JPH1161277A - Continuous heat treatment method of steel sheet - Google Patents

Continuous heat treatment method of steel sheet

Info

Publication number
JPH1161277A
JPH1161277A JP9232490A JP23249097A JPH1161277A JP H1161277 A JPH1161277 A JP H1161277A JP 9232490 A JP9232490 A JP 9232490A JP 23249097 A JP23249097 A JP 23249097A JP H1161277 A JPH1161277 A JP H1161277A
Authority
JP
Japan
Prior art keywords
heating
furnace
direct
heating furnace
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9232490A
Other languages
Japanese (ja)
Inventor
Michiaki Tsutsumi
道明 堤
Kazunori Hashimoto
和範 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9232490A priority Critical patent/JPH1161277A/en
Publication of JPH1161277A publication Critical patent/JPH1161277A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the responsiveness when the temperature of the steel sheet is changed without greatly increasing the heating cost of the steel plate. SOLUTION: In heat treating a steel sheet in a continuous annealing facility of the steel sheet provided with a radiation tube heating furnace, a direct-fired heating furnace at the inlet side of the radiation tube heating furnace, and a preheating furnace 11 using the combustion exhaust gas of the direct-fired heating furnace on the inlet side of the direct-fired heating furnace, an induction heating device 17 is installed at least between the direct-fired heating furnace and the preheating furnace, or between the direct-fired heating furnaces where a plurality of direct-fired heating furnaces 15, 19 are provided, the steel plate is mainly heated using the direct-fired heating furnace and the radiation tube heating furnace 21, and heat-treated by compensating the response delay or insufficient heating capacity by the induction heating in the case of the response delay of the temperature control in changing the heating load of the direct-fired heating furnace and the radiation tube heating furnace or in the case of insufficient heating capacity thereof. The problem of oxidation of the steel plate surface is solved, an induction heating equipment of large capacity is dispensed with, and the heating cost by induction heating is less increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、鋼板の連続熱処
理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous heat treatment method for a steel sheet.

【0002】[0002]

【従来の技術】連続焼鈍は、短時間で焼鈍を終えること
ができ、生産性も高い。そのため、連続焼鈍は、鋼板の
連続焼鈍ラインや溶融めっきラインにおいて、鋼板を熱
処理するために、広く用いられている。
2. Description of the Related Art Continuous annealing can complete annealing in a short time and has high productivity. Therefore, continuous annealing is widely used for heat-treating a steel sheet in a continuous annealing line or a hot-dip plating line of the steel sheet.

【0003】近年、連続焼鈍設備の設置スペースをコン
パクトにするために、鋼板が焼鈍設備内を垂直方向に折
り返しながら走行する竪型炉にし、さらに、鋼板を急速
加熱できる直火式加熱炉を備え、また、鋼板加熱のため
のエネルギーコストを低減するために、直火式加熱炉の
高温の燃焼排ガスを用いて鋼板を予熱する予熱炉を直火
式加熱炉の前に備える場合が多い。
[0003] In recent years, in order to make the installation space for continuous annealing equipment compact, a vertical furnace in which steel sheets travel while turning vertically in the annealing equipment and a direct-fired heating furnace capable of rapidly heating steel sheets are provided. In addition, in order to reduce the energy cost for heating the steel sheet, a preheating furnace for preheating the steel sheet using the high temperature combustion exhaust gas of the direct heating furnace is often provided in front of the direct heating furnace.

【0004】図8に、竪型炉を備える鋼板の連続焼鈍設
備の要部の一例を示す。図8において、1は予熱炉、2
は直火式加熱炉、3は輻射管式加熱炉である。
[0004] Fig. 8 shows an example of a main part of a continuous annealing facility for a steel sheet provided with a vertical furnace. In FIG. 8, 1 is a preheating furnace, 2
Denotes a direct heating furnace, and 3 denotes a radiation tube heating furnace.

【0005】先ず、鋼板Sは、予熱炉1で直火式加熱炉
2の高温の燃焼排ガスを用いて所定温度に予熱された
後、後続する直火式加熱炉2へ走行する。
[0005] First, the steel sheet S is preheated to a predetermined temperature in the preheating furnace 1 by using the high temperature combustion exhaust gas of the direct heating furnace 2, and then travels to the subsequent direct heating furnace 2.

【0006】直火式加熱炉2では、鋼板Sは、コークス
炉ガスや天然ガス等の燃料ガスを燃焼した高温の燃焼ガ
スを用いて、直接加熱され、720℃程度の温度に急速
加熱される。同時に、鋼板の表面酸化を防止しながら、
圧延油等の油分が除去され、後続する輻射管式加熱炉3
へ走行する。
In the direct-fired heating furnace 2, the steel sheet S is directly heated using a high-temperature combustion gas obtained by burning a fuel gas such as coke oven gas or natural gas, and rapidly heated to a temperature of about 720 ° C. . At the same time, while preventing the surface oxidation of the steel sheet,
Oil such as rolling oil is removed, and the subsequent radiant tube heating furnace 3
Travel to.

【0007】輻射管式加熱炉3では、輻射管内で燃料ガ
スを燃焼して、鋼板Sを所定の焼鈍温度に加熱、保持す
る。また、輻射管式加熱炉3の炉内雰囲気は還元性雰囲
気に保持されており、同時に鋼板表面の酸化膜の還元が
行われる。
In the radiant tube heating furnace 3, fuel gas is burned in the radiant tube to heat and maintain the steel sheet S at a predetermined annealing temperature. The atmosphere inside the radiation tube type heating furnace 3 is kept in a reducing atmosphere, and at the same time, the oxide film on the steel sheet surface is reduced.

【0008】次いで、鋼板Sは、後続する図示されてい
ない過時効炉で過時効処理、冷却炉で冷却等の処理が施
される。溶融めっきライン内の連続焼鈍設備の場合に
は、引き続き溶融めっきが施される。
Next, the steel sheet S is subjected to a process such as overaging in a subsequent overaging furnace (not shown) and cooling in a cooling furnace. In the case of continuous annealing equipment in a hot-dip plating line, hot-dip plating is continuously performed.

【0009】図8の装置における直火式加熱炉は、1パ
スで1炉体が設けられているが、加熱能力向上のため
に、直火式加熱炉を複数パスにして複数炉体を設ける場
合もある。
The direct-fired heating furnace in the apparatus shown in FIG. 8 is provided with one furnace body in one pass. However, in order to improve the heating capacity, the direct-fired heating furnace is provided in a plurality of passes to provide a plurality of furnace bodies. In some cases.

【0010】前記した連続焼鈍設備では、鋼板サイズや
鋼板材質などに応じて、所定の熱処理サイクルに設定さ
れる。熱処理サイクルを変更する場合、加熱炉の燃焼負
荷を変更し、加熱炉の温度を所要の熱処理サイクルに対
応する温度に追随させる必要がある。
In the above-described continuous annealing equipment, a predetermined heat treatment cycle is set according to the steel sheet size, the steel sheet material and the like. When changing the heat treatment cycle, it is necessary to change the combustion load of the heating furnace so that the temperature of the heating furnace follows the temperature corresponding to the required heat treatment cycle.

【0011】しかし、加熱炉、特に輻射管式加熱炉で
は、炉壁からの放射加熱により鋼板を加熱するため、熱
慣性が大きい。そのため、加熱炉の温度は設定温度に迅
速に追随できず、設定温度に到達するまでの時間遅れが
大きい。この加熱炉の温度が所定の設定温度範囲に到達
するまでの間、必要な焼鈍温度を確保できない所謂サイ
クル外れ材が大量に発生するという問題がある。
However, in a heating furnace, particularly a radiation tube heating furnace, the steel sheet is heated by radiant heating from the furnace wall, so that the thermal inertia is large. Therefore, the temperature of the heating furnace cannot quickly follow the set temperature, and there is a large time delay until the temperature reaches the set temperature. Until the temperature of the heating furnace reaches a predetermined set temperature range, there is a problem that a large amount of so-called off-cycle materials that cannot secure a necessary annealing temperature are generated.

【0012】熱処理サイクルを変更の際に、ライン速度
を低下して、前記サイクル外れ材の発生を最小限に抑え
ることも行われているが、この場合、生産性が低下する
という問題がある。
When the heat treatment cycle is changed, the line speed is reduced to minimize the occurrence of the off-cycle material. However, in this case, there is a problem that productivity is reduced.

【0013】[0013]

【発明が解決しようとする課題】誘導加熱を用いると、
省スペース化しながら、鋼板を短時間で加熱できること
は、省エネルギー,Vol.45,No.10(199
3),p.42〜47に記載されるように公知である。
しかし、現時点では、輻射管式加熱炉、前記輻射管式加
熱炉の入側に直火式加熱炉、および前記直火式加熱炉の
入側に鋼板を予熱する予熱炉を備えた鋼板の連続焼鈍設
備においては、誘導加熱装置を用いて鋼板の加熱を行う
ことは実用化されておらず、また、誘導加熱装置を用い
た鋼板の効果的な加熱方法についても、充分に検討され
ているとはいえない。
With the use of induction heating,
The fact that the steel sheet can be heated in a short time while saving space is disclosed in Energy Saving, Vol. 45, no. 10 (199
3), p. Known as described in 42-47.
However, at the present time, continuous heating of a steel tube equipped with a radiation tube heating furnace, a direct-fired heating furnace on the entrance side of the radiation tube-type heating furnace, and a preheating furnace for preheating the steel sheet on the entrance side of the direct-fired heating furnace. In annealing equipment, heating of steel sheets using induction heating devices has not been put into practical use, and effective heating methods for steel sheets using induction heating devices have also been sufficiently studied. I can't say.

【0014】この理由は、効率のよい大容量の薄鋼板向
け誘導加熱装置の開発が遅れたことにも一因があるが、
鋼板を加熱する際の電力コストが燃料ガスコストより高
くつくことに最大の理由がある。
One reason for this is that the development of an efficient induction heating apparatus for large-capacity thin steel sheets was delayed,
The biggest reason is that the electricity cost when heating the steel sheet is higher than the fuel gas cost.

【0015】本発明は、前記した事情を考慮したもので
あり、輻射管式加熱炉、前記輻射管式加熱炉の入側に直
火式加熱炉、および前記直火式加熱炉の入側に鋼板を予
熱する予熱炉を備えた鋼板の連続焼鈍設備において、鋼
板を短時間で加熱昇温できるという誘導加熱の特徴を利
用しながら、鋼板の加熱コストを大きく上昇することな
く、また鋼板温度を変更した場合の応答性を高めること
ができる鋼板の連続熱処理方法を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and has a radiation tube type heating furnace, a direct-fired heating furnace at an inlet of the radiation tube-type heating furnace, and a direct-fired heating furnace at an entrance of the direct-fired heating furnace. In continuous annealing equipment for steel sheets equipped with a preheating furnace that preheats steel sheets, while utilizing the characteristic of induction heating, which enables heating and heating of steel sheets in a short time, without significantly increasing the heating cost of steel sheets, It is an object of the present invention to provide a method for continuously heat-treating a steel sheet, which can enhance the responsiveness when changed.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
の本発明の特徴とする構成は、輻射管式加熱炉、前記輻
射管式加熱炉の入側に直火式加熱炉および前記直火式加
熱炉の入側に前記直火式加熱炉の燃焼排ガスを用いる予
熱炉を備えた鋼板の連続焼鈍設備において鋼板を熱処理
するに際して、前記直火式加熱炉と前記予熱炉間、ある
いはまた前記直火式加熱炉が複数の直火式加熱炉を備え
る場合には直火式加熱炉間の少なくとも一方に誘導加熱
装置を設置して、鋼板の加熱は、主に前記直火式加熱炉
と前記輻射管式加熱炉を用いて行い、前記直火式加熱炉
や前記輻射管式加熱炉における加熱負荷変更の際の温度
制御の応答遅れ、あるいはまた前記直火式加熱炉や前記
輻射管式加熱炉の加熱能力不足の場合に、前記誘導加熱
装置による誘導加熱で前記応答遅れ、あるいはまた加熱
能力不足を補償して熱処理することを特徴とする鋼板の
連続熱処理方法である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is characterized in that a radiant tube heating furnace, a direct-fired heating furnace on the inlet side of the radiant tube-type heating furnace, and the direct-fired heating furnace are provided. When heat-treating a steel sheet in a continuous annealing equipment for a steel sheet provided with a preheating furnace using combustion exhaust gas of the direct-fired heating furnace on the inlet side of the type-heating furnace, between the direct-fired heating furnace and the preheating furnace, or When the direct-fired heating furnace includes a plurality of direct-fired heating furnaces, an induction heating device is installed on at least one of the direct-fired heating furnaces, and heating of the steel sheet is mainly performed by the direct-fired heating furnace. Performed using the radiation tube heating furnace, the response delay of temperature control at the time of heating load change in the direct heating furnace or the radiation tube heating furnace, or also the direct fire heating furnace or the radiation tube type When the heating capacity of the heating furnace is insufficient, the induction heating by the induction heating device is performed. In a continuous heat treatment method of steel plate characterized by heat-treating the response delay, or also to compensate for the lack heating capacity.

【0017】予熱炉で鋼板が過度に予熱されると、鋼板
表面が過剰に酸化され、その後の直火式加熱炉、輻射管
式加熱炉での鋼板表面の還元が不完全になり、塗装下地
処理として施される化成処理不良や溶融めっきを施した
場合にめっき密着性不良等の問題が発生する。予熱炉入
側に誘導加熱装置を設置して、鋼板を誘導加熱で加熱す
ると、予熱炉で鋼板表面が過剰に酸化され、前記した問
題が発生しやすくなる。
If the steel sheet is excessively preheated in the preheating furnace, the surface of the steel sheet is excessively oxidized, and the reduction of the steel sheet surface in the direct heating furnace or the radiant tube heating furnace becomes incomplete, so that the coating substrate Problems such as poor chemical conversion treatment performed as a treatment and poor plating adhesion occur when hot-dip plating is performed. When an induction heating device is installed on the inlet side of the preheating furnace and the steel sheet is heated by induction heating, the surface of the steel sheet is excessively oxidized in the preheating furnace, and the above-described problem is likely to occur.

【0018】また、直火加熱炉の出側で誘導加熱により
鋼板を加熱すると、キュリー点近傍で鋼板を加熱するこ
とになるので、誘導加熱の加熱効率が著しく低下する。
Further, when the steel sheet is heated by induction heating on the outlet side of the direct-fired heating furnace, the steel sheet is heated near the Curie point, so that the heating efficiency of the induction heating is significantly reduced.

【0019】本発明では、直火式加熱炉と予熱炉の間、
あるいはまた前記直火式加熱炉が複数の直火式加熱炉を
備える場合には直火式加熱炉間の少なくとも一方に、誘
導加熱装置を配置して、鋼板を誘導加熱するので、前記
した鋼板表面が過剰に酸化されるという問題がなく、ま
た誘導加熱の加熱効率を高効率にできる。
In the present invention, between the direct-fired heating furnace and the preheating furnace,
Alternatively, when the direct-fired heating furnace includes a plurality of direct-fired heating furnaces, at least one of the direct-fired heating furnaces, an induction heating device is disposed, and the steel sheet is induction-heated. There is no problem that the surface is excessively oxidized, and the heating efficiency of induction heating can be increased.

【0020】また、本発明では、誘導加熱による加熱
は、鋼板の主たる加熱手段としてではなく、鋼板の加熱
は主に前記直火式加熱炉と前記輻射管式加熱炉を用いて
行い、前記直火式加熱炉や前記輻射管式加熱炉における
加熱負荷変更の際の温度制御の応答遅れや前記直火式加
熱炉や前記輻射管式加熱炉の加熱能力不足の場合に、前
記誘導加熱装置による誘導加熱で前記応答遅れや加熱能
力不足を補完するために行うだけなので、大容量の誘導
加熱設備を必要とせず、また誘導加熱による加熱コスト
の増加も少ない。
Further, in the present invention, the heating by induction heating is not performed as a main heating means of the steel sheet, but the heating of the steel sheet is mainly performed by using the direct heating furnace and the radiant tube heating furnace. In the case of a response delay of temperature control at the time of a heating load change in a fired heating furnace or the radiant tube heating furnace, or the heating capability of the direct fired heating furnace or the radiant tube heating furnace is insufficient, the induction heating device is used. Since the induction heating is only performed to compensate for the response delay and the shortage of the heating capacity, no large-capacity induction heating equipment is required, and the increase in heating cost due to the induction heating is small.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態につい
て図を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】図1は、2パスの直火加熱パスに対応する
2つの直火式加熱炉を備える連続焼鈍設備において、第
1直火式加熱炉と第2直火式加熱炉の間に誘導加熱装置
を配設した場合である。
FIG. 1 shows a continuous annealing facility having two direct-fired heating furnaces corresponding to two-pass direct-fired heating paths, in which induction is provided between a first direct-fired heating furnace and a second direct-fired heating furnace. This is a case where a heating device is provided.

【0023】図1において、11は予熱炉(PHF)、
15は第1直火式加熱炉(DFF−1)、19は第2直
火式加熱炉(DFF−2)、21は輻射管式加熱炉(R
TF)である。予熱炉11の前後にロール室10、
12、第1直火加熱炉15の前後にロール室14、1
6、第2直火式加熱炉19の前後にロール室18、20
を備え、各ロール室はロールの走行方向を変更するデフ
レクタロールを備える。
In FIG. 1, 11 is a preheating furnace (PHF),
Reference numeral 15 denotes a first direct heating furnace (DFF-1), 19 denotes a second direct heating furnace (DFF-2), and 21 denotes a radiation tube heating furnace (R
TF). Before and after the preheating furnace 11, the roll chamber 10,
12. Roll chambers 14, 1 before and after the first open flame heating furnace 15
6. Roll chambers 18 and 20 before and after the second direct-fired heating furnace 19
And each roll chamber is provided with a deflector roll for changing the running direction of the roll.

【0024】17は誘導加熱装置(IH)であり、第1
直火式加熱炉15の後のロール室16と第2直火加熱炉
19の前のロール室18の間に配設されている。22は
予熱炉の排気ダクト、23、24はそれぞれ予熱炉と直
火式加熱炉、直火式加熱炉間を連通するガスダクトであ
る。
Reference numeral 17 denotes an induction heating device (IH),
It is disposed between a roll chamber 16 after the direct heating furnace 15 and a roll chamber 18 before the second direct heating furnace 19. Reference numeral 22 denotes an exhaust duct of the preheating furnace, and reference numerals 23 and 24 each denote a preheating furnace, a direct-fired heating furnace, and a gas duct communicating between the direct-heating heating furnace.

【0025】図2に、図1のA部すなわちロール室16
〜誘導加熱装置17〜ロール室18近傍の詳細図を示
す。また、図2のA−A断面矢視図を図3に示す。
FIG. 2 shows part A of FIG.
-The detailed drawing of the vicinity of the induction heating device 17-the roll chamber 18 is shown. FIG. 3 is a sectional view taken along the line AA of FIG.

【0026】図2において、34は誘導加熱コイル、3
5は断熱材、36は水冷ジャケットである。また、30
a、30bはデフレクタロール、31a、31bはシー
ルロール、32a、32bはいずれもシール部材、33
a、33bは、それぞれシール室16、18へのシール
用ガスN2 の供給口である。
In FIG. 2, reference numeral 34 denotes an induction heating coil, 3
5 is a heat insulating material, 36 is a water cooling jacket. Also, 30
a and 30b are deflector rolls, 31a and 31b are seal rolls, 32a and 32b are seal members, 33
Reference numerals a and 33b denote supply ports for the sealing gas N2 to the sealing chambers 16 and 18, respectively.

【0027】図2に示すように、ロール室16、18
は、それぞれ隣接する直火式加熱炉15、19からの燃
焼ガスの流入を防止するガスシール機構を備える。
As shown in FIG. 2, the roll chambers 16, 18
Is provided with a gas seal mechanism for preventing inflow of combustion gas from the adjacent direct-fired heating furnaces 15 and 19, respectively.

【0028】第2直火式加熱炉19の燃焼ガスは、第2
直火式加熱炉19の入側と第1直火式加熱炉15の出側
を連通するガスダクト24を経て第1直火式加熱炉15
に流れ、第1直火式加熱炉15の燃焼ガスは、第1直火
式加熱炉15の入側と予熱炉11の出側を連通するガス
ダクト23を経て、予熱炉11に流れ、予熱炉11の入
側の排気ダクト22から予熱炉外に流れる。また、必用
に応じて、前記ガスダクトの途中にアフターバーニング
室を設けることもできる。
The combustion gas of the second direct-fired heating furnace 19 is
The first direct-fired heating furnace 15 passes through a gas duct 24 that communicates the inlet of the direct-fired heating furnace 19 with the outlet of the first direct-fired heating furnace 15.
The combustion gas of the first direct-fired heating furnace 15 flows into the preheating furnace 11 through a gas duct 23 that communicates the inlet of the first direct-fired heating furnace 15 with the outlet of the preheating furnace 11. The gas flows out of the preheating furnace from the exhaust duct 22 on the inlet side of the furnace 11. If necessary, an afterburning chamber may be provided in the gas duct.

【0029】シール部材32aは、断面が筒状でその内
部を鋼板Sが走行し、その一端がデフレクタロール30
a、シールロール31aの周面に接して配置されてい
る。このような構成によって、第1直火式加熱炉15と
ロール室16間のシール性が良好である。
The sealing member 32a has a cylindrical cross section, and a steel plate S runs inside the sealing member 32a.
a, it is arranged in contact with the peripheral surface of the seal roll 31a. With such a configuration, the sealing property between the first direct-fired heating furnace 15 and the roll chamber 16 is good.

【0030】第2直火式加熱炉19とロール室18間の
シールについても、前記と同様の作用をするデフレクタ
ロール30b、シールロール31b、シール部材32b
を備えるので、シール性が良好である。
The seal between the second direct-fired heating furnace 19 and the roll chamber 18 is also provided in the same manner as described above. The deflector roll 30b, the seal roll 31b, and the seal member 32b
, The sealing property is good.

【0031】ロール室16、18にガス供給口33a、
33bからN2 ガスを供給し、前記ロール室16、18
と直火式加熱炉15、19間をシールすると、直火式加
熱炉の燃焼ガスがロール室16、18に流入することを
防止できる。
Gas supply ports 33a are provided in the roll chambers 16 and 18.
N2 gas is supplied from 33b and the roll chambers 16, 18 are supplied.
When the space between the direct heating furnaces 15 and 19 is sealed, it is possible to prevent the combustion gas of the direct heating furnace from flowing into the roll chambers 16 and 18.

【0032】図1〜図3に示した焼鈍設備を用いて、以
下のように熱処理を行う。鋼板Sは、予熱炉11で直火
式加熱炉15、19の燃焼排ガスを用いて予熱され、直
火式加熱炉15、19で燃料ガスを燃焼した高温の燃焼
ガス用いて、720℃程度の温度まで急速加熱され、同
時に、鋼板の表面酸化を防止しながら、圧延油等の油分
が除去され、さらに、輻射管式加熱炉21で、所定の焼
鈍温度に加熱、保持される。
The heat treatment is performed as follows using the annealing equipment shown in FIGS. The steel sheet S is preheated in the preheating furnace 11 using the combustion exhaust gas from the direct-fired heating furnaces 15 and 19, and heated to about 720 ° C. using the high-temperature combustion gas obtained by burning the fuel gas in the direct-heating heating furnaces 15 and 19. It is rapidly heated to a temperature, and at the same time, while preventing the surface oxidation of the steel sheet, oil components such as rolling oil are removed, and further, it is heated and maintained at a predetermined annealing temperature in a radiant tube heating furnace 21.

【0033】引き続き、鋼板Sは、後続する図示されて
いない過時効炉で過時効処理、冷却炉で冷却等の処理が
施されて、所要の熱処理を終える。また、溶融めっきラ
イン内の連続焼鈍設備の場合には、さらに溶融めっきが
施される。
Subsequently, the steel sheet S is subjected to processing such as overaging in a subsequent overaging furnace (not shown) and cooling in a cooling furnace, and the required heat treatment is completed. In the case of continuous annealing equipment in the hot-dip plating line, hot-dip plating is further performed.

【0034】本発明では、誘導加熱装置17は、鋼板の
主たる加熱手段としてではなく、直火式加熱炉15,1
9や輻射管式加熱炉21において炉の燃焼負荷条件を変
更の際に、直火式加熱炉15,19や輻射管式加熱炉2
1の温度制御特性の応答遅れの過渡的状態や前記各加熱
炉の加熱能力不足を、前記誘導加熱装置17による誘導
加熱により補償する補助加熱手段として用いる。すなわ
ち、通常は誘導加熱装置17を使用せず、輻射管式加熱
炉21等の燃焼負荷条件を変更の際や各加熱炉の加熱能
力不足の際に、前記誘導加熱装置17を用いて補助加熱
する。
In the present invention, the induction heating device 17 is not used as the main heating means for the steel sheet, but is used as the direct-fired heating furnace 15,1.
When the combustion load conditions of the furnace 9 or the radiation tube heating furnace 21 are changed, the direct heating furnaces 15 and 19 or the radiation tube heating furnace 2 are used.
1 is used as auxiliary heating means for compensating for the transient state of the response delay of the temperature control characteristic and the insufficient heating capacity of each heating furnace by induction heating by the induction heating device 17. That is, the induction heating device 17 is not usually used, and the auxiliary heating is performed using the induction heating device 17 when changing the combustion load conditions of the radiation tube heating furnace 21 or the like or when the heating capacity of each heating furnace is insufficient. I do.

【0035】輻射管式加熱炉の燃焼負荷条件を変更する
場合について、以下に説明する。輻射管式加熱炉の燃焼
負荷を増加する場合、燃焼負荷の変更点(例えば、サイ
ズ変更時の溶接点等の熱処理サイクル変更点)が輻射管
式加熱炉に到達時あるいは可能な場合には到達前から輻
射管式加熱炉の燃焼負荷を増加する。
The case where the combustion load condition of the radiation tube type heating furnace is changed will be described below. When increasing the combustion load of the radiant tube furnace, a change in the combustion load (for example, a change in the heat treatment cycle such as a welding point when the size is changed) reaches the radiant tube furnace or when possible. Increasing the combustion load of the radiant tube heating furnace from before.

【0036】また、燃焼負荷の変更点が誘導加熱装置を
通過時に、誘導加熱装置を出力して、鋼板を瞬時に加熱
して、輻射管式加熱炉の温度制御特性の遅れを補償す
る。輻射管式加熱炉の温度が設定温度に近づき、板温が
所定の温度に近づくと、それに応じて、誘導加熱装置を
調整してその出力を低下する。
Also, when the point of change in the combustion load passes through the induction heating device, the induction heating device is output to instantaneously heat the steel plate to compensate for the delay in the temperature control characteristics of the radiant tube heating furnace. When the temperature of the radiant tube heating furnace approaches the set temperature and the plate temperature approaches the predetermined temperature, the induction heating device is adjusted accordingly to reduce its output.

【0037】輻射管式加熱炉の燃焼負荷を減少する場合
は、輻射管式加熱炉の燃焼負荷を増加する場合程、応答
の遅れが大きくないが、この場合にも燃焼負荷変動の際
に誘導加熱装置を有効に使用できる。この場合、燃焼負
荷の変更点が誘導加熱装置を通過時に輻射管式加熱炉が
所定の温度になるように、燃焼負荷の変更点が誘導加熱
装置を通過する前に、予め輻射管式加熱装置の燃焼負荷
を減少する。
When the combustion load of the radiant tube heating furnace is reduced, the response delay is not so large as when the combustion load of the radiant tube heating furnace is increased. The heating device can be used effectively. In this case, before the change point of the combustion load passes through the induction heating device, the radiation tube heating device is set in advance so that the radiation tube heating furnace has a predetermined temperature when the combustion load change point passes through the induction heating device. Reduce combustion load.

【0038】燃焼負荷を減少後、燃焼負荷の変更点が誘
導加熱装置を通過するまでの間、走行中の鋼板に対する
輻射管式加熱炉の燃焼負荷の不足分を誘導加熱装置の出
力を調整し、走行中の鋼板の板温が所定温度になるよう
に補償する。
After the combustion load is reduced, until the change in the combustion load passes through the induction heating device, the shortage of the combustion load of the radiant tube heating furnace for the running steel sheet is adjusted by adjusting the output of the induction heating device. In addition, compensation is performed so that the temperature of the running steel sheet becomes a predetermined temperature.

【0039】なお、誘導加熱装置の周波数については、
薄鋼板を効率よく加熱できる30〜100kHzの範囲
にするのがよい。
The frequency of the induction heating device is as follows.
The range is preferably in the range of 30 to 100 kHz at which the thin steel sheet can be efficiently heated.

【0040】次に、前記装置において、燃焼負荷が増大
するように熱処理サイクルを変更する場合の熱処理方法
について、図4を用いて具体的に説明する。なお、図4
は、熱処理する鋼板の能率が一定の210t/hで、熱
処理サイクルを低燃焼負荷のAサイクルから高燃焼負荷
のDサイクルに変更する場合であり、また誘導加熱装置
の周波数が30kHz、出力が3600kW、加熱効率
が85%の場合である。
Next, a specific description will be given, with reference to FIG. 4, of a heat treatment method when the heat treatment cycle is changed in the above-described apparatus so as to increase the combustion load. FIG.
Is the case where the efficiency of the steel sheet to be heat-treated is constant 210 t / h, and the heat-treatment cycle is changed from the low-combustion load A cycle to the high-combustion load D cycle, and the frequency of the induction heating device is 30 kHz and the output is 3600 kW. , Heating efficiency is 85%.

【0041】Aサイクルの熱処理サイクルはAサイクル
板温(焼鈍温度:700℃)で示され、対応する輻射管
式加熱炉の炉温はAサイクル炉温である。この場合、定
常状態の板温は、A−B−C−D−X1の昇温曲線に沿
って700℃に上昇し、鋼板は引き続き所定時間均熱さ
れる。
The heat treatment cycle of the A cycle is indicated by the A cycle plate temperature (annealing temperature: 700 ° C.), and the corresponding furnace temperature of the radiation tube type heating furnace is the A cycle furnace temperature. In this case, the sheet temperature in the steady state rises to 700 ° C. along the ABCDX1 temperature rising curve, and the steel sheet is continuously soaked for a predetermined time.

【0042】Dサイクルの熱処理サイクルはDサイクル
板温(焼鈍温度:850℃)で示され、対応する輻射管
式加熱炉の炉温はDサイクル炉温である。この場合、定
常状態の板温は、A−F−Gの昇温曲線に沿って850
℃に上昇し、鋼板は引き続き所定時間均熱される。
The heat treatment cycle of the D cycle is indicated by the D cycle plate temperature (annealing temperature: 850 ° C.), and the corresponding furnace temperature of the radiation tube type heating furnace is the D cycle furnace temperature. In this case, the plate temperature in the steady state is 850 along the heating curve of AFG.
° C and the steel sheet is subsequently soaked for a predetermined time.

【0043】誘導加熱装置を使用しないで、輻射管式加
熱炉の炉温設定をAサイクル炉温からDサイクル炉温に
変更する場合、輻射管式加熱炉の炉温をDサイクル炉温
に設定して炉温を上昇させ、板温をAサイクル板温のX
1からDサイクル板温のGまで上昇させる必用がある。
When the furnace temperature of the radiant tube heating furnace is changed from the A cycle furnace temperature to the D cycle furnace temperature without using the induction heating device, the furnace temperature of the radiant tube heating furnace is set to the D cycle furnace temperature. To raise the furnace temperature, and set the plate temperature to the X cycle plate temperature X
It is necessary to raise from 1 to G of the D cycle plate temperature.

【0044】一方、誘導加熱装置を使用する場合、Aサ
イクルからDサイクルへの熱処理サイクル変更点が、第
1直火加熱炉と第2直火加熱の間の誘導加熱装置を通過
時に、誘導加熱装置を用いて、鋼板を瞬時にBからEま
で加熱する。その結果、熱処理サイクル変更直後の板温
は、E−H−D1−X2の昇温曲線のようになる。この
場合、輻射管式加熱炉では、板温をX2からGまで上昇
させればよい。
On the other hand, when the induction heating device is used, the point of the heat treatment cycle change from the A cycle to the D cycle is that the heat treatment cycle is changed when passing through the induction heating device between the first direct heating furnace and the second direct heating. The steel sheet is instantaneously heated from B to E using the apparatus. As a result, the sheet temperature immediately after the change in the heat treatment cycle is as shown by a temperature rise curve of EH-D1-X2. In this case, in the radiation tube heating furnace, the plate temperature may be increased from X2 to G.

【0045】熱処理サイクルをAサイクルからDサイク
ルに変更のための所要時間を比較すると、誘導加熱を使
用しない場合、板温をX1からGまで上昇させるための
時間が必要である。しかし、誘導加熱を使用の場合、板
温をX2からGまで上昇させるだけの時間で済むので、
熱処理サイクル変更の必要時間が短縮されており、サイ
クル外れ材の発生を低減できる。
Comparing the time required to change the heat treatment cycle from the A cycle to the D cycle, it is necessary to raise the sheet temperature from X1 to G when induction heating is not used. However, in the case of using induction heating, it takes only time to raise the sheet temperature from X2 to G,
The required time for changing the heat treatment cycle is shortened, and the occurrence of off-cycle materials can be reduced.

【0046】予め輻射管式加熱炉の炉温をDサイクル炉
温、可能ならそれ以上の炉温に設定して炉温を早目に上
昇させることも可能であり、この場合、前記サイクル外
れれ材の発生をより低減できる。
It is also possible to set the furnace temperature of the radiation tube type heating furnace in advance to the D cycle furnace temperature and, if possible, to a furnace temperature higher than that, so that the furnace temperature can be raised earlier. Can be further reduced.

【0047】また、誘導加熱装置の出力を調整して、板
温X2が、Dサイクル板温管理範囲の下限に入るように
すれば、実質的にサイクル外れ材の発生をなくすること
ができる。
Further, by adjusting the output of the induction heating device so that the sheet temperature X2 falls within the lower limit of the D cycle sheet temperature control range, the generation of off-cycle materials can be substantially eliminated.

【0048】本発明の第1の目的は、加熱炉の燃焼負荷
変更の際の温度制御の応答遅れを誘導加熱で補償し、サ
イクル外れの発生を最小限にすることにあるが、加熱炉
の加熱能力の制約からライン速度の上昇が制限されてい
る場合には、さらに誘導加熱により補助加熱して加熱能
力を増強して、生産量を増大するための手段としても利
用できる。以下、この点について説明する。
A first object of the present invention is to compensate for the response delay of temperature control when changing the combustion load of the heating furnace by induction heating and minimize the occurrence of out-of-cycle. When the increase in the line speed is restricted due to the restriction of the heating capacity, the heating capacity can be further enhanced by induction heating to further increase the heating capacity, and can be used as a means for increasing the production amount. Hereinafter, this point will be described.

【0049】図5に示す装置は、予熱炉(PHF)、直
火式加熱炉(DFF)、輻射管式加熱炉(RT)を備
え、輻射管式加熱炉が最大加熱能力で使用され、また直
火式加熱炉の燃焼排ガス温度を現状より上昇できないと
いう条件で操業されている連続焼鈍設備において、予熱
炉11aと直火式加熱炉15a間を改造して、図1〜図
3で説明したのと同様の構成の誘導加熱装置(1250
kW×30kHz×1基)を設置した場合である。な
お、図5の装置においては、図1に示した部分に対応す
る部分には図1で用いた符号と同じ符号を使用し、その
符号の後に添え字aを付してある。
The apparatus shown in FIG. 5 includes a preheating furnace (PHF), a direct-fired heating furnace (DFF), and a radiation tube heating furnace (RT). The radiation tube heating furnace is used at the maximum heating capacity. In the continuous annealing equipment operated under the condition that the combustion exhaust gas temperature of the direct-fired heating furnace cannot be increased from the current level, the space between the preheating furnace 11a and the direct-fired heating furnace 15a was modified and described with reference to FIGS. Induction heating device (1250)
kW × 30 kHz × 1). In the apparatus shown in FIG. 5, portions corresponding to the portions shown in FIG. 1 are denoted by the same reference numerals as those used in FIG. 1, and a suffix a is added to the end of the reference numeral.

【0050】この装置において、輻射管式加熱炉の最大
加熱能力および直火式加熱炉の燃焼排ガス温度の上限を
従来と同様の条件で操業した場合の厚さ1.0mm×幅
1650mmの一般用材(焼鈍温度:720℃)、深絞
り用材(焼鈍温度:850℃)における誘導加熱装置使
用前後のライン速度、生産能力を表1に示す。また、対
応する熱処理サイクルを、それぞれ図6(一般用材)、
図7(深絞り用材)に示す。
In this apparatus, a general material having a thickness of 1.0 mm and a width of 1650 mm when the maximum heating capacity of the radiant tube type heating furnace and the upper limit of the combustion exhaust gas temperature of the direct fire type heating furnace are operated under the same conditions as before. Table 1 shows the line speed and production capacity before and after the use of the induction heating device in the material for deep drawing (annealing temperature: 850 ° C.) and the material for deep drawing (annealing temperature: 850 ° C.). In addition, the corresponding heat treatment cycle is shown in FIG.
It is shown in FIG. 7 (material for deep drawing).

【0051】[0051]

【表1】 [Table 1]

【0052】図6、図7に示されるように、予熱炉と直
火式加熱炉間に誘導加熱装置の設置にともない、直火式
加熱炉入口における板温を70〜80℃前後上昇できる
ので、表1に示されるようにいずれも生産能率が約10
%程度増強されている。
As shown in FIGS. 6 and 7, with the installation of the induction heating device between the preheating furnace and the direct heating furnace, the sheet temperature at the entrance of the direct heating furnace can be raised by about 70 to 80 ° C. , As shown in Table 1, the production efficiency was about 10%.
It is increased by about%.

【0053】本発明においては、誘導加熱により、鋼板
表面が過剰に酸化されるということがないので、熱処理
後に化成処理や溶融めっきを施しても、化成処理不良や
めっき密着性不良等の問題も発生しない。また、誘導加
熱装置による加熱温度域は、キュリー点以下の温度域で
あるので、加熱効率が優れる。
In the present invention, since the surface of the steel sheet is not excessively oxidized by the induction heating, even if a chemical conversion treatment or a hot-dip coating is performed after the heat treatment, problems such as a poor chemical conversion treatment and poor plating adhesion may occur. Does not occur. Further, the heating temperature range of the induction heating device is a temperature range below the Curie point, so that the heating efficiency is excellent.

【0054】誘導加熱装置は、デフレクターロールを備
えるロール室の間に配置されているので、直火式加熱炉
の炉長増等、焼鈍炉のスペースを増大させることがな
く、また、誘導加熱装置を使用しない通常操業の際に、
操業の支障になることもない。
Since the induction heating device is disposed between the roll chambers provided with the deflector rolls, the space for the annealing furnace is not increased, for example, the furnace length of the direct-fired heating furnace is increased. During normal operation without using
There is no hindrance to operation.

【0055】また、誘導加熱装置は、デフレクターロー
ルを備えるロール室の間に配置されているので、板厚方
向の鋼板のバタツキを低減できる。さらに、直火式加熱
炉とロール室間に、直火式加熱炉の燃焼ガスがロール室
に流入することを防止するシール機構を備えるので、直
火式加熱炉の燃焼ガスがロール室内に流入することによ
る鋼板のバタツキも防止できる。これらの結果から、誘
導加熱装置と鋼板の距離を近接できるので、誘導加熱の
加熱効率をより向上できる。
Further, since the induction heating device is disposed between the roll chambers provided with the deflector rolls, the fluttering of the steel plate in the thickness direction can be reduced. Furthermore, since a seal mechanism is provided between the direct-fired heating furnace and the roll chamber to prevent the combustion gas of the direct-fired heating furnace from flowing into the roll chamber, the combustion gas of the direct-fired heating furnace flows into the roll chamber. This also prevents flapping of the steel sheet. From these results, since the distance between the induction heating device and the steel plate can be reduced, the heating efficiency of induction heating can be further improved.

【0056】また、図1の装置は、第1直火式加熱炉1
5と第2直火式加熱炉19の間に誘導加熱装置17を設
けた場合であるが、予熱炉11と第1直火式加熱炉15
の間、例えば、図1の装置のロール室12とロール室1
4間の炉体13に誘導加熱装置を設けた場合にも、上記
と同様の効果を得ることができる。この場合も前記と同
様に、ロール室12と予熱室11、ロール室14と第1
直火式加熱炉15の間に、直火式加熱炉の燃焼ガスの流
入を防止するためのシール機構を備えることが望まし
い。
Further, the apparatus shown in FIG.
In this case, the induction heating device 17 is provided between the first heating furnace 11 and the first direct heating furnace 15.
For example, between the roll chamber 12 and the roll chamber 1 of the apparatus of FIG.
When the induction heating device is provided in the furnace body 13 between the four, the same effect as described above can be obtained. Also in this case, similarly to the above, the roll chamber 12 and the preheating chamber 11, and the roll chamber 14 and the first
It is desirable to provide a seal mechanism between the direct-fired heating furnace 15 for preventing inflow of combustion gas from the direct-fired heating furnace.

【0057】また、図1の装置は、予熱炉、直火式加熱
炉、輻射管式加熱炉を走行する鋼板パスが垂直パスの場
合であるが、前記したパスが水平パスになる水平型炉に
ついて、前記した誘導加熱装置を設けることもできる。
The apparatus shown in FIG. 1 is a case where a steel plate path traveling in a preheating furnace, a direct-fired heating furnace, or a radiant tube heating furnace is a vertical path. With respect to the above, the induction heating device described above may be provided.

【0058】本発明においては、誘導加熱装置の設置ス
ペースが小さくて済むので、既存の設備を本発明の装置
に改造することも容易である。
In the present invention, since the installation space for the induction heating device is small, it is easy to convert existing equipment to the device of the present invention.

【0059】[0059]

【発明の効果】本発明によれば、鋼板のサイズ変更や材
質変更などの際に輻射管式加熱炉の加熱負荷を変更して
加熱炉温度を変更する際に、鋼板温度を迅速に変更でき
るので、熱処理サイクル外れ材の発生を低減できる。
According to the present invention, when the heating load of the radiant tube heating furnace is changed to change the heating furnace temperature when changing the size or material of the steel sheet, the temperature of the steel sheet can be quickly changed. Therefore, it is possible to reduce the generation of the material out of the heat treatment cycle.

【0060】また、加熱炉の加熱能力不足の場合に、誘
導加熱の補助加熱により加熱能力を増強して、生産量を
増大できる。
Further, when the heating capacity of the heating furnace is insufficient, the heating capacity can be increased by the auxiliary heating of the induction heating, and the production amount can be increased.

【0061】また、誘導加熱は、輻射管式加熱炉の加熱
負荷を変更する際や加熱炉の加熱能力不足の場合に、補
助的加熱手段として用いるだけなので、大容量の誘導加
熱設備を必要とせず、誘導加熱による加熱コストの著し
い増加を招くことがない。またキュリー点以下の温度で
使用するので、また加熱効率に優れる。 また、本発明
では、鋼板表面に酸化膜を形成するおそれがないので、
化成処理性やめっき性に影響を与えることがない。
In addition, induction heating is only used as an auxiliary heating means when changing the heating load of the radiant tube heating furnace or when the heating capacity of the heating furnace is insufficient, so that a large-capacity induction heating equipment is required. In addition, the induction heating does not significantly increase the heating cost. Also, since it is used at a temperature lower than the Curie point, the heating efficiency is excellent. Further, in the present invention, since there is no possibility of forming an oxide film on the surface of the steel sheet,
It does not affect chemical conversion properties or plating properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の説明に用いた連続焼鈍設
備を示す図。
FIG. 1 is a diagram showing a continuous annealing facility used for describing an embodiment of the present invention.

【図2】図1の連続焼鈍設備の誘導加熱装置およびその
近傍設備の詳細を示す図。
FIG. 2 is a diagram showing details of an induction heating device of the continuous annealing equipment of FIG. 1 and equipment in the vicinity thereof.

【図3】図2の誘導加熱装置の断面を示す図。FIG. 3 is a diagram showing a cross section of the induction heating device of FIG. 2;

【図4】本発明の熱処理サイクル外れの低減効果を説明
する図。
FIG. 4 is a view for explaining an effect of reducing a deviation from a heat treatment cycle according to the present invention.

【図5】本発明の生産量の増大効果の説明に用いた連続
焼鈍設備を示す図。
FIG. 5 is a diagram showing a continuous annealing facility used for explaining the effect of increasing the production amount of the present invention.

【図6】一般用材の熱処理サイクルを示す図。FIG. 6 is a view showing a heat treatment cycle of a general material.

【図7】深絞り材の熱処理サイクルを示す図。FIG. 7 is a view showing a heat treatment cycle of a deep drawing material.

【図8】従来の連続焼鈍設備を示す図。FIG. 8 is a view showing a conventional continuous annealing facility.

【符号の説明】[Explanation of symbols]

11 予熱炉 12、14 ロール室 15 第1直火式加熱炉 16 ロール室 17 誘導加熱装置 18 ロール室 19 第2直火式加熱炉 21 輻射管式加熱炉 30a、30b デフレクタロール 31a、31b シールロール 32a、32b シール部材 34 誘導加熱コイル 35 断熱材 36 水冷ジャケット S 鋼板 DESCRIPTION OF SYMBOLS 11 Preheating furnace 12, 14 Roll chamber 15 1st direct-fired heating furnace 16 Roll chamber 17 Induction heating device 18 Roll chamber 19 2nd direct-fired heating furnace 21 Radiation tube-type heating furnace 30a, 30b Deflector roll 31a, 31b Seal roll 32a, 32b Sealing member 34 Induction heating coil 35 Insulation material 36 Water cooling jacket S Steel plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 輻射管式加熱炉、前記輻射管式加熱炉の
入側に直火式加熱炉および前記直火式加熱炉の入側に前
記直火式加熱炉の燃焼排ガスを用いる予熱炉を備えた鋼
板の連続焼鈍設備において鋼板を熱処理するに際して、 前記直火式加熱炉と前記予熱炉間、あるいはまた前記直
火式加熱炉が複数の直火式加熱炉を備える場合には直火
式加熱炉間の少なくとも一方に誘導加熱装置を設置し
て、鋼板の加熱は、主に前記直火式加熱炉と前記輻射管
式加熱炉を用いて行い、前記直火式加熱炉や前記輻射管
式加熱炉における加熱負荷変更の際の温度制御の応答遅
れ、あるいはまた前記直火式加熱炉や前記輻射管式加熱
炉の加熱能力不足の場合に、前記誘導加熱装置による誘
導加熱で前記応答遅れ、あるいはまた加熱能力不足を補
償して熱処理することを特徴とする鋼板の連続熱処理方
法。
1. A radiant tube heating furnace, a direct heating furnace on the entrance side of the radiation tube heating furnace, and a preheating furnace using combustion exhaust gas from the direct heating furnace on the entrance side of the direct heating furnace When the steel sheet is heat-treated in a continuous annealing facility for a steel sheet provided with: between the direct-fired heating furnace and the preheating furnace, or, if the direct-fired heating furnace includes a plurality of direct-fired heating furnaces, a direct fire An induction heating device is installed on at least one between the heating furnaces, and heating of the steel sheet is mainly performed using the direct heating furnace and the radiant tube heating furnace, and the direct heating furnace and the radiant heating are performed. In the case of a delay in response to temperature control when changing the heating load in a tubular heating furnace, or in the case of insufficient heating capacity of the direct-fired heating furnace or the radiant tube heating furnace, the induction heating by the induction heating device causes the response. Heat treatment to compensate for delay or insufficient heating capacity Continuous heat treatment method of steel plate characterized by.
JP9232490A 1997-08-28 1997-08-28 Continuous heat treatment method of steel sheet Pending JPH1161277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9232490A JPH1161277A (en) 1997-08-28 1997-08-28 Continuous heat treatment method of steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9232490A JPH1161277A (en) 1997-08-28 1997-08-28 Continuous heat treatment method of steel sheet

Publications (1)

Publication Number Publication Date
JPH1161277A true JPH1161277A (en) 1999-03-05

Family

ID=16940141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9232490A Pending JPH1161277A (en) 1997-08-28 1997-08-28 Continuous heat treatment method of steel sheet

Country Status (1)

Country Link
JP (1) JPH1161277A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199985A (en) * 2005-01-19 2006-08-03 Jfe Steel Kk Device for manufacturing hot-dip galvannealed steel sheet having oxide layer on plating surface
JP2007095651A (en) * 2005-02-18 2007-04-12 Nippon Steel Corp Induction heating device and method for metal plate
JP2009263701A (en) * 2008-04-23 2009-11-12 Nippon Steel Corp Method for heating material to be heated
JP2010209475A (en) * 2010-06-11 2010-09-24 Jfe Steel Corp Apparatus for manufacturing galvannealed steel sheet having oxide layer on plating surface
JP2010533788A (en) * 2007-07-19 2010-10-28 コラス・スタール・ベー・ブイ Method for annealing steel strips of varying thickness in the length direction
WO2011113165A1 (en) * 2010-03-18 2011-09-22 Bührer Traktorenfabrik Ag Process and apparatus for heating elongated metal products
US8536498B2 (en) 2005-02-18 2013-09-17 Nippon Steel & Sumitomo Metal Corporation Induction heating device for a metal plate
US9888529B2 (en) 2005-02-18 2018-02-06 Nippon Steel & Sumitomo Metal Corporation Induction heating device for a metal plate
US10294553B2 (en) 2014-09-12 2019-05-21 Aleris Aluminum Duffel Bvba Method of annealing aluminium alloy sheet material
KR102097291B1 (en) 2019-04-17 2020-04-06 한국에너지기술연구원 Direct non­oxidizing continuous steel-strip heat treating furnace using ceramic porous medium burner
CN114438511A (en) * 2022-02-15 2022-05-06 宝钢湛江钢铁有限公司 Method for preventing carbon deposition in hearth of preheating furnace heated by radiant tube from falling off
CN115094205A (en) * 2022-06-27 2022-09-23 包头钢铁(集团)有限责任公司 Hot galvanizing production method of low-cost steel plate for light steel keel
WO2022209364A1 (en) 2021-03-30 2022-10-06 Jfeスチール株式会社 Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199985A (en) * 2005-01-19 2006-08-03 Jfe Steel Kk Device for manufacturing hot-dip galvannealed steel sheet having oxide layer on plating surface
JP4561375B2 (en) * 2005-01-19 2010-10-13 Jfeスチール株式会社 Apparatus for producing alloyed hot-dip galvanized steel sheet having an oxide layer on the plating surface
US8536498B2 (en) 2005-02-18 2013-09-17 Nippon Steel & Sumitomo Metal Corporation Induction heating device for a metal plate
JP2007095651A (en) * 2005-02-18 2007-04-12 Nippon Steel Corp Induction heating device and method for metal plate
US9888529B2 (en) 2005-02-18 2018-02-06 Nippon Steel & Sumitomo Metal Corporation Induction heating device for a metal plate
US8864921B2 (en) 2007-07-19 2014-10-21 Tata Steel Ijmuiden B.V. Method for annealing a strip of steel having a variable thickness in length direction
JP2010533788A (en) * 2007-07-19 2010-10-28 コラス・スタール・ベー・ブイ Method for annealing steel strips of varying thickness in the length direction
JP2009263701A (en) * 2008-04-23 2009-11-12 Nippon Steel Corp Method for heating material to be heated
WO2011113165A1 (en) * 2010-03-18 2011-09-22 Bührer Traktorenfabrik Ag Process and apparatus for heating elongated metal products
JP2010209475A (en) * 2010-06-11 2010-09-24 Jfe Steel Corp Apparatus for manufacturing galvannealed steel sheet having oxide layer on plating surface
US10294553B2 (en) 2014-09-12 2019-05-21 Aleris Aluminum Duffel Bvba Method of annealing aluminium alloy sheet material
KR102097291B1 (en) 2019-04-17 2020-04-06 한국에너지기술연구원 Direct non­oxidizing continuous steel-strip heat treating furnace using ceramic porous medium burner
WO2022209364A1 (en) 2021-03-30 2022-10-06 Jfeスチール株式会社 Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
KR20230151109A (en) 2021-03-30 2023-10-31 제이에프이 스틸 가부시키가이샤 Continuous annealing equipment, continuous annealing method, cold rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
CN114438511A (en) * 2022-02-15 2022-05-06 宝钢湛江钢铁有限公司 Method for preventing carbon deposition in hearth of preheating furnace heated by radiant tube from falling off
CN115094205A (en) * 2022-06-27 2022-09-23 包头钢铁(集团)有限责任公司 Hot galvanizing production method of low-cost steel plate for light steel keel

Similar Documents

Publication Publication Date Title
JPH1161277A (en) Continuous heat treatment method of steel sheet
RU2435869C2 (en) Procedure for heat treatment of strip steel in continuous furnace with oxygen-fuel burners
CA1170042A (en) Jet impingement/radiant heating apparatus
KR20000036065A (en) Induction heaters to improve transitions in continuous heating systems, and method
CN209960963U (en) Heat treatment kiln
JPS6056406B2 (en) Continuous annealing furnace with induction heating section
US20020162612A1 (en) Preheating of metal strip, especially in galvanizing or annealing lines
CN100478460C (en) Improved method for reducing folding formation of heating steel strip
CN102399964B (en) Steel pipe normalizing furnace
JP4352499B2 (en) Continuous multi-band heating method and continuous multi-band heating furnace
KR20020049914A (en) apparatus for withdrawing heat in radiant tube of furnace
JPH08319520A (en) Continuous annealing furnace
JP4064253B2 (en) Steel strip continuous heat treatment equipment and combustion method thereof
JP3174148B2 (en) Furnace equipment for heating and soaking high-temperature slabs
JPH0236647B2 (en) RENZOKUKANETSURONIOKERUHAIGASURYOHOHO
JPH09209032A (en) Method for controlling optimum furnace pressure in heating furnace
JPH0519322Y2 (en)
JPH10273735A (en) Operation of bell type annealing furnace using regenerative combustion device
JPH0441627A (en) Method for directly reducing and heating steel strip
JPH0136908Y2 (en)
JP3473060B2 (en) Muffle furnace
CN116536506A (en) Furnace pressure control method of atmosphere annealing furnace
JPS6321563Y2 (en)
CN115323158A (en) Method for improving productivity of heating furnace of hot continuous rolling production line
JPS61291925A (en) Continuous annealing method for steel strip