘導加熱装置31を制御して粗バーを加熱する。
誘導加熱装置31によって長手方向温度差が補償されるように加熱された粗バーは、その後、仕上圧延機21で更に圧延され、冷却装置42によって冷却された後に、巻取機43によってロール状に巻き取られる。
And based on the heating amount determined in the control means 34, the induction heating apparatus 31 is controlled and a rough bar is heated.
The coarse bar heated so that the longitudinal temperature difference is compensated by the induction heating device 31 is then further rolled by the finish rolling mill 21, cooled by the cooling device 42, and then rolled by the winder 43. It is wound up.

誘導加熱装置31は、仕上圧延機21の直前に設置する他に、連続式加熱炉1と粗圧延機11との間に設置することも考えられるが、本実施形態では仕上圧延機21の直前に設置するとよい。連続式加熱炉1から抽出された被加熱材は、スラブの形態であって厚さが比較大きいため、誘導加熱装置31によって十分に昇温しにくい。一方、仕上圧延機21の直前に設置すれば、加熱対象の被加熱材は粗バーとなり、スラブに対して厚さが比較的小さいので、誘導加熱装置31によって十分に加熱することができる。   The induction heating device 31 may be installed between the continuous heating furnace 1 and the roughing mill 11 in addition to the installation immediately before the finishing mill 21, but in the present embodiment, immediately before the finishing mill 21. It is good to install in. Since the material to be heated extracted from the continuous heating furnace 1 is in the form of a slab and has a relatively large thickness, it is difficult to raise the temperature sufficiently by the induction heating device 31. On the other hand, if it is installed immediately before the finishing mill 21, the material to be heated becomes a rough bar and the thickness is relatively small with respect to the slab, so that it can be sufficiently heated by the induction heating device 31.

また、粗バーを加熱する加熱手段としては、誘導加熱装置31が最も適している。誘導加熱装置31は、他の加熱手段に比べて加熱速度が高く、応答速度にも優れているので、圧延中の粗バーをオンラインで加熱する手段として最適である。また、加熱コイルに印加する電力量を制御することで、加熱条件を細かく制御できる点でも、傾斜加熱が不十分な粗バーに対する加熱手段として好適である。   Further, the induction heating device 31 is most suitable as a heating means for heating the coarse bar. Since the induction heating device 31 has a higher heating speed and excellent response speed than other heating means, it is optimal as a means for heating a rough bar being rolled online. In addition, by controlling the amount of electric power applied to the heating coil, the heating conditions can be finely controlled, and therefore, it is suitable as a heating means for rough bars with insufficient gradient heating.

以上説明したように、本実施形態の被加熱材の加熱方法によれば、均一加熱と傾斜加熱との間で加熱条件を切り換える切換期間中に加熱されたスラブ(粗バー)に対し、加熱不足量を補償するように誘導加熱装置31で加熱するので、仕上圧延の直前の段階で、粗バーの長手方向の温度プロファイルを目的とする温度プロファイルに修正することができ、適切な状態で仕上圧延を行うことができる。これにより品質に優れた圧延鋼板を製造できる。   As described above, according to the heating method of the material to be heated according to the present embodiment, the heating is insufficient with respect to the slab (coarse bar) heated during the switching period in which the heating condition is switched between uniform heating and inclined heating. Since the heating is performed by the induction heating device 31 so as to compensate the amount, the temperature profile in the longitudinal direction of the coarse bar can be corrected to the target temperature profile immediately before the finish rolling, and finish rolling in an appropriate state. It can be performed. Thereby, the rolled steel plate excellent in quality can be manufactured.

上記の実施形態では、連続式加熱炉における加熱条件を均一加熱から傾斜加熱に切り換える場合について説明したが、本発明はこれに限定されず、連続式加熱炉における加熱条件を傾斜加熱から均一加熱に切り換える場合についても適用できる。
更に、上記実施形態では、スラブの後端部の温度を先端部の温度より高くする傾斜加熱について説明したが、スラブの後端部の温度を先端部の温度より低くする逆傾斜加熱についても適用できる。
In the above embodiment, the case where the heating condition in the continuous heating furnace is switched from uniform heating to gradient heating has been described, but the present invention is not limited to this, and the heating condition in the continuous heating furnace is changed from gradient heating to uniform heating. It can also be applied to the case of switching.
Further, in the above-described embodiment, the gradient heating in which the temperature of the rear end portion of the slab is made higher than the temperature of the tip portion has been described, but the reverse gradient heating in which the temperature of the rear end portion of the slab is made lower than the temperature of the tip portion is also applied. it can.

なお、連続式加熱炉の加熱条件の切り換えは、切換期間中のスラブが過加熱されないようなタイミングで行うことが好ましい。すなわち、均一加熱からスラブ後端部の温度を高くする傾斜加熱への切り換えタイミングは被均一加熱材が連続式加熱炉から抽出された後とし、傾斜加熱から均一加熱への切り換えタイミングは、被均一加熱材が抽出される時点で均一加熱状態となっているように、連続式加熱炉内での搬送速度、傾斜加熱ゾーン長さ、傾斜加熱状態から均一加熱状態への移行に要する時間を考慮して決定する。逆傾斜加熱から均一加熱への切り換えタイミングは、被逆傾斜加熱材が連続式加熱炉から抽出された後とし、均一加熱からスラブ後端部の温度を低くする逆傾斜加熱への切り換えタイミングは被逆傾斜加熱材が抽出される時点で逆傾斜加熱状態となっているように、連続式加熱炉内での搬送速度、傾斜加熱ゾーン長さ、均一加熱状態から逆傾斜加熱状態への移行に要する時間を考慮して決定する。   It should be noted that the switching of the heating conditions of the continuous heating furnace is preferably performed at a timing such that the slab during the switching period is not overheated. In other words, the switching timing from uniform heating to gradient heating to increase the temperature at the rear end of the slab is after the material to be heated is extracted from the continuous heating furnace, and the switching timing from gradient heating to uniform heating is Consider the transfer speed in the continuous heating furnace, the length of the inclined heating zone, and the time required for the transition from the inclined heating state to the uniform heating state so that the heating material is in a uniform heating state at the time of extraction. To decide. The switching timing from reverse gradient heating to uniform heating is after the reverse gradient heating material has been extracted from the continuous heating furnace, and the switching timing from reverse heating to reverse gradient heating, which lowers the temperature at the rear end of the slab. Necessary for the transfer speed in the continuous heating furnace, the length of the inclined heating zone, and the transition from the uniform heating state to the reverse inclined heating state so that the reverse inclined heating material is in the reverse inclined heating state when the reverse inclined heating material is extracted. Decide in consideration of time.

図1乃至図5に示す連続圧延ラインおよび連続式加熱炉で、被加熱材として、長さ9〜11m、幅1020〜1050mm、厚み250mmの大きさのスラブを複数本を加熱して圧延した。連続式加熱炉に装入する際のスラブ温度は約600℃であり、加熱炉における在炉時間を150分とした。   In the continuous rolling line and the continuous heating furnace shown in FIGS. 1 to 5, a plurality of slabs having a length of 9 to 11 m, a width of 1020 to 1050 mm, and a thickness of 250 mm were heated and rolled as a material to be heated. The slab temperature when charging the continuous heating furnace was about 600 ° C., and the in-furnace time in the heating furnace was 150 minutes.

連続式加熱炉の加熱条件を途中で均一加熱から炉幅方向に60℃の温度差を持たせてスラブの後端部を高い温度に加熱する傾斜加熱に切り換えた。切り換え直後の本来傾斜加熱されるべきスラブを、粗圧延機によって粗圧延して長さ70m、幅1000mm、厚み33mmの粗バーにした。そして、誘導加熱装置の入側において、前記粗バーの全長にわたって表面温度を測定し、その測定結果に基づいて誘導加熱装置で必要な加熱を行った。誘導加熱装置の出側でも加熱後の粗バーの表面温度を測定した。誘導加熱後の粗バーを仕上圧延機で板厚2.5mmに圧延し、冷却装置で冷却後、巻き取り装置で巻き取ってコイルとした。比較のために次に抽出したスラブは誘導加熱を行わず、他の圧延条件は同じにして圧延しコイルとした。   The heating condition of the continuous heating furnace was switched from uniform heating in the middle to gradient heating in which a temperature difference of 60 ° C. was provided in the furnace width direction to heat the rear end of the slab to a high temperature. Immediately after the switching, the slab that should be heated by inclination was roughly rolled by a roughing mill into a rough bar having a length of 70 m, a width of 1000 mm, and a thickness of 33 mm. And on the entrance side of the induction heating device, the surface temperature was measured over the entire length of the coarse bar, and necessary heating was performed by the induction heating device based on the measurement result. The surface temperature of the coarse bar after heating was also measured on the exit side of the induction heating apparatus. The coarse bar after induction heating was rolled to a sheet thickness of 2.5 mm with a finish rolling mill, cooled with a cooling device, and then wound with a winding device to form a coil. For comparison, the slab extracted next was not subjected to induction heating, and was rolled under the same other rolling conditions as a coil.

図12に誘導加熱装置出側での温度測定結果を、図13に仕上圧延終了温度の測定結果を示す。粗バーの後端側の加熱不足分を誘導加熱装置で加熱することで、コイルの全長にわたって目標とする仕上圧延温度を満足することができている。これに対し、誘導加熱を行わなかった比較材はコイルの後端側700m以降で必要な仕上圧延終了温度を満足することができない部分が発生した。   FIG. 12 shows the temperature measurement result on the induction heating apparatus outlet side, and FIG. 13 shows the measurement result of the finish rolling end temperature. By heating the insufficient heating on the rear end side of the coarse bar with an induction heating device, the target finish rolling temperature can be satisfied over the entire length of the coil. On the other hand, in the comparative material that was not subjected to induction heating, there was a portion that could not satisfy the finish rolling finishing temperature required after the rear end side 700 m of the coil.

本実施例から明らかな通り、本発明の加熱方法によれば、連続式加熱炉の傾斜加熱ゾーンの加熱条件を切換期間中の誘導加熱装置によって粗バーの温度を修正できることがわかる。   As is apparent from the present example, according to the heating method of the present invention, it is understood that the temperature of the coarse bar can be corrected by the induction heating device during the switching period of the heating condition of the inclined heating zone of the continuous heating furnace.

図1は、本発明の実施形態である連続圧延設備を示す模式図である。Drawing 1 is a mimetic diagram showing the continuous rolling equipment which is an embodiment of the present invention. 図2は、図1の連続圧延設備に備えられた燃焼加熱炉を示す斜視模式図である。FIG. 2 is a schematic perspective view showing a combustion heating furnace provided in the continuous rolling facility of FIG. 図3は、図1の連続圧延設備に備えられた燃焼加熱炉の側面模式図である。FIG. 3 is a schematic side view of a combustion heating furnace provided in the continuous rolling facility of FIG. 図4は、図1の連続圧延設備に備えられた燃焼加熱炉の平面模式図である。4 is a schematic plan view of a combustion heating furnace provided in the continuous rolling facility of FIG. 図5は、図4のA−A’線に対応する断面模式図である。FIG. 5 is a schematic cross-sectional view corresponding to the line A-A ′ of FIG. 4. 図6は、燃焼加熱炉の全炉長に対する連続式燃焼装置の配置長さの割合と、被加熱材の長手温度差偏差との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the ratio of the arrangement length of the continuous combustion apparatus to the total furnace length of the combustion heating furnace and the longitudinal temperature difference deviation of the material to be heated. 図7は、燃焼加熱炉の炉幅方向燃焼量の切換経過時間と、燃焼加熱炉の炉幅方向炉温差との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the switching elapsed time of the combustion amount in the furnace width direction of the combustion heating furnace and the furnace temperature difference in the furnace width direction of the combustion heating furnace. 図8は、燃焼加熱炉の炉幅方向燃焼量の切換経過時間と、被加熱材の長手方向温度差との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the switching elapsed time of the combustion amount in the furnace width direction of the combustion heating furnace and the longitudinal temperature difference of the material to be heated. 図9は、燃焼加熱炉の炉幅方向燃焼量の切換経過時間と、被加熱材の長手方向温度差との関係を示すグラフにおいて、傾斜加熱の切換期間と傾斜加熱定常期間との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the switching time of the combustion amount in the furnace width direction of the combustion heating furnace and the temperature difference in the longitudinal direction of the material to be heated, and shows the relationship between the gradient heating switching period and the gradient heating steady period. It is a graph. 図10は、被加熱材の温度分布プロファイルと、仕上圧延が一定速圧延の場合の目標温度分布プロファイルとの関係を示すグラフである。FIG. 10 is a graph showing the relationship between the temperature distribution profile of the material to be heated and the target temperature distribution profile when the finish rolling is constant speed rolling. 図11は、被加熱材の温度分布プロファイルと、仕上圧延が加速圧延の場合の目標温度分布プロファイルとの関係を示すグラフである。FIG. 11 is a graph showing the relationship between the temperature distribution profile of the material to be heated and the target temperature distribution profile when finish rolling is accelerated rolling. 図12は、実施例1及び比較例1の粗バーの誘導加熱装置出側での温度測定結果を示すグラフである。FIG. 12 is a graph showing the temperature measurement results on the exit side of the induction heating device of the coarse bar of Example 1 and Comparative Example 1. 図13は、実施例1及び比較例1の仕上圧延終了温度の測定結果を示すグラフである。FIG. 13 is a graph showing measurement results of finish rolling end temperatures of Example 1 and Comparative Example 1.

符号の説明Explanation of symbols

1…燃焼加熱炉、1A…装入部、1B…抽出部、2…搬送路、4…蓄熱式燃焼装置、5…連続式燃焼装置、11…粗圧延機、21…仕上圧延機、31…誘導加熱炉、32…温度計、33…計測手段、34…制御手段、101…連続圧延設備   DESCRIPTION OF SYMBOLS 1 ... Combustion heating furnace, 1A ... Charge part, 1B ... Extraction part, 2 ... Conveyance path, 4 ... Regenerative combustion apparatus, 5 ... Continuous combustion apparatus, 11 ... Rough rolling mill, 21 ... Finish rolling mill, 31 ... Induction heating furnace, 32 ... thermometer, 33 ... measuring means, 34 ... control means, 101 ... continuous rolling equipment

Claims (4)

被加熱材の長手方向が加熱炉内に設けた搬送路の搬送方向と直交するように被加熱材を装入して前記被加熱材を搬送路に沿って搬送させながら加熱する連続式加熱炉であって前記搬送路の途中から抽出部に至る間に炉幅方向の加熱条件を均一加熱または傾斜加熱に選択的に切換可能な加熱ゾーンを設けた連続式加熱炉と、仕上圧延機の直前に配置された誘導加熱装置とを用いた被加熱材の加熱方法であって、
前記連続式加熱炉の切換可能な加熱ゾーンの加熱条件を均一加熱と傾斜加熱との間で切り換える切換期間中に前記連続式加熱炉によって加熱された被加熱材に対して、その長手方向に沿って生じた加熱不足量を補償するように、前記被加熱材を前記誘導加熱装置によって加熱することを特徴とする被加熱材の加熱方法。
A continuous heating furnace in which the material to be heated is inserted so that the longitudinal direction of the material to be heated is orthogonal to the conveying direction of the conveying path provided in the heating furnace, and the heated material is heated while being conveyed along the conveying path. And a continuous heating furnace provided with a heating zone in which the heating condition in the furnace width direction can be selectively switched to uniform heating or inclined heating in the middle of the conveying path to the extraction section, and immediately before the finishing mill A heating method of a material to be heated using an induction heating device arranged in
Along the longitudinal direction of the material to be heated heated by the continuous heating furnace during the switching period in which the heating condition of the switchable heating zone of the continuous heating furnace is switched between uniform heating and inclined heating. The heating material is heated by the induction heating device so as to compensate for the insufficient heating amount generated by heating.
前記連続式加熱炉によって加熱された被加熱材を前記連続式加熱炉の後段に設置された粗圧延機で粗圧延し、前記粗圧延機と前記仕上圧延機直前に配置された前記誘導加熱装置との間で、被加熱材の長手方向の温度分布測定し、
測定された被加熱材の温度分布プロファイルと、目標とする温度分布プロファイルとを対比することによって、前記被加熱材の長手方向に沿って前記加熱不足量を算出し、計測された加熱不足量を補償するように前記被加熱材を前記誘導加熱装置によって加熱することを特徴とする請求項1に記載の被加熱材の加熱方法。
The induction heating apparatus disposed in front of the roughing mill and the finishing mill is roughly rolled by a roughing mill installed at a subsequent stage of the continuous heating furnace, to be heated by the continuous heating furnace. And measure the temperature distribution in the longitudinal direction of the material to be heated,
By comparing the measured temperature distribution profile of the heated material with the target temperature distribution profile, the underheating amount is calculated along the longitudinal direction of the heated material, and the measured underheating amount is calculated. The method for heating a material to be heated according to claim 1, wherein the material to be heated is heated by the induction heating device so as to compensate.
前記連続式加熱炉が、前記被加熱材の搬送路の両側にあって装入部から抽出部の間に配置された交番燃焼する複数の蓄熱式燃焼装置と、前記搬送路の上側にあって、前記搬送路の途中から抽出部に至る間に連続して配置され、かつ、炉幅方向に沿って複数に分割された領域にそれぞれ配置されて前記領域毎に燃焼量の制御が可能な複数の連続式燃焼装置とを具備してなるものであって、
前記複数の連続式燃焼装置の燃焼量を調整して、前記連続式加熱炉内の前記炉幅方向の温度分布を制御することで、前記被加熱材に対する加熱条件を均一加熱または傾斜加熱に選択的に切換可能とされているものであることを特徴とする請求項1または請求項2に記載の被加熱材の加熱方法。
The continuous heating furnace is on both sides of the conveying path of the material to be heated and is located on the upper side of the conveying path, and a plurality of regenerative combustion apparatuses for alternating combustion disposed between the charging section and the extracting section. A plurality of continuous arrangements from the middle of the conveying path to the extraction unit, and arranged in a plurality of regions divided along the furnace width direction, each of which can control the amount of combustion Comprising a continuous combustion device of
By adjusting the amount of combustion of the plurality of continuous combustion devices and controlling the temperature distribution in the furnace width direction in the continuous heating furnace, the heating condition for the material to be heated is selected to be uniform heating or gradient heating The method for heating a material to be heated according to claim 1, wherein the heating material is switchable automatically.
前記連続式加熱炉の加熱ゾーンの加熱条件を均一加熱と傾斜加熱との間で切り替えるタイミングを、被加熱材が過加熱されないように制御することを特徴とする請求項1〜3のいずれかに記載の被加熱材の加熱方法。   The timing for switching the heating condition of the heating zone of the continuous heating furnace between uniform heating and inclined heating is controlled so that the heated material is not overheated. The heating method of the to-be-heated material of description.
JP2008112709A 2008-04-23 2008-04-23 Heating method of heated material Active JP5181803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008112709A JP5181803B2 (en) 2008-04-23 2008-04-23 Heating method of heated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008112709A JP5181803B2 (en) 2008-04-23 2008-04-23 Heating method of heated material

Publications (2)

Publication Number Publication Date
JP2009263701A true JP2009263701A (en) 2009-11-12
JP5181803B2 JP5181803B2 (en) 2013-04-10

Family

ID=41389923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008112709A Active JP5181803B2 (en) 2008-04-23 2008-04-23 Heating method of heated material

Country Status (1)

Country Link
JP (1) JP5181803B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139611A (en) * 2012-01-05 2013-07-18 Nippon Steel & Sumitomo Metal Corp Method for heating material to be heated
US20230037730A1 (en) * 2021-08-09 2023-02-09 Yanshan University Endless rolling method based on temperature uniformity control
CN116426735A (en) * 2023-04-27 2023-07-14 吉林大学 Rapid heat treatment equipment and method for metal bar
CN116426735B (en) * 2023-04-27 2024-04-30 吉林大学 Rapid heat treatment equipment and method for metal bar

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8577205B2 (en) 1998-07-30 2013-11-05 Tivo Inc. Digital video recording system
US6233389B1 (en) 1998-07-30 2001-05-15 Tivo, Inc. Multimedia time warping system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254024A (en) * 1985-08-31 1987-03-09 Nippon Steel Corp Method for controlling automatic combustion in heating furnace
JPH03153824A (en) * 1989-11-13 1991-07-01 Ishikawajima Harima Heavy Ind Co Ltd Billet heating furnace
JPH1161277A (en) * 1997-08-28 1999-03-05 Nkk Corp Continuous heat treatment method of steel sheet
JPH11323431A (en) * 1998-05-13 1999-11-26 Nkk Corp Method and device for controlling temperature of heating furnace
JP2000212645A (en) * 1999-01-21 2000-08-02 Nippon Steel Corp Continuous heating of steel material
JP2001172721A (en) * 1999-12-13 2001-06-26 Nkk Corp Method for compensating slab temperature and equipment for compensating slab temperature
JP2005298941A (en) * 2004-04-15 2005-10-27 Nippon Steel Corp Sheet temperature control method in continuous still sheet annealing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254024A (en) * 1985-08-31 1987-03-09 Nippon Steel Corp Method for controlling automatic combustion in heating furnace
JPH03153824A (en) * 1989-11-13 1991-07-01 Ishikawajima Harima Heavy Ind Co Ltd Billet heating furnace
JPH1161277A (en) * 1997-08-28 1999-03-05 Nkk Corp Continuous heat treatment method of steel sheet
JPH11323431A (en) * 1998-05-13 1999-11-26 Nkk Corp Method and device for controlling temperature of heating furnace
JP2000212645A (en) * 1999-01-21 2000-08-02 Nippon Steel Corp Continuous heating of steel material
JP2001172721A (en) * 1999-12-13 2001-06-26 Nkk Corp Method for compensating slab temperature and equipment for compensating slab temperature
JP2005298941A (en) * 2004-04-15 2005-10-27 Nippon Steel Corp Sheet temperature control method in continuous still sheet annealing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139611A (en) * 2012-01-05 2013-07-18 Nippon Steel & Sumitomo Metal Corp Method for heating material to be heated
US20230037730A1 (en) * 2021-08-09 2023-02-09 Yanshan University Endless rolling method based on temperature uniformity control
CN116426735A (en) * 2023-04-27 2023-07-14 吉林大学 Rapid heat treatment equipment and method for metal bar
CN116426735B (en) * 2023-04-27 2024-04-30 吉林大学 Rapid heat treatment equipment and method for metal bar

Also Published As

Publication number Publication date
JP5181803B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
KR100698502B1 (en) Hot rolling method and apparatus for hot steel sheet
TWI552812B (en) Verfahren und anlage zur herstellung eines metallbandes
JP5181803B2 (en) Heating method of heated material
JP5585181B2 (en) Heat treatment method for thick steel plate in direct fire type roller hearth type continuous heat treatment furnace and radiant tube type roller hearth type continuous heat treatment furnace
JP2008024966A (en) Method for controlling furnace temperature in continuous type heating furnace, and method for producing steel material
JP4998655B2 (en) Combustion control method for continuous heating furnace
JP4894686B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP4507946B2 (en) Manufacturing method and apparatus for manufacturing thick steel plate
JP5181679B2 (en) Heating furnace and temperature control method for heated material
JP4079098B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP2006239777A (en) Method for manufacturing hot-rolled steel sheet
JP2003033808A (en) Hot rolling method and equipment
JP6015680B2 (en) Steel cooling equipment and steel cooling method
JP4133358B2 (en) Manufacturing method of hot-rolled steel sheet
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JP6254754B2 (en) Heating method of heated material
JP7302553B2 (en) Furnace temperature control method for heating furnace, steel manufacturing method and heating equipment
KR101377504B1 (en) Temperature control method of heating furnace
JPH10230313A (en) Method for rolling hot rolled strip
JP5673370B2 (en) Method for cooling hot-rolled steel sheet
JP2010150614A (en) Heating furnace and heating method
JP3015336B2 (en) Furnace operation method of heating furnace in alternating rolling system
JP2004283846A (en) Hot rolling method and its equipment
JP3960204B2 (en) Manufacturing method of hot-rolled steel strip
JP5834736B2 (en) Heating furnace control method and heating furnace control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R151 Written notification of patent or utility model registration

Ref document number: 5181803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350