JP5181679B2 - Heating furnace and temperature control method for heated material - Google Patents

Heating furnace and temperature control method for heated material Download PDF

Info

Publication number
JP5181679B2
JP5181679B2 JP2008002418A JP2008002418A JP5181679B2 JP 5181679 B2 JP5181679 B2 JP 5181679B2 JP 2008002418 A JP2008002418 A JP 2008002418A JP 2008002418 A JP2008002418 A JP 2008002418A JP 5181679 B2 JP5181679 B2 JP 5181679B2
Authority
JP
Japan
Prior art keywords
heated
furnace
heating
combustion
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008002418A
Other languages
Japanese (ja)
Other versions
JP2009161837A (en
Inventor
悟 益子
広祐 辛島
俊明 齋藤
英孝 上尾
達雄 岩谷
榮一 久保山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008002418A priority Critical patent/JP5181679B2/en
Publication of JP2009161837A publication Critical patent/JP2009161837A/en
Application granted granted Critical
Publication of JP5181679B2 publication Critical patent/JP5181679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、スラブ等を熱間圧延する際に、所定の温度まで加熱するための加熱炉および被加熱材の温度制御方法に関するものである。   The present invention relates to a heating furnace for heating to a predetermined temperature when a slab or the like is hot-rolled, and a temperature control method for a material to be heated.

鋳造後のスラブ、ビレット、ブルーム等を、熱間圧延に好適な温度に加熱するものとして加熱炉が用いられている。このような加熱炉は、一般に予熱帯、加熱帯及び均熱帯から構成され、スラブ等の被加熱材を、予熱帯、加熱帯及び均熱帯を順次連続的に移動させることで、所定の温度に均一に加熱できるように構成されている。   A heating furnace is used to heat slabs, billets, blooms and the like after casting to a temperature suitable for hot rolling. Such a heating furnace is generally composed of a pre-tropical zone, a heating zone, and a soaking zone, and a material to be heated such as a slab is successively moved through the pre-tropic zone, the heating zone, and the soaking zone, to a predetermined temperature. It is configured so that it can be heated uniformly.

ところで最近では、スラブ等の被加熱材を全体的に均一に加熱するだけでなく、スラブの先端部と後端部との間で温度傾斜を持たせるように加熱することが行われている。
例えば、板厚の薄い圧延板を製造する場合、スラブの先端部を仕上げ圧延開始してからスラブ後端部を仕上げ圧延開始するまでの時間が長くなり、その間にスラブ後端部の温度低下が大きくなって、変形抵抗が大きくなり荷重変動による形状悪化を生じたり、所定の仕上圧延温度の下限値未満となってしまう場合があった。このような場合に、温度低下量を見越して、スラブの後端部の温度を先端部の温度より高くする傾斜加熱を行うと、スラブ後端部での荷重変動を小さくしたり、所定の仕上げ圧延温度範囲内で圧延することが可能となる。
Recently, not only the material to be heated, such as a slab, is heated uniformly, but it is also heated so as to have a temperature gradient between the front end portion and the rear end portion of the slab.
For example, when manufacturing a thin rolled sheet, the time from the start of finish rolling of the slab tip to the start of finish rolling of the slab rear end becomes longer, during which the temperature drop at the slab rear end In some cases, the deformation resistance is increased, the shape is deteriorated due to load fluctuation, or the temperature is lower than a predetermined lower limit of the finishing rolling temperature. In such a case, in anticipation of the amount of temperature decrease, if inclined heating is performed to make the temperature at the rear end of the slab higher than the temperature at the front end, the load fluctuation at the rear end of the slab can be reduced, or a predetermined finish can be achieved. It becomes possible to perform rolling within the rolling temperature range.

また、生産性を向上させるために、スラブ先端部が仕上げ圧延機に噛み込まれた後、徐々に速度を上げて熱間圧延を行う場合があり、圧延速度の上昇に伴って加工発熱量も多くなり、圧延後のスラブ(圧延鋼板)後端部の温度が高くなり、スケール疵が発生したり、仕上げ圧延温度の上限を超えてしまうことがある。このような場合に、仕上出側温度の上昇を見越して、スラブ後端部の温度を先端部の温度よりも低くする逆傾斜加熱を行うと、スラブ後端部の仕上げ圧延出側温度を所定の温度範囲内にすることができ、圧延鋼板の高品質化と生産性の向上を両立することが可能になる。   In addition, in order to improve productivity, after the slab tip is caught in the finish rolling mill, hot rolling may be performed at a gradually increased speed. The temperature increases at the rear end of the slab (rolled steel plate) after rolling, and scale wrinkles may occur or the upper limit of the finish rolling temperature may be exceeded. In such a case, in anticipation of an increase in the finish delivery temperature, if reverse gradient heating is performed to lower the temperature at the rear end of the slab to be lower than the temperature at the front end, the finish rolling exit temperature at the rear end of the slab is predetermined. This makes it possible to achieve both high quality and improved productivity of the rolled steel sheet.

従来の加熱炉として、例えば、下記特許文献1の図2に記載の加熱炉が知られている。この加熱炉は、炉長方向両側に交番燃焼する複数対の蓄熱式燃焼装置を配置し、加熱炉の炉長方向途中の幅方向に連続式燃焼装置を配置し、連続式燃焼装置の燃焼量を調整することで、スラブの炉幅方向の温度を均一または任意に制御している。   As a conventional heating furnace, for example, a heating furnace shown in FIG. This heating furnace has a plurality of pairs of regenerative combustion devices that alternately burn on both sides in the furnace length direction, a continuous combustion device in the width direction in the middle of the furnace length direction of the heating furnace, and the combustion amount of the continuous combustion device By adjusting the temperature, the temperature in the furnace width direction of the slab is uniformly or arbitrarily controlled.

また特許文献2に開示されている加熱炉は、炉長方向両側に交番燃焼する複数対の蓄熱式燃焼装置を配置し、一方の側の蓄熱式燃焼装置の燃焼時間を、他方の側の蓄熱式燃焼装置の燃焼時間よりも長くするか或いは短くすることで、スラブを傾斜加熱している。
特開平11−323431号公報 特開平9−53115号公報
Moreover, the heating furnace currently disclosed by patent document 2 arrange | positions the several pairs heat storage type combustion apparatus which carries out alternating combustion to the furnace length direction both sides, and sets the combustion time of the heat storage type combustion apparatus of one side to the heat storage of the other side. The slab is heated in an inclined manner by making it longer or shorter than the combustion time of the combustion chamber.
Japanese Patent Application Laid-Open No. 11-323431 JP 9-53115 A

ところで特許文献1に記載の加熱炉では、燃焼量が調整可能な連続式燃焼装置であるルーフバーナーを、加熱帯の炉幅方向に沿って一列に配置している一方で、炉長方向に沿って配置していない。このため、加熱帯の炉内温度に傾斜を持たせにくくなり、傾斜加熱または逆傾斜加熱を十分に行うことができないという問題があった。   By the way, in the heating furnace of patent document 1, while arrange | positioning the roof burner which is a continuous combustion apparatus which can adjust combustion amount in a line along the furnace width direction of a heating zone, it follows along a furnace length direction. Not arranged. For this reason, there is a problem in that it is difficult to provide a gradient in the furnace temperature of the heating zone, and gradient heating or reverse gradient heating cannot be performed sufficiently.

また、特許文献1に記載の加熱炉では、ルーフバーナーの更に下流側に、スラブを加熱炉幅方向(被加熱材長手方向)に均一に加熱するのが主たる用途の蓄熱式加熱装置を配置している。このため、加熱帯に設置したルーフバーナーの燃焼量を調整して、スラブを精度よく傾斜加熱または逆傾斜加熱したとしても、後段の均熱帯に設置した蓄熱式燃焼装置によって、炉幅方向に沿ってスラブが均一に加熱されてしまい、スラブの温度勾配を大きくすることが難しいという問題があった。   Further, in the heating furnace described in Patent Document 1, a regenerative heating apparatus for the main purpose of heating the slab uniformly in the heating furnace width direction (longitudinal direction of the material to be heated) is arranged further downstream of the roof burner. ing. For this reason, even if the amount of combustion of the roof burner installed in the heating zone is adjusted and the slab is inclined or heated reversely, the regenerative combustion device installed in the soaking zone along the furnace width direction As a result, the slab is heated uniformly, and it is difficult to increase the temperature gradient of the slab.

更に、特許文献2に記載の加熱炉では、本来はスラブを加熱炉幅方向に均一に加熱する用途の蓄熱式加熱装置の燃焼量を、制御可能な範囲で変えたとしても、スラブに大きな温度勾配をつけることは困難であった。   Furthermore, in the heating furnace described in Patent Document 2, even if the combustion amount of the regenerative heating apparatus for originally heating the slab uniformly in the width direction of the heating furnace is changed within a controllable range, the slab has a large temperature. It was difficult to create a gradient.

本発明は上記事情に鑑みてなされたものであって、傾斜加熱及び逆傾斜加熱を確実に行うことが可能な加熱炉及び被加熱材の温度制御方法の提供を目的とする。   This invention is made | formed in view of the said situation, Comprising: It aims at provision of the temperature control method of the heating furnace and to-be-heated material which can perform inclined heating and reverse inclination heating reliably.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明の加熱炉は、被加熱材の長手方向が加熱炉内に設けた搬送路の搬送方向と直交するように前記被加熱材を装入して、前記被加熱材を前記搬送路に沿って搬送させながら加熱する加熱炉であって、前記搬送路の下側には、装入部側から抽出部側にかけての前記搬送路の左右両側に、交番燃焼する複数の下側の蓄熱式燃焼装置が配置され前記搬送路の上側には、前記被加熱材全体を一旦均一に加熱するために、前記装入部側から前記搬送路の途中までにかけての前記搬送路の左右両側に、交番燃焼する複数の上側の蓄熱式燃焼装置が配置され、前記上側の蓄熱式燃焼装置の設置位置よりも前記抽出部側には、傾斜加熱または逆傾斜加熱を行うために、炉幅方向に沿って複数に分割されかつ分割された領域毎に燃焼量制御が可能な複数の連続式燃焼装置が配置されることを特徴とする。
また、本発明の加熱炉においては、加熱炉の全炉長に対する前記連続式燃焼装置の炉長方向に沿う配置長の割合が、15%以上80%以下であることが好ましい。
更にまた、本発明の加熱炉においては、前記連続式燃焼装置が、炉幅方向に沿って3つ以上に分割された領域にそれぞれ配置されていることが好ましい。
また、本発明の加熱炉においては、前記蓄熱式燃焼装置が、FDI(燃料直接噴射)型のリジェネバーナーであることが好ましい。
In order to achieve the above object, the present invention employs the following configuration.
Heating furnace of the present invention is charged with the material to be heated so as to be perpendicular to the conveying direction of the conveying path in the longitudinal direction of the material to be heated is provided in the heating furnace, along the material to be heated to the conveying path a heating furnace for heating while conveying Te, the under side of the transport path, the left and right sides of the conveying path toward the extraction side from the loading section side, a plurality of lower regenerative combustion alternating combustion An apparatus is disposed, and on the upper side of the conveyance path, in order to heat the entire material to be heated once and uniformly, on the left and right sides of the conveyance path from the loading section side to the middle of the conveyance path, alternating A plurality of upper regenerative combustion devices for combustion are disposed, and in order to perform inclined heating or reverse inclined heating on the extraction unit side from the installation position of the upper regenerative combustion device , along the furnace width direction It is divided into a plurality, and divided regions combustion quantity control a plurality of possible per Wherein the Continuous mixers combustion device is arranged.
Moreover, in the heating furnace of this invention, it is preferable that the ratio of the arrangement length along the furnace length direction of the said continuous combustion apparatus with respect to the total furnace length of a heating furnace is 15 to 80%.
Furthermore, in the heating furnace of the present invention, it is preferable that the continuous combustion apparatus is disposed in each of the regions divided into three or more along the furnace width direction.
In the heating furnace of the present invention, it is preferable that the regenerative burner is an FDI (fuel direct injection) type regenerative burner.

次に、本発明の被加熱材の温度制御方法は、被加熱材の長手方向が加熱炉内に設けた搬送路の搬送方向と直交するように前記被加熱材を装入して、前記被加熱材を前記搬送路に沿って搬送しながら加熱することで前記被加熱材の温度を制御する温度制御方法であって、前記搬送路の下側であって装入部側から抽出部側にかけての前記搬送路の左右両側に、交番燃焼する複数の下側の蓄熱式燃焼装置を配置し前記搬送路の上側であって装入部側から前記搬送路の途中までにかけての前記搬送路の左右両側に、前記被加熱材全体を一旦均一に加熱するために交番燃焼する複数の上側の蓄熱式燃焼装置を配置し、更に、前記上側の蓄熱式燃焼装置の設置位置よりも前記抽出部側に、傾斜加熱または逆傾斜加熱を行うための複数の連続式燃焼装置を、炉幅方向に沿って分割された複数の領域にそれぞれ配置し、前記上側及び前記下側の蓄熱式燃焼装置によって前記被加熱材全体を均一に加熱するとともに、前記連続式加熱装置によって、前記被加熱材の長手方向における目標温度分布に応じて炉幅方向に沿って分割された前記領域毎に前記連続式燃焼装置の燃焼量を調整することで、前記被加熱材の長手方向の温度を制御することを特徴とする。 Next, the temperature control method of the heated material of the present invention is charged with the material to be heated so as to be perpendicular to the conveying direction of the conveying path in the longitudinal direction of the material to be heated is provided in the heating furnace, the object wherein the heating material by heating while being conveyed along the conveying path a temperature control method for controlling the temperature of the material to be heated, subjected to extraction side from the loading section side a lower side of the conveying path A plurality of lower-side regenerative combustion devices for alternating combustion are arranged on both the left and right sides of the transfer path, and the upper side of the transfer path and from the charging section side to the middle of the transfer path A plurality of upper regenerative combustion devices that alternately burn in order to uniformly heat the entire material to be heated are disposed on both the left and right sides, and further on the extraction unit side from the installation position of the upper regenerative combustion device A plurality of continuous combustion devices for performing gradient heating or reverse gradient heating. Respectively arranged in a plurality of regions divided along the furnace width direction, while uniformly heating the entire material to be heated by the upper and the lower regenerative combustion apparatus, by the continuous heating apparatus, the object to be by adjusting the combustion amount of the continuous combustion device for each of the areas divided along the chamber width direction in accordance with the target temperature distribution in the longitudinal direction of the heating member, control the longitudinal temperature of the material to be heated It is characterized by doing.

上記の加熱炉によれば、まず、交番燃焼する複数の蓄熱式加熱装置が備えられているので、連続式燃焼装置によって傾斜加熱または逆傾斜加熱する前の被加熱材を予め所定の温度に被加熱材全体を均一に加熱しておくことができる。そして炉幅方向に沿って複数に分割された領域に配置され前記領域毎に燃焼量制御が可能な複数の連続式燃焼装置が、搬送路の途中から抽出部端に至る間に沿って連続して配置されているため、炉幅方向に沿って炉内温度に必要とする温度差をつけることが可能になり、被加熱材に付与すべき傾斜加熱または逆傾斜加熱を行うことが可能になる。   According to the above heating furnace, first, since a plurality of regenerative heating devices that perform alternating combustion are provided, the material to be heated before being subjected to gradient heating or reverse gradient heating by the continuous combustion device is previously coated at a predetermined temperature. The entire heating material can be heated uniformly. A plurality of continuous combustion devices arranged in a plurality of regions along the furnace width direction and capable of controlling the amount of combustion for each region continue along the way from the middle of the conveyance path to the end of the extraction unit. Therefore, the temperature difference required for the furnace temperature can be set along the furnace width direction, and it becomes possible to perform the inclined heating or the reverse inclined heating to be applied to the material to be heated. .

また、上記の被加熱材の温度制御方法によれば、まず、交番燃焼する複数の蓄熱式加熱装置によって所定の温度に被加熱材全体を均一に加熱し、次いで、搬送路途中から抽出部端に至る間に連続して配置され、かつ炉幅方向に沿って複数に分割された領域に配置された複数の連続式加熱装置によって、前記被加熱材の長手方向における目標温度分布に応じて被加熱材の前記炉幅方向の温度を制御するので、被加熱材に付与すべき傾斜加熱または逆傾斜加熱を行うことが可能になる。   Further, according to the temperature control method for the material to be heated, first, the entire material to be heated is uniformly heated to a predetermined temperature by a plurality of regenerative heating devices that perform alternating combustion, and then, the end of the extraction unit from the middle of the conveyance path By a plurality of continuous heating devices arranged in a region divided into a plurality along the furnace width direction according to the target temperature distribution in the longitudinal direction of the material to be heated. Since the temperature of the heating material in the furnace width direction is controlled, it becomes possible to perform gradient heating or reverse gradient heating to be applied to the material to be heated.

本発明によれば、傾斜加熱及び逆傾斜加熱を確実に行うことが可能な加熱炉及び被加熱材の温度制御方法を提供できる。
また本発明によれば、傾斜加熱及び逆傾斜加熱を行った場合の被加熱材の先端部と後端部に必要な温度差を付与することができる。
更に、本発明によれば、被加熱材の温度分布が次第に滑らかな傾斜を持つようになり、被加熱材の温度の急変が少なくなって滑らかな温度傾斜を得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, the heating furnace and the temperature control method of a to-be-heated material which can perform inclined heating and reverse inclination heating reliably can be provided.
Moreover, according to this invention, a required temperature difference can be provided to the front-end | tip part and rear-end part of a to-be-heated material at the time of performing gradient heating and reverse inclination heating.
Furthermore, according to the present invention, the temperature distribution of the material to be heated gradually has a smooth inclination, and a sudden temperature change of the material to be heated is reduced, so that a smooth temperature inclination can be obtained.

以下、図面を参照しながら、本発明の実施形態である加熱炉及び被加熱材の温度制御方法について説明する。尚、以下に示す図面は、加熱炉の構成を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際の加熱炉の寸法関係等とは異なる場合がある。
図1は本発明の実施形態である加熱炉を示す斜視模式図であり、図2は、図1に示す加熱炉の側面模式図であり、図3は、図1に示す加熱炉の平面模式図である。また、図4は、図3のA−A’線に対応する断面模式図である。
Hereinafter, a heating furnace and a temperature control method for a material to be heated, which are embodiments of the present invention, will be described with reference to the drawings. The drawings shown below are for explaining the configuration of the heating furnace, and the size, thickness, dimensions, and the like of each part shown in the drawings may differ from the actual dimensional relationship of the heating furnace.
1 is a schematic perspective view showing a heating furnace according to an embodiment of the present invention, FIG. 2 is a schematic side view of the heating furnace shown in FIG. 1, and FIG. 3 is a schematic plan view of the heating furnace shown in FIG. FIG. 4 is a schematic cross-sectional view corresponding to the line AA ′ of FIG.

図1〜図4に示すように、本実施形態の加熱炉1は、装入部1A側から抽出部1B側に向けて被加熱材を順次搬送する搬送路2と、装入部1Aから抽出部1Bまでの間の搬送路2に沿って設けられた炉内室3と、搬送路2の搬送方向両側に配置された複数の蓄熱式燃焼装置4と、搬送路2の途中から抽出部1Bに至る間の搬送路2の上側に配置された複数の連続式燃焼装置5とから概略構成されている。
本実施形態の加熱炉1においては、被加熱材が搬送路2によって装入部1A側から抽出部1B側に連続的に搬送される際に、まず、蓄熱式燃焼装置4によって被加熱材を所定温度まで均一加熱させ、次いで、連続式燃焼装置5によって被加熱材の長手方向に沿う温度が傾斜を持つように被加熱材を傾斜加熱または逆傾斜加熱させる。
As shown in FIGS. 1 to 4, the heating furnace 1 of the present embodiment extracts from the charging section 1 </ b> A and the conveying path 2 that sequentially conveys the material to be heated from the charging section 1 </ b> A side toward the extracting section 1 </ b> B side. The furnace chamber 3 provided along the conveyance path 2 up to the section 1B, the plurality of regenerative combustion devices 4 disposed on both sides in the conveyance direction of the conveyance path 2, and the extraction section 1B from the middle of the conveyance path 2 And a plurality of continuous combustion devices 5 arranged on the upper side of the conveying path 2.
In the heating furnace 1 of the present embodiment, when the material to be heated is continuously conveyed from the charging unit 1A side to the extraction unit 1B side by the conveyance path 2, first, the material to be heated is stored by the regenerative combustion device 4. The material to be heated is uniformly heated to a predetermined temperature, and then the material to be heated is subjected to gradient heating or reverse gradient heating so that the temperature along the longitudinal direction of the material to be heated has an inclination by the continuous combustion device 5.

本実施形態の加熱炉1によって加熱処理される被加熱材は、鋳造後のスラブ、ビレット、ブルーム等の鋼材である。これら被加熱材は、本実施形態の加熱炉1によって傾斜加熱または逆傾斜加熱がなされた後に、加熱炉1の後段に配置された熱間圧延機による熱間圧延に供される。   The to-be-heated material heat-processed by the heating furnace 1 of this embodiment is steel materials, such as a slab, billet, and bloom after casting. These materials to be heated are subjected to gradient heating or reverse gradient heating by the heating furnace 1 of the present embodiment, and then subjected to hot rolling by a hot rolling mill disposed at the subsequent stage of the heating furnace 1.

被加熱材は、加熱炉1に備えられた搬送路2によって連続的に搬送される。搬送路2としては、例えば、被加熱材を連続的に搬送可能なウォーキングビーム装置等を用いることができる。
また、被加熱材は、その長手方向が搬送方向とほぼ直交する方向に向けられた姿勢で搬送路2を搬送される。すなわち、被加熱材は、その長手方向が炉幅方向に沿うような姿勢で搬送される。
The material to be heated is continuously conveyed by the conveyance path 2 provided in the heating furnace 1. As the conveyance path 2, for example, a walking beam device or the like that can continuously convey the material to be heated can be used.
Further, the material to be heated is transported along the transport path 2 in a posture in which the longitudinal direction is directed in a direction substantially orthogonal to the transport direction. That is, the material to be heated is transported in such a posture that its longitudinal direction is along the furnace width direction.

次に、搬送路2の左右両側には、装入部1Aから抽出部1Bの間にかけて複数の蓄熱式燃焼装置4が配置されている。蓄熱式燃焼装置4は例えば、FDI型のリジェネバーナーを用いることができる。図1〜4に示す加熱炉1においては、蓄熱式燃焼装置4のバーナー口4aが炉内室3の側壁面3aに配置されており、バーナー口4aからフレームFが炉幅方向に沿って吹き出されるようになっている。
また、蓄熱式燃焼装置4は、搬送路2の上側及び下側において、搬送路2の搬送方向の側方に並んで配置されている。この構成によって、被加熱材が搬送路2を搬送される際に、被加熱材を、その上側及び下側から加熱できるようになっている。
Next, on both the left and right sides of the conveyance path 2, a plurality of regenerative combustion apparatuses 4 are arranged between the charging unit 1A and the extraction unit 1B. For example, an FDI type regenerative burner can be used as the heat storage combustion device 4. In the heating furnace 1 shown in FIGS. 1 to 4, the burner port 4 a of the regenerative combustion device 4 is arranged on the side wall surface 3 a of the furnace chamber 3, and the frame F blows out from the burner port 4 a along the furnace width direction. It has come to be.
Further, the regenerative combustion apparatus 4 is arranged side by side on the upper side and lower side of the transport path 2 in the transport direction of the transport path 2. With this configuration, the heated material can be heated from the upper side and the lower side when the heated material is conveyed along the conveyance path 2.

但し、図1〜3に示すように、連続式燃焼装置5が配置された抽出部1B寄りの搬送路2の上側には、蓄熱式燃焼装置4は配置されない。蓄熱式燃焼装置4が連続式燃焼装置5の配置領域に配置されると、蓄熱式燃焼装置4によって被加熱材が均一加熱されてしまい、傾斜加熱または逆傾斜加熱を行うことが困難になるので好ましくない。
一方、抽出部1B寄りの搬送路2の下側には、被加熱材の下面側を十分に加熱するために蓄熱式燃焼装置4を配置する。
However, as shown in FIGS. 1 to 3, the regenerative combustion device 4 is not disposed on the upper side of the conveyance path 2 near the extraction unit 1 </ b> B where the continuous combustion device 5 is disposed. If the regenerative combustion apparatus 4 is arranged in the arrangement region of the continuous combustion apparatus 5, the material to be heated is uniformly heated by the regenerative combustion apparatus 4, and it becomes difficult to perform gradient heating or reverse gradient heating. It is not preferable.
On the other hand, a regenerative combustion device 4 is disposed below the conveyance path 2 near the extraction unit 1B in order to sufficiently heat the lower surface side of the material to be heated.

また、蓄熱式燃焼装置4においては、例えば、搬送路2の両側に対向して配置された蓄熱式燃焼装置4,4同士の間で交番燃焼するように構成されている。一方の蓄熱式燃焼装置が燃焼する際に、他方の蓄熱式燃焼装置がその燃焼ガスを吸引することによって、他方の蓄熱式燃焼装置に内蔵された蓄熱材を加熱させる。次に、他方の蓄熱式燃焼装置を燃焼させる際に、加熱された蓄熱材に燃焼用の空気を接触させて空気を予熱させる。このようにして交番燃焼することで、熱エネルギーを効率的に利用できる。なお、交番燃焼する蓄熱式燃焼装置の組合せは、搬送路2の両側に配置されたもの同士に限定されるものではなく、例えば隣同士に配置された蓄熱式燃焼装置の間で交番燃焼させてもよい。   Further, the regenerative combustion apparatus 4 is configured so as to alternately burn between the regenerative combustion apparatuses 4, 4 disposed opposite to both sides of the conveyance path 2, for example. When one heat storage type combustion device burns, the other heat storage type combustion device sucks the combustion gas, thereby heating the heat storage material built in the other heat storage type combustion device. Next, when the other heat storage type combustion apparatus is burned, the air for combustion is brought into contact with the heated heat storage material to preheat the air. By alternating combustion in this way, heat energy can be used efficiently. In addition, the combination of the regenerative combustion apparatus which carries out alternating combustion is not limited to what is arrange | positioned at the both sides of the conveyance path 2, For example, it is made to carry out alternating combustion between the regenerative combustion apparatuses arrange | positioned adjacent. Also good.

図5には、蓄熱式燃焼装置による炉内温度と、炉幅方向との関係をグラフで示す。蓄熱式燃焼装置には、FDIタイプリジェネバーナーとガンタイプリジェネバーナーとがあるが、図5に示すように、FDIタイプの方がガンタイプよりも、炉内室の温度分布を均一にできることがわかる。従って、蓄熱式燃焼装置による被加熱材の加熱は、FDI型リジェネバーナーを用いることが好ましい。   In FIG. 5, the relationship between the furnace temperature by a thermal storage type combustion apparatus and a furnace width direction is shown with a graph. There are FDI type regenerative burners and gun type regenerative burners in the regenerative combustion apparatus. As shown in FIG. 5, it can be seen that the FDI type can make the temperature distribution in the furnace chamber more uniform than the gun type. . Therefore, it is preferable to use an FDI regenerative burner for heating the material to be heated by the regenerative combustion apparatus.

次に、連続式燃焼装置5は、図1に示すように、搬送路2の上側にあって、搬送路2の途中から抽出部1Bまでの間で炉長方向に沿って連続して配置されている。ここで、連続して配置とは、複数の連続式燃焼装置5が所定の間隔を空けて並んで配置された状態をいう。連続式燃焼装置5は搬送路2の上側に位置しており、より具体的には連続式燃焼装置5のバーナー口が炉内室3の天井面3bに配置されている。連続式燃焼装置5が配置される天井面3bは、それ以外の天井面3cに比べて搬送路2に接近して配置されている。また、連続式燃焼装置5は、図1〜図4に示すように、炉幅方向に沿って4つに均等に分割された領域5A〜5Dにそれぞれ配置されている。なお、後述するように、分割の数は3つ以上であることが好ましく、4つに限定されるものではない。これら連続式燃焼装置5は、燃焼量を自在に調整することが可能であって、各領域5A〜5D毎に燃焼量を制御できるようになっている。   Next, as shown in FIG. 1, the continuous combustion device 5 is located on the upper side of the conveyance path 2 and is continuously arranged along the furnace length direction from the middle of the conveyance path 2 to the extraction unit 1B. ing. Here, “continuous arrangement” refers to a state in which a plurality of continuous combustion apparatuses 5 are arranged side by side with a predetermined interval. The continuous combustion device 5 is located above the conveyance path 2, and more specifically, the burner port of the continuous combustion device 5 is disposed on the ceiling surface 3 b of the furnace chamber 3. The ceiling surface 3b on which the continuous combustion apparatus 5 is disposed is disposed closer to the transport path 2 than the other ceiling surface 3c. Moreover, as shown in FIGS. 1-4, the continuous combustion apparatus 5 is each arrange | positioned at the area | regions 5A-5D divided | segmented equally into four along the furnace width direction. As will be described later, the number of divisions is preferably three or more, and is not limited to four. These continuous combustion devices 5 can freely adjust the combustion amount, and can control the combustion amount for each of the regions 5A to 5D.

連続式燃焼装置5は、フレームを連続的に吹き出して燃焼する燃焼装置である。連続式燃焼装置5としては、例えば、炉内室3の天井面3bからフレームを下方に向けて吹き出させるルーフバーナーや、フレームを炉長方向に吹き出させる軸流バーナーのいずれでもよいが、好ましくはルーフバーナーがよい。   The continuous combustion device 5 is a combustion device that blows out a flame continuously and burns it. The continuous combustion device 5 may be, for example, either a roof burner that blows the frame downward from the ceiling surface 3b of the furnace chamber 3 or an axial burner that blows the frame in the furnace length direction. A roof burner is good.

連続式燃焼装置5の配置構成について更に詳細に説明すると、連続式燃焼装置5は、図1〜図3に示すように、搬送路2の途中から抽出部1Bまでの間の炉長方向に沿って連続して配置されている。連続式燃焼装置5の炉長方向に沿う配置長は、加熱炉1の全炉長に対して15%以上80%以下の割合の長さが好ましい。すなわち、加熱炉1の全炉長をLとしたとき、連続式燃焼装置5が配置されている領域の長さは0.15L〜0.80Lの範囲が好ましい。   The arrangement configuration of the continuous combustion device 5 will be described in more detail. As shown in FIGS. 1 to 3, the continuous combustion device 5 is along the furnace length direction from the middle of the conveyance path 2 to the extraction unit 1B. Are arranged consecutively. The arrangement length along the furnace length direction of the continuous combustion apparatus 5 is preferably 15% or more and 80% or less of the total furnace length of the heating furnace 1. That is, when the total furnace length of the heating furnace 1 is L, the length of the region where the continuous combustion apparatus 5 is disposed is preferably in the range of 0.15L to 0.80L.

連続式燃焼装置5の炉長方向に沿う配置長を加熱炉1の全炉長に対してどの程度の割合にするかは、付与すべき被加熱材長手方向温度差と加熱炉1の連続式燃焼装置5を配置した炉内室3の炉幅方向の温度差等から決められる。被加熱材長手方向温度差とは、加熱後の被加熱材の長手方向先端部と後端部の温度差である。炉内室3の炉幅方向の温度差とは、炉幅方向に沿って連続式加熱装置5の燃焼量を制御した場合の搬送路2上における最高温度と最低温度の温度差であり、連続式燃焼装置5の必要な配置長の下限を決める場合には、燃焼装置の能力や加熱炉内の耐火物の耐久性などから決まる最大温度差で決める。図6には、加熱炉抽出時の被加熱材の先端部の温度が1200℃となり、かつ連続式燃焼装置を配置した炉内室の炉幅方向の温度差が100℃となるようにした場合の加熱炉1の全炉長に対する連続式燃焼装置5の炉長方向に沿う配置長の割合と、被加熱材の長手温度差との関係をグラフで示している。被加熱材長手方向温度差はこれまでの実績から約30℃つけられればよく、図6の条件であれば、連続式燃焼装置5の長手方向に沿う配置長の割合を15%以上にすればよいことがわかる。炉内室3の温度差が100℃よりも小さい場合は配置長の割合を大きくすればよいが、連続式燃焼装置5の配置長の割合が大きくなるほど省エネルギーに対しては不利になるため、80%を上限としている。   The ratio of the arrangement length along the furnace length direction of the continuous combustion apparatus 5 to the total furnace length of the heating furnace 1 depends on the temperature difference in the longitudinal direction of the material to be applied and the continuous type of the heating furnace 1. It is determined from the temperature difference in the furnace width direction of the furnace chamber 3 in which the combustion device 5 is disposed. The temperature difference in the longitudinal direction of the material to be heated is the temperature difference between the front end portion and the rear end portion in the longitudinal direction of the heated material after heating. The temperature difference in the furnace width direction of the furnace chamber 3 is a temperature difference between the highest temperature and the lowest temperature on the conveyance path 2 when the combustion amount of the continuous heating device 5 is controlled along the furnace width direction. When determining the lower limit of the required arrangement length of the combustion apparatus 5, the maximum temperature difference determined by the capacity of the combustion apparatus and the durability of the refractory in the heating furnace is determined. FIG. 6 shows the case where the temperature at the front end of the heated material at the time of extraction in the heating furnace is 1200 ° C. and the temperature difference in the furnace width direction of the furnace chamber in which the continuous combustion apparatus is arranged is 100 ° C. The relationship between the ratio of the arrangement length along the furnace length direction of the continuous combustion apparatus 5 to the total furnace length of the heating furnace 1 and the longitudinal temperature difference of the material to be heated is shown in a graph. The temperature difference in the longitudinal direction of the material to be heated has only to be about 30 ° C. from the past results. If the conditions in FIG. 6 are satisfied, the ratio of the arrangement length along the longitudinal direction of the continuous combustion device 5 should be 15% or more. I know it ’s good. When the temperature difference in the furnace chamber 3 is smaller than 100 ° C., the ratio of the arrangement length may be increased. However, as the ratio of the arrangement length of the continuous combustion apparatus 5 increases, it becomes disadvantageous for energy saving. % Is the upper limit.

また、連続式燃焼装置5は、図1〜図4に示すように、炉幅方向に沿って分割された複数の領域5A〜5Dにそれぞれ配置されている。本実施形態では、領域の数が4つの例を示しているが、領域の数は3以上であることが好ましく、3〜5であればなおよい。
一つの領域には、複数の連続式燃焼装置5が炉長方向にそって2列に並べられている。図4に示すように、2列に並べられた連続式燃焼装置5はそれぞれ対になっている。すなわち、一本の燃料ガス供給路6から分岐された2本の燃料ガス供給路6a、6bに、連続式燃焼装置5がそれぞれ接続されている。
連続式燃焼装置5は、領域5A〜5D毎に燃焼量を調整できるようになっている。例えば、炉幅方向一端側の領域5Aにある連続式燃焼装置を、ある定格の燃焼量で燃焼させ、その隣の領域5Bにある連続式燃焼装置を領域5Aよりも少ない燃焼量で燃焼させ、以下同様に領域5C、5Dについても燃焼量を徐々に低下させることが可能になっている。これにより、連続式燃焼装置5の下の炉内室3の炉内温度を、炉幅方向に沿って傾斜させることが可能になっている。これにより例えば、搬送路2上の被加熱材の長手方向の最高温度と最低温度の温度差を、30℃以上にすることが可能になっている。
Moreover, the continuous combustion apparatus 5 is each arrange | positioned at several area | region 5A-5D divided | segmented along the furnace width direction, as shown in FIGS. In the present embodiment, an example in which the number of regions is four is shown, but the number of regions is preferably 3 or more, and more preferably 3 to 5.
In one region, a plurality of continuous combustion apparatuses 5 are arranged in two rows along the furnace length direction. As shown in FIG. 4, the continuous combustion apparatuses 5 arranged in two rows are in pairs. That is, the continuous combustion apparatus 5 is connected to the two fuel gas supply paths 6 a and 6 b branched from the single fuel gas supply path 6.
The continuous combustion apparatus 5 can adjust the combustion amount for each of the regions 5A to 5D. For example, the continuous combustion device in the region 5A on one end side in the furnace width direction is burned with a certain rated combustion amount, and the continuous combustion device in the adjacent region 5B is burned with a smaller combustion amount than the region 5A, Similarly, the combustion amount can be gradually reduced in the regions 5C and 5D. Thereby, it is possible to incline the furnace temperature of the furnace chamber 3 under the continuous combustion apparatus 5 along the furnace width direction. Thereby, for example, the temperature difference between the maximum temperature and the minimum temperature in the longitudinal direction of the heated material on the conveyance path 2 can be set to 30 ° C. or more.

連続式燃焼装置の領域5A〜5D毎の燃焼量は、被加熱材の長手方向における目標温度分布に応じて調整する必要がある。例えば、被加熱材の長手方向における目標温度分布が、被加熱材の先端部の加熱目標温度をt℃とし、後端部の加熱目標温度をt℃(例えばt>t)とし、先端部と後端部との間における温度が被加熱材の長手方向に沿って所定の割合で変化する温度分布であったとする。この場合の連続式燃焼装置の領域5A〜5D毎の燃焼量は、被加熱材の加熱後の温度分布が目標温度分布に一致するように、連続式燃焼装置5の長手方向に沿う配置長の割合を勘案して、炉内室3の温度差が最適となるように調整すればよい。 The amount of combustion for each of the regions 5A to 5D of the continuous combustion apparatus needs to be adjusted according to the target temperature distribution in the longitudinal direction of the material to be heated. For example, in the target temperature distribution in the longitudinal direction of the material to be heated, the heating target temperature at the front end of the material to be heated is t 1 ° C, and the heating target temperature at the rear end is t 2 ° C (for example, t 1 > t 2 ). Suppose that the temperature between the front end portion and the rear end portion is a temperature distribution that changes at a predetermined rate along the longitudinal direction of the material to be heated. In this case, the combustion amount for each of the regions 5A to 5D of the continuous combustion apparatus has an arrangement length along the longitudinal direction of the continuous combustion apparatus 5 so that the temperature distribution after heating of the material to be heated matches the target temperature distribution. The ratio may be adjusted so that the temperature difference in the furnace chamber 3 is optimal.

図7には、後端部の温度を先端部の温度よりも低くする逆傾斜加熱した被加熱材の長手位置と、均一加熱した場合との温度差分との関係をグラフで示す。このグラフは、連続式燃焼装置5を炉幅方向に沿って2〜5の領域に分割して配置して被加熱材を加熱したときの、被加熱材の長手方向の温度分布を示すものである。図7の横軸である被加熱材の長手位置は、被加熱材の長手方向の全長を1としたときの、長手方向先端部からの距離を比率で表したものである。例えば、長手位置が0.2の位置は、長手方向先端部から全長の1/5(=0.2)の距離だけ離れた位置を示す。また、図7の縦軸である均一加熱との温度差分とは、被加熱材を均一加熱した場合の温度を基準(ゼロ)としたときの、被加熱材の温度との差分を表している。 図7では、被加熱材の後端部(長手位置=1.0)の温度が、先端部(長手位置=0)の温度より30℃低くなるように傾斜加熱を行った場合の、被加熱材の温度分布を示している。
図7に示すように、連続式燃焼装置5を炉幅方向に沿って配置する際の分割数を2から5に順次増やすことによって、被加熱材の温度分布が次第に滑らかな傾斜を持つようになることがわかる。例えば、分割数が2の場合は、長手位置が0.4〜0.6の範囲において被加熱材の温度が急激に変化しているが、分割数が3以上になると、被加熱材の温度の急変が少なくなって滑らかな温度傾斜が得られており、3以上の領域に分割することが好ましい。
FIG. 7 is a graph showing the relationship between the longitudinal position of the material to be heated that has been reversely inclined heated so that the temperature at the rear end is lower than the temperature at the front end, and the temperature difference between when the material is uniformly heated. This graph shows the temperature distribution in the longitudinal direction of the heated material when the continuous combustion device 5 is divided into 2 to 5 regions along the furnace width direction and the heated material is heated. is there. The longitudinal position of the material to be heated, which is the horizontal axis in FIG. 7, represents the distance from the front end portion in the longitudinal direction when the total length in the longitudinal direction of the material to be heated is 1. For example, a position where the longitudinal position is 0.2 indicates a position separated from the longitudinal end by a distance of 1/5 (= 0.2) of the entire length. Moreover, the temperature difference with the uniform heating which is the vertical axis in FIG. 7 represents the difference with the temperature of the heated material when the temperature when the heated material is heated uniformly is used as a reference (zero). . In FIG. 7, the material to be heated is heated when the heating is performed so that the temperature of the rear end (longitudinal position = 1.0) of the material to be heated is 30 ° C. lower than the temperature of the front end (longitudinal position = 0). The temperature distribution of the material is shown.
As shown in FIG. 7, the temperature distribution of the material to be heated gradually has a smooth slope by sequentially increasing the number of divisions when arranging the continuous combustion apparatus 5 along the furnace width direction from 2 to 5. I understand that For example, when the number of divisions is 2, the temperature of the material to be heated is rapidly changed in the range where the longitudinal position is 0.4 to 0.6, but when the number of divisions is 3 or more, the temperature of the material to be heated is Therefore, it is preferable to divide into three or more regions.

なお、燃焼量の制御は、上記のように領域5Aから領域5Dに向けて順次燃焼量を低下させる場合に限らず、領域5Aから領域5Dに向けて順次燃焼量を増加させてもよい。また、領域5A〜領域5Dの燃焼量をすべて同じにして均一加熱を行ってもよい。   Note that the control of the combustion amount is not limited to the case where the combustion amount is sequentially decreased from the region 5A to the region 5D as described above, and the combustion amount may be sequentially increased from the region 5A to the region 5D. Further, uniform heating may be performed with the same amount of combustion in the regions 5A to 5D.

また、連続式燃焼装置を炉長方向に沿って複数の領域に更に分割し、この炉長方向に沿って分割した領域毎に、炉幅方向の燃焼量を調整してもよい。   Further, the continuous combustion apparatus may be further divided into a plurality of regions along the furnace length direction, and the combustion amount in the furnace width direction may be adjusted for each region divided along the furnace length direction.

次に、本実施形態の加熱炉1による被加熱材の温度制御方法について説明する。
まず、図1乃至図4に示す加熱炉1を準備し、被加熱材として例えば、鋳造後のスラブを用意する。そしてスラブ(被加熱材)を装入部1Aから装入する。スラブを装入する際は、スラブの長手方向が加熱炉内に設けた搬送路の搬送方向と直交するような姿勢で装入する。装入されたスラブは、抽出部1B側に向けて炉内室3内を搬送路2に沿って搬送される。このとき、搬送路2の搬送方向両側に配置された蓄熱式燃焼装置4によってスラブ(被加熱材)を均一に加熱する。
Next, the temperature control method of the material to be heated by the heating furnace 1 of the present embodiment will be described.
First, the heating furnace 1 shown in FIG. 1 thru | or FIG. 4 is prepared, and the slab after casting is prepared as a to-be-heated material, for example. And a slab (material to be heated) is charged from the charging portion 1A. When the slab is charged, the slab is charged in such a posture that the longitudinal direction of the slab is orthogonal to the transfer direction of the transfer path provided in the heating furnace. The charged slab is transported along the transport path 2 in the furnace chamber 3 toward the extraction unit 1B. At this time, the slab (material to be heated) is uniformly heated by the regenerative combustion devices 4 arranged on both sides of the conveyance path 2 in the conveyance direction.

次に、蓄熱式燃焼装置4によって均一に加熱されたスラブを、搬送路2に沿って連続式燃焼装置5が配置されている領域に搬送する。連続式燃焼装置5は、図1乃至図4に示すように、炉幅方向に沿って複数に分割された領域5A〜5Dに配置されているが、傾斜加熱または逆傾斜加熱する場合は、連続式燃焼装置5の燃焼量を各領域5A〜5B毎に制御する。例えば、領域5Aから領域5Dに向けて順次燃焼量を低下させるように制御する。これにより、炉内室3の炉内温度が、領域5A付近で最も高くなり、領域5D側に向けて順次温度が低くなる。このような状態の炉内室3の内部をスラブ(被加熱材)が搬送されることによって、領域5A側のスラブの先端部の温度が、領域5D側のスラブの後端部の温度よりも高くなるように加熱される。また、スラブの先端部と後端部との間では、スラブの温度が傾斜した状態になる。このようにして、スラブ(被加熱材)が傾斜加熱または逆傾斜加熱される。   Next, the slab heated uniformly by the regenerative combustion device 4 is transported along the transport path 2 to a region where the continuous combustion device 5 is disposed. As shown in FIGS. 1 to 4, the continuous combustion apparatus 5 is disposed in the regions 5 </ b> A to 5 </ b> D divided into a plurality along the furnace width direction. The combustion amount of the combustion chamber 5 is controlled for each of the regions 5A to 5B. For example, the control is performed so that the combustion amount is sequentially decreased from the region 5A toward the region 5D. Thereby, the furnace temperature of the furnace chamber 3 becomes the highest in the vicinity of the region 5A, and the temperature gradually decreases toward the region 5D side. By transporting the slab (material to be heated) through the interior of the furnace chamber 3 in such a state, the temperature of the tip of the slab on the region 5A side is higher than the temperature of the rear end of the slab on the region 5D side. Heated to be high. Further, the temperature of the slab is inclined between the front end portion and the rear end portion of the slab. In this way, the slab (material to be heated) is subjected to gradient heating or reverse gradient heating.

以上説明したように、本実施形態の加熱炉1によれば、まず交番燃焼する複数の蓄熱式加熱装置が備えられているので、連続式燃焼装置によって傾斜加熱または逆傾斜加熱する前の被加熱材を予め所定の温度に被加熱材全体を均一に加熱しておくことができる。そして炉幅方向に沿って複数に分割された領域に配置され前記領域毎に燃焼量制御が可能な複数の連続式燃焼装置5が、搬送路2の途中から抽出部1B端に至る間に沿って連続して配置されているため、炉幅方向に沿って炉内温度に必要とする温度差をつけることが可能になり、被加熱材に付与すべき傾斜加熱または逆傾斜加熱を行うことができる。   As described above, according to the heating furnace 1 of the present embodiment, since a plurality of regenerative heating devices that perform alternating combustion are provided first, the object to be heated before the gradient heating or the reverse gradient heating is performed by the continuous combustion device. The whole material to be heated can be uniformly heated to a predetermined temperature in advance. A plurality of continuous combustion devices 5 arranged in a plurality of regions along the furnace width direction and capable of controlling the amount of combustion for each region extend along the way from the middle of the conveyance path 2 to the end of the extraction unit 1B. Therefore, it is possible to make a necessary temperature difference in the furnace temperature along the furnace width direction, and to perform inclined heating or reverse inclined heating to be applied to the material to be heated. it can.

また、加熱炉1の全炉長に対する連続式燃焼装置5の炉長方向に沿う配置長の割合を15%以上、好ましくは15%以上80%以下とすることで、被加熱材に付与すべき傾斜加熱または逆傾斜加熱を行うことができ、被加熱材の先端部と他端部の温度差を十分なものにできる。
更に、連続式燃焼装置5が、炉幅方向に沿って3つ以上に分割された領域に配置されているので、被加熱材の温度分布が次第に滑らかな傾斜を持つように加熱できる。
更にまた、蓄熱式燃焼装置4が、FDI型のリジェネバーナーであれば、連続式燃焼装置によって加熱される前の被加熱材を均一に加熱できる。
In addition, the ratio of the arrangement length along the furnace length direction of the continuous combustion device 5 to the total furnace length of the heating furnace 1 should be 15% or more, preferably 15% or more and 80% or less, so that it should be given to the material to be heated. Inclination heating or reverse inclination heating can be performed, and the temperature difference between the front end portion and the other end portion of the heated material can be made sufficient.
Furthermore, since the continuous combustion apparatus 5 is arrange | positioned in the area | region divided | segmented into 3 or more along the furnace width direction, it can heat so that the temperature distribution of a to-be-heated material may have a gradually smooth inclination.
Furthermore, if the heat storage combustion device 4 is an FDI type regenerative burner, the material to be heated before being heated by the continuous combustion device can be heated uniformly.

また、本実施形態の被加熱材の温度制御方法によれば、交番燃焼する複数の蓄熱式加熱装置によって所定の温度に被加熱材全体を均一に加熱し、搬送路2の途中から抽出部1B端に至る間に連続して配置され、かつ炉幅方向に沿って複数に分割された領域に配置された複数の連続式加熱装置5によって、被加熱材の長手方向における目標温度分布に応じて被加熱材の炉幅方向の温度を制御するので、被加熱材に付与すべき傾斜加熱または逆傾斜加熱を行うことができる。
また、炉幅方向に沿って複数に分割された領域に配置された複数の連続式燃焼装置5が、搬送路2の途中から抽出部1B端に至る間の炉長方向に沿って連続して配置されているため、傾斜加熱された被加熱材に対して均一加熱が行われることがなく、被加熱材の温度勾配を大きくできる。
Moreover, according to the temperature control method of the material to be heated according to the present embodiment, the entire material to be heated is uniformly heated to a predetermined temperature by a plurality of regenerative heating devices that perform alternating combustion, and the extraction unit 1B is moved from the middle of the conveyance path 2. According to the target temperature distribution in the longitudinal direction of the material to be heated, by a plurality of continuous heating devices 5 arranged continuously in the furnace width direction and arranged in a plurality of regions along the furnace width direction. Since the temperature of the material to be heated in the furnace width direction is controlled, it is possible to perform gradient heating or reverse gradient heating to be applied to the material to be heated.
A plurality of continuous combustion devices 5 arranged in a region divided into a plurality along the furnace width direction are continuously provided along the furnace length direction from the middle of the conveyance path 2 to the end of the extraction unit 1B. Since they are arranged, uniform heating is not performed on the material to be heated that is heated at an inclination, and the temperature gradient of the material to be heated can be increased.

図1乃至図4に示す構造で、炉長、炉幅、連続式燃焼装置の炉長方向に沿う配置長、連続式燃焼装置の設置ピッチを下記表1の通りに設定した加熱炉を用意した。前記加熱炉は被加熱材の搬送方向に沿って4つのゾーンに分割されており、装入側から、第1加熱帯、第2加熱帯、第3加熱帯、均熱帯と称す。加熱炉A〜Cは、抽出側に近い第3加熱帯と均熱帯の上側に連続式燃焼装置としてルーフバーナーを配置し、それ以外の領域には蓄熱式燃焼装置を配置して、加熱炉の全炉長に対する連続式燃焼装置の炉長方向に沿う配置長の割合を50%とし、連続式燃焼装置の炉長方向の分割数は2つとした。加熱炉Dは、均熱帯の上側にルーフバーナーを配置し、それ以外の領域には蓄熱式バーナーを配置して、加熱炉の全炉長に対する連続式燃焼装置の炉長方向に沿う配置長の割合を15%とした。加熱炉A,C,Dの連続式燃焼装置の炉幅方向の分割数は4つとした。加熱炉Bの連続式燃焼装置の炉幅方向の分割数は2つとした。また、加熱炉A,B,DのルーフバーナーはFDI型とし、加熱炉Cのルーフバーナーはガン型とした。   A heating furnace having the structure shown in FIGS. 1 to 4 was prepared with the furnace length, the furnace width, the arrangement length along the furnace length direction of the continuous combustion apparatus, and the installation pitch of the continuous combustion apparatus set as shown in Table 1 below. . The heating furnace is divided into four zones along the conveying direction of the material to be heated, and is referred to as a first heating zone, a second heating zone, a third heating zone, and a soaking zone from the charging side. In the heating furnaces A to C, a roof burner is disposed as a continuous combustion device on the third heating zone close to the extraction side and above the soaking zone, and a heat storage combustion device is disposed in the other region, The ratio of the arrangement length along the furnace length direction of the continuous combustion apparatus to the total furnace length was 50%, and the number of divisions in the furnace length direction of the continuous combustion apparatus was two. In the heating furnace D, a roof burner is arranged on the upper side of the soaking zone, and a regenerative burner is arranged in the other area, and the arrangement length along the furnace length direction of the continuous combustion apparatus with respect to the entire furnace length of the heating furnace The ratio was 15%. The number of divisions in the furnace width direction of the continuous combustion apparatus of the heating furnaces A, C, and D was four. The number of divisions in the furnace width direction of the continuous combustion apparatus of the heating furnace B was two. Further, the roof burners of the heating furnaces A, B, and D were FDI type, and the roof burner of the heating furnace C was a gun type.

被加熱材としては、表2に示すように長さ13.0〜13.2m、幅1.0〜1.1m、厚み250〜251mmのスラブを用意した。本実施例では、加熱炉に装入する際のスラブの温度を20℃及び600℃の2水準とした。   As a material to be heated, as shown in Table 2, slabs having a length of 13.0 to 13.2 m, a width of 1.0 to 1.1 m, and a thickness of 250 to 251 mm were prepared. In this example, the temperature of the slab when charged in the heating furnace was set to two levels of 20 ° C. and 600 ° C.

スラブ先端部と後端部の加熱目標温度は表2に示すとおりとし、スラブ先端部よりも後端部の温度を高くする傾斜加熱と、スラブ先端部よりも後端部の温度を低くする逆傾斜加熱を行った。それぞれ目標温度までスラブを加熱するために、加熱炉の各ゾーンの炉温が表3に示すとおりになるように、蓄熱式バーナーを配置した各ゾーンの炉長方向中央、かつ炉幅方向中央に配置した炉温計(図示せず)と、連続式燃焼装置を配置したゾーンの炉幅方向に分割した領域の中央に配置した炉温計(図示せず)での測温結果をみながら燃焼装置の燃焼量を調整した。なお、表3の第3加熱帯と均熱帯の炉温は連続式燃焼装置を設置した上部側の炉温であり、分割した4つの領域を順番に先端部、中央部1、中央部2、後端部と称し、それぞれの領域毎の炉温を示している。但し、炉幅方向に2分割した加熱炉Bの炉温計は、4分割した加熱炉と同じ位置に設置した。蓄熱式燃焼装置を配置した下部側の炉温は、第3加熱帯で1250℃、均熱帯で1220℃とした。
加熱炉から抽出する直前のスラブの先端部温度と後端部温度を測定した結果を表4に示す。スラブの先端部と後端部の温度は、放射温度計を用いて、加熱炉から抽出直前に、スラブの上面側の端部から約300mm位置で測定した結果である。表4に示す通りほぼ目標どおりの温度差をつけて、傾斜加熱あるいは逆傾斜加熱を実施できた。
The heating target temperatures of the slab tip and the rear end are as shown in Table 2. Inclined heating that raises the temperature of the rear end than the slab tip and the reverse that lowers the temperature of the rear end than the slab tip Inclined heating was performed. In order to heat the slab to the target temperature, the furnace temperature in each zone of the heating furnace is as shown in Table 3, and in the center in the furnace length direction and the center in the furnace width direction of each zone where the regenerative burner is arranged. Combustion while observing the temperature measurement results of the furnace thermometer (not shown) placed and the furnace thermometer (not shown) placed in the center of the zone divided in the furnace width direction of the zone where the continuous combustion device is placed The combustion amount of the device was adjusted. In addition, the 3rd heating zone and soaking zone furnace temperature of Table 3 are the furnace temperature of the upper part side which installed the continuous combustion apparatus, and divided | segmented four area | regions into a front-end | tip part, the center part 1, the center part 2, It is referred to as the rear end, and indicates the furnace temperature for each region. However, the furnace thermometer of the heating furnace B divided into two in the furnace width direction was installed at the same position as the heating furnace divided into four. The furnace temperature on the lower side where the regenerative combustion apparatus was arranged was 1250 ° C. in the third heating zone and 1220 ° C. in the soaking zone.
Table 4 shows the results of measuring the front end temperature and the rear end temperature of the slab immediately before extraction from the heating furnace. The temperature of the front end portion and the rear end portion of the slab is a result of measurement using a radiation thermometer at a position of about 300 mm from the end portion on the upper surface side of the slab immediately before extraction from the heating furnace. As shown in Table 4, gradient heating or reverse gradient heating could be carried out with a temperature difference substantially equal to the target.

Figure 0005181679
Figure 0005181679

Figure 0005181679
Figure 0005181679

Figure 0005181679
Figure 0005181679

Figure 0005181679
Figure 0005181679

本実施例から明らかな通り、本発明の加熱炉によれば、長さ13mの被加熱材の先端部と後端部の温度差を30℃にできることがわかる。   As is apparent from the present example, according to the heating furnace of the present invention, it can be seen that the temperature difference between the front end and the rear end of the 13 m long heated material can be 30 ° C.

図1は本発明の実施形態である加熱炉を示す斜視模式図である。FIG. 1 is a schematic perspective view showing a heating furnace according to an embodiment of the present invention. 図2は、図1に示す加熱炉の側面模式図である。FIG. 2 is a schematic side view of the heating furnace shown in FIG. 図3は、図1に示す加熱炉の平面模式図である。FIG. 3 is a schematic plan view of the heating furnace shown in FIG. 図4は、図3のA−A’線に対応する断面模式図である。FIG. 4 is a schematic sectional view corresponding to the line A-A ′ of FIG. 3. 図5は、蓄熱式燃焼装置による炉内温度と、炉幅方向との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the furnace temperature and the furnace width direction by the regenerative combustion apparatus. 図6は、加熱炉の全炉長に対する連続式燃焼装置の配置長さの割合と、被加熱材の長手温度差偏差との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the ratio of the arrangement length of the continuous combustion apparatus to the total furnace length of the heating furnace and the longitudinal temperature difference deviation of the material to be heated. 図7は、被加熱材の長手位置と、均一加熱との温度差分との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the longitudinal position of the material to be heated and the temperature difference between uniform heating.

符号の説明Explanation of symbols

1…加熱炉、1A…装入部、1B…抽出部、2…搬送路、4…蓄熱式燃焼装置、5…連続式燃焼装置 DESCRIPTION OF SYMBOLS 1 ... Heating furnace, 1A ... Charge part, 1B ... Extraction part, 2 ... Conveyance path, 4 ... Regenerative combustion apparatus, 5 ... Continuous combustion apparatus

Claims (5)

被加熱材の長手方向が加熱炉内に設けた搬送路の搬送方向と直交するように前記被加熱材を装入して、前記被加熱材を前記搬送路に沿って搬送させながら加熱する加熱炉であって、
前記搬送路の下側には、装入部側から抽出部側にかけての前記搬送路の左右両側に、交番燃焼する複数の下側の蓄熱式燃焼装置が配置され
前記搬送路の上側には、前記被加熱材全体を一旦均一に加熱するために、前記装入部側から前記搬送路の途中までにかけての前記搬送路の左右両側に、交番燃焼する複数の上側の蓄熱式燃焼装置が配置され、
前記上側の蓄熱式燃焼装置の設置位置よりも前記抽出部側には、傾斜加熱または逆傾斜加熱を行うために、炉幅方向に沿って複数に分割されかつ分割された領域毎に燃焼量制御が可能な複数の連続式燃焼装置が配置されることを特徴とする加熱炉。
Heating the longitudinal direction of the material to be heated is charged with the material to be heated so as to be perpendicular to the conveying direction of the conveying path provided in the heating furnace, it is heated while the material to be heated is conveyed along the conveying path A furnace,
On the lower side of the conveying path, a plurality of lower regenerative combustion devices for alternating combustion are arranged on the left and right sides of the conveying path from the charging unit side to the extraction unit side,
On the upper side of the conveying path, a plurality of upper sides that alternately burn on both the left and right sides of the conveying path from the charging portion side to the middle of the conveying path in order to uniformly heat the entire material to be heated. A regenerative combustion device of
Wherein said extracting portion than the installation position of the upper regenerative combustion apparatus, in order to perform a heat ramp or inverse slope heated is divided into a plurality along the furnace width direction, and the combustion amount of each divided area furnace, characterized in that the control is a plurality of continuous combustion device capable are arranged.
加熱炉の全炉長に対する前記連続式燃焼装置の炉長方向に沿う配置長の割合が、15%以上80%以下であることを特徴とする請求項1に記載の加熱炉。   2. The heating furnace according to claim 1, wherein a ratio of an arrangement length along a furnace length direction of the continuous combustion apparatus to a total furnace length of the heating furnace is 15% or more and 80% or less. 前記連続式燃焼装置が、炉幅方向に沿って3つ以上に分割された領域にそれぞれ配置されていることを特徴とする請求項1または請求項2に記載の加熱炉。   The heating furnace according to claim 1 or 2, wherein the continuous combustion apparatus is disposed in each of three or more regions divided along the furnace width direction. 前記蓄熱式燃焼装置が、FDI型のリジェネバーナーであることを特徴とする請求項1乃至請求項3の何れか一項に記載の加熱炉。   The heating furnace according to any one of claims 1 to 3, wherein the regenerative burner is an FDI type regenerative burner. 被加熱材の長手方向が加熱炉内に設けた搬送路の搬送方向と直交するように前記被加熱材を装入して、前記被加熱材を前記搬送路に沿って搬送しながら加熱することで前記被加熱材の温度を制御する温度制御方法であって、
前記搬送路の下側であって装入部側から抽出部側にかけての前記搬送路の左右両側に、交番燃焼する複数の下側の蓄熱式燃焼装置を配置し
前記搬送路の上側であって前記装入部側から前記搬送路の途中までにかけての前記搬送路の左右両側に、前記被加熱材全体を一旦均一に加熱するために交番燃焼する複数の上側の蓄熱式燃焼装置を配置し、
更に、前記上側の蓄熱式燃焼装置の設置位置よりも前記抽出部側に、傾斜加熱または逆傾斜加熱を行うための複数の連続式燃焼装置を、炉幅方向に沿って分割された複数の領域にそれぞれ配置し、
前記上側及び前記下側の蓄熱式燃焼装置によって前記被加熱材全体を均一に加熱するとともに、前記連続式加熱装置によって、前記被加熱材の長手方向における目標温度分布に応じて炉幅方向に沿って分割された前記領域毎に前記連続式燃焼装置の燃焼量を調整することで、前記被加熱材の長手方向の温度を制御することを特徴とする被加熱材の温度制御方法。
Said charged material to be heated so as to be perpendicular to the conveying direction of the conveying path in the longitudinal direction of the material to be heated is provided in the heating furnace, the heating while conveying along the material to be heated to the conveying path And a temperature control method for controlling the temperature of the heated material,
On the left and right sides of the transfer path from the charging section side to the extraction section side below the transfer path, a plurality of lower regenerative combustion devices for alternating combustion are arranged ,
On the left and right sides of the transfer path from the loading section side to the middle of the transfer path, the upper side of the transfer path is a plurality of alternating combustions to temporarily heat the entire material to be heated. A thermal storage combustion device is installed,
Further, a plurality of continuous combustion devices for performing inclined heating or reverse inclined heating on the extraction unit side from the installation position of the upper regenerative combustion device are divided into a plurality of regions along the furnace width direction. Place each in
The entire heated material is uniformly heated by the upper and lower regenerative combustion devices, and along the furnace width direction according to the target temperature distribution in the longitudinal direction of the heated material by the continuous heating device. by adjusting the combustion amount of the continuous combustion device for each of the areas divided Te, the temperature control method of the material to be heated, characterized in that to control the longitudinal temperature of the material to be heated.
JP2008002418A 2008-01-09 2008-01-09 Heating furnace and temperature control method for heated material Active JP5181679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008002418A JP5181679B2 (en) 2008-01-09 2008-01-09 Heating furnace and temperature control method for heated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008002418A JP5181679B2 (en) 2008-01-09 2008-01-09 Heating furnace and temperature control method for heated material

Publications (2)

Publication Number Publication Date
JP2009161837A JP2009161837A (en) 2009-07-23
JP5181679B2 true JP5181679B2 (en) 2013-04-10

Family

ID=40964774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008002418A Active JP5181679B2 (en) 2008-01-09 2008-01-09 Heating furnace and temperature control method for heated material

Country Status (1)

Country Link
JP (1) JP5181679B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6254754B2 (en) * 2012-01-05 2017-12-27 新日鐵住金株式会社 Heating method of heated material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124216A (en) * 1985-11-25 1987-06-05 Nippon Kokan Kk <Nkk> Heating method of steel slab by heating furnace
JPH1025515A (en) * 1996-07-12 1998-01-27 Nippon Steel Corp Continuous type heating furnace
JPH11323431A (en) * 1998-05-13 1999-11-26 Nkk Corp Method and device for controlling temperature of heating furnace
JP2000212645A (en) * 1999-01-21 2000-08-02 Nippon Steel Corp Continuous heating of steel material

Also Published As

Publication number Publication date
JP2009161837A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
US6530780B2 (en) Continuous sintering furnace and use thereof
JP5181803B2 (en) Heating method of heated material
JP5585181B2 (en) Heat treatment method for thick steel plate in direct fire type roller hearth type continuous heat treatment furnace and radiant tube type roller hearth type continuous heat treatment furnace
US2298149A (en) Continuous heating furnace
JP5181679B2 (en) Heating furnace and temperature control method for heated material
JP2008024966A (en) Method for controlling furnace temperature in continuous type heating furnace, and method for producing steel material
JP7138487B2 (en) Regenerative alternating combustion device for heating furnace
US4884967A (en) Steel reheating furnace
JP2006104490A (en) Combustion control method of continuous heating furnace
JP3419917B2 (en) Continuous heating device
JP3845143B2 (en) Continuous heating method and apparatus
US3623715A (en) Furnace method for reheating billets or slabs
JP2000212645A (en) Continuous heating of steel material
JPH08291327A (en) Continuous heating apparatus
KR20090071138A (en) Billet reheating furnace
JP7117902B2 (en) heating furnace
JPH0125870Y2 (en)
JP4605082B2 (en) Method for producing metal material using a plurality of continuous heating furnaces
JP6254754B2 (en) Heating method of heated material
KR101377504B1 (en) Temperature control method of heating furnace
JP2010150614A (en) Heating furnace and heating method
JP2000273530A (en) Continuous heating apparatus for steel material
JP4670715B2 (en) Sorting method of objects to be heated in continuous heating furnace group
JPH03153824A (en) Billet heating furnace
KR20130073415A (en) Pusher type heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R151 Written notification of patent or utility model registration

Ref document number: 5181679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350