JP2015193917A - Refining high tension thick steel and production method thereof - Google Patents

Refining high tension thick steel and production method thereof Download PDF

Info

Publication number
JP2015193917A
JP2015193917A JP2015044494A JP2015044494A JP2015193917A JP 2015193917 A JP2015193917 A JP 2015193917A JP 2015044494 A JP2015044494 A JP 2015044494A JP 2015044494 A JP2015044494 A JP 2015044494A JP 2015193917 A JP2015193917 A JP 2015193917A
Authority
JP
Japan
Prior art keywords
steel plate
thick steel
less
surface layer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015044494A
Other languages
Japanese (ja)
Other versions
JP6146429B2 (en
Inventor
隆男 赤塚
Takao Akatsuka
隆男 赤塚
章夫 大森
Akio Omori
章夫 大森
友和 田村
Tomokazu Tamura
友和 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015044494A priority Critical patent/JP6146429B2/en
Publication of JP2015193917A publication Critical patent/JP2015193917A/en
Application granted granted Critical
Publication of JP6146429B2 publication Critical patent/JP6146429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for stably producing a refining high tension thick steel in which intensity and work ability are achieved, even when new equipment is not used, in a method for making only a surface layer of steel soft to secure intensity of inside of the steel for achieving both of intensity and work ability.SOLUTION: A thick steel is taken out from an atmosphere furnace in a midway of temperature rising, in normalizing processing, for acquiring temperature difference between a surface layer and inside of the thick steel. With the temperature difference, a rough ferrite is formed on the surface layer, and fine ferrite is formed in inside.

Description

本発明は、曲げ加工性および靭性に優れた調質高張力厚鋼板及びその製造方法に関するものである。   The present invention relates to a tempered high-tensile steel plate excellent in bending workability and toughness, and a method for producing the same.

建築、橋梁、貯蔵タンク、圧力容器などの鉄鋼構造物の製造に用いられる鋼板は、強度と靭性が優れていることはもちろん、成形時の加工性に優れていることが要求される。一般的に、鋼板の強度が上がるほど曲げ加工性は悪くなる。   Steel sheets used for the manufacture of steel structures such as buildings, bridges, storage tanks, pressure vessels, etc. are required to have excellent strength and toughness as well as excellent workability during forming. Generally, bending workability worsens as the strength of a steel plate increases.

そこで、強度と加工性を両立するために、鋼板表層部のみ軟化させる方法が提案されている。   Therefore, in order to achieve both strength and workability, a method of softening only the surface layer portion of the steel sheet has been proposed.

例えば、特許文献1、特許文献2では圧延後に加速冷却し、その後に誘導加熱することにより、表層のみ軟化させる方法が提案されている。しかし、特許文献1、特許文献2の技術では、既存の設備に加え、新たな加熱設備が必要となり、鋼板の製造コストが高くなる。   For example, Patent Documents 1 and 2 propose a method in which only the surface layer is softened by accelerated cooling after rolling and then induction heating. However, the techniques of Patent Document 1 and Patent Document 2 require new heating equipment in addition to the existing equipment, which increases the manufacturing cost of the steel sheet.

また、鋼板表層部のみ軟化させ、鋼板内部の強度を確保する方法である、特許文献3に記載の技術は、圧延中に加速冷却を行い、その際に加速冷却を複数に分け、かつ所定の温度域で圧延を行う工程を含むことを特徴としている。しかし、特許文献3に記載の技術では、冷却中、もしくは直後でも圧延を行うには新たな冷却装置が必要である。また、加速冷却は温度制御が難しいため、特許文献3で提案されている圧延や冷却条件を満たし安定的に鋼板を製造することは難しく、歩留まりが悪い。   In addition, the technique described in Patent Document 3, which is a method of softening only the surface layer portion of the steel sheet and ensuring the strength inside the steel sheet, performs accelerated cooling during rolling, in which case the accelerated cooling is divided into a plurality of parts, and a predetermined It includes a step of rolling in a temperature range. However, in the technique described in Patent Document 3, a new cooling device is required to perform rolling even during or immediately after cooling. Moreover, since temperature control is difficult for accelerated cooling, it is difficult to stably produce a steel sheet that satisfies the rolling and cooling conditions proposed in Patent Document 3, and the yield is poor.

特開2011−195961号公報JP2011-195961A 特開2005−298963号公報JP 2005-298963 A 特開平9−165652号公報Japanese Patent Laid-Open No. 9-165552

本発明は上記課題を解決するためになされたものであり、その目的は、強度と加工性を両立するために、鋼板表層部のみ軟化させ、鋼板内部の強度を確保する方法において、新たな設備を使用しない場合であっても、強度と加工性を両立させた調質高張力厚鋼板を安定して製造できる技術を提供することにある。   The present invention has been made in order to solve the above-mentioned problems. The purpose of the present invention is to provide a new facility in a method of softening only the surface portion of a steel sheet and ensuring the strength inside the steel sheet in order to achieve both strength and workability. It is to provide a technology capable of stably producing a tempered high-tension thick steel plate that achieves both strength and workability even when not used.

通常、熱間圧延を施してなる厚鋼板を、所定の温度T℃以上まで加熱して焼ならしを行う際に、厚鋼板全体がT℃以上になってから厚鋼板を加熱炉から取り出す。しかし、この方法で厚鋼板の表層を軟化させようとすると、厚鋼板内部まで粗大なフェライトが生成し、鋼板全体の強度が下がってしまう。   Usually, when a thick steel plate formed by hot rolling is heated to a predetermined temperature T ° C. or higher and normalized, the thick steel plate is taken out of the heating furnace after the whole thick steel plate reaches T ° C. or higher. However, when trying to soften the surface layer of the thick steel plate by this method, coarse ferrite is generated up to the inside of the thick steel plate, and the strength of the entire steel plate is lowered.

そこで、本発明者らは上記課題を解決するために鋭意研究を重ねた結果、以下の知見を得た。   Therefore, as a result of intensive studies to solve the above problems, the present inventors have obtained the following knowledge.

焼ならし処理において、昇温途中で加熱炉から厚鋼板を取り出すことによって、厚鋼板の表層と内部で温度差をつけることができる。これを利用すれば、表層に粗大なフェライトを形成させ、内部は微細なフェライトを形成させることができる。微細なフェライトは粗大なフェライトよりも結晶粒の細粒化効果により強度が高いため、鋼板全体の強度を保ちつつ、表層の強度を下げて曲げ加工性を高めることができる。   In the normalizing process, by removing the thick steel plate from the heating furnace in the middle of the temperature rise, a temperature difference can be made between the surface layer and the inside of the thick steel plate. By utilizing this, coarse ferrite can be formed on the surface layer, and fine ferrite can be formed inside. Since fine ferrite has higher strength than coarse ferrite due to the effect of grain refinement, the strength of the surface layer can be lowered and the bending workability can be improved while maintaining the strength of the entire steel sheet.

また、加熱炉の温度を高くするほど、昇温過程で鋼板表層と鋼板内部の温度差が大きくなる。   Moreover, the higher the temperature of the heating furnace, the larger the temperature difference between the steel sheet surface layer and the steel sheet during the temperature raising process.

本発明は以上の知見に基づいて完成されたものであり、具体的には、本発明は以下のものを提供する。   The present invention has been completed based on the above findings, and specifically, the present invention provides the following.

(1)質量%で、C:0.04〜0.30%、Si:0.50%以下、Mn:2.0%以下、P:0.020%以下、S:0.006%以下、Al:0.05%以下、N:0.0060%以下、Ti:0.005〜0.30%を含み、残部Feおよび不可避的不純物からなる成分組成を有し、板厚方向に厚鋼板表面からtmm(t=(厚鋼板板厚t)×0.1)までの領域である厚鋼板表層部の平均フェライト粒径が30μm以上であり、板厚中央位置から板厚方向に±2mmの領域である厚鋼板中央部の平均フェライト粒径が15μm以下であり、さらに、前記厚鋼板表層部の平均フェライト粒径が前記厚鋼板中央部の平均フェライト粒径の2.00〜5.00倍であることを特徴とする、調質高張力厚鋼板。 (1) By mass%, C: 0.04 to 0.30%, Si: 0.50% or less, Mn: 2.0% or less, P: 0.020% or less, S: 0.006% or less, Al: 0.05% or less, N: 0.0060% or less, Ti: 0.005 to 0.30%, having a component composition consisting of the balance Fe and inevitable impurities, and the surface of the thick steel plate in the thickness direction To 1 mm (t 1 = (thick steel plate thickness t) × 0.1), the average ferrite grain size of the surface layer of the thick steel plate is 30 μm or more, and ±± in the thickness direction from the center of the plate thickness The average ferrite grain size in the central portion of the thick steel plate, which is 2 mm, is 15 μm or less, and the average ferrite grain size in the surface layer portion of the thick steel plate is 2.00-5. Tempered high-tensile steel plate, characterized by being 00 times.

(2)さらに質量%で、Ca:0.0005〜0.0050%、REM:0.0010〜0.0050%、Mg:0.0010〜0.0050%のうちから選ばれた1種または2種以上を含有することを特徴とする(1)に記載の調質高張力厚鋼板。   (2) Further, by mass%, one or two selected from Ca: 0.0005-0.0050%, REM: 0.0010-0.0050%, Mg: 0.0010-0.0050% The tempered high-tensile thick steel plate according to (1), which contains seeds or more.

(3)(1)又は(2)に記載の成分組成を有する鋼スラブを、1000〜1250℃の温度に加熱し、圧延仕上温度を800℃以上とする熱間圧延を施す熱延工程と、前記熱延工程後の厚鋼板に焼きならし処理を施す焼ならし工程と、を備え、前記焼きならし工程では、厚鋼板を加熱炉から取り出すときの、加熱条件から伝熱計算で算出した厚鋼板表面温度(T)、板厚方向の厚鋼板中心温度(T)が、下記(式1)〜(式4)を満たすことを特徴とする、板厚方向に厚鋼板表面からtmm(t=(厚鋼板板厚t)×0.1)までの領域である厚鋼板表層部の平均フェライト粒径が30μm以上であり、板厚中央位置から板厚方向に±2mmの領域である厚鋼板中央部の平均フェライト粒径が15μm以下であり、さらに、前記厚鋼板表層部の平均フェライト粒径が前記厚鋼板中央部の平均フェライト粒径の2.00〜5.00倍である調質高張力厚鋼板の製造方法。
c3+30≦T(℃)≦Ac3+120 (式1)
(℃/min)≧−0.0036×t+0.54 (式2)
c3≦T(℃)≦Ac3+20 (式3)
−T≧30(℃) (式4)
ただし、Ac3=937−476.5C+56Si−19.7Mn+136.3Ti+198.4Alであり(元素記号は、各元素の含有量(質量%)を意味する。)、
は、厚鋼板の表面温度がTになる5分前の、加熱条件から伝熱計算で算出した厚鋼板表面温度をTs−5としたときに、V=(T−Ts−5)/5で表され、
tは、前記焼きならし処理を施される厚鋼板の厚みである。
(3) A hot rolling process in which a steel slab having the composition described in (1) or (2) is heated to a temperature of 1000 to 1250 ° C. and subjected to hot rolling at a rolling finishing temperature of 800 ° C. or higher, And a normalizing step in which a normalizing treatment is performed on the thick steel plate after the hot rolling step. In the normalizing step, the thick steel plate was calculated by heat transfer calculation from the heating conditions when the thick steel plate was taken out from the heating furnace. Thick steel plate surface temperature (T s ) and thick steel plate center temperature (T c ) in the thickness direction satisfy the following (Equation 1) to (Equation 4): The average ferrite grain size of the thick steel plate surface layer portion, which is an area up to 1 mm (t 1 = (thick steel plate thickness t) × 0.1), is 30 μm or more, and ± 2 mm in the plate thickness direction from the plate thickness center position. The average ferrite grain size in the central portion of the thick steel plate, which is the region, is 15 μm or less, and A method for producing a tempered high-tensile thick steel plate having an average ferrite grain size in the surface layer of the thick steel plate that is 2.00 to 5.00 times the average ferrite grain size in the central portion of the thick steel plate.
A c3 + 30 ≦ T s (° C.) ≦ A c3 +120 (Formula 1)
V s (° C./min)≧−0.0036×t+0.54 (Formula 2)
A c3 ≦ T c (° C.) ≦ A c3 +20 (Formula 3)
T s −T c ≧ 30 (° C.) (Formula 4)
However, an A c3 = 937-476.5C + 56Si-19.7Mn + 136.3Ti + 198.4Al ( element symbol means the content of each element (mass%).),
V s is the 5 minutes before the surface temperature of the steel plate is T s, the steel plate surface temperature calculated by the heat transfer calculations from the heating condition when the T s-5, V s = (T s -T s-5 ) / 5,
t is the thickness of the thick steel plate to be subjected to the normalizing process.

なお、本発明の鋼板の製造方法は、焼ならし工程において鋼板の表層と板厚中央に温度差を設けるものであるため、ある程度、厚い鋼板でなければ適用は難しい。このため本発明の製造方法は10mm〜80mmの板厚の鋼板に好適に適用できる。   In addition, since the manufacturing method of the steel plate of this invention provides a temperature difference in the surface layer and plate | board thickness center of a steel plate in a normalization process, application is difficult unless it is a steel plate to some extent or more. Therefore, the production method of the present invention can be suitably applied to a steel plate having a thickness of 10 mm to 80 mm.

本発明の調質高張力厚鋼板は、強度及び曲げ加工性に優れ、安定して製造可能である。   The tempered high tensile steel plate of the present invention is excellent in strength and bending workability and can be manufactured stably.

また、本発明の調質高張力厚鋼板を製造する際には既設の加熱炉を使用することができ、従来技術のように新たな設備を使用する必要はない。なお、本発明の鋼板はとりわけ引張強度550MPa以上を有するものとした。   Moreover, when manufacturing the tempered high tension thick steel plate of this invention, the existing heating furnace can be used and it is not necessary to use a new installation like the prior art. The steel sheet of the present invention has a tensile strength of 550 MPa or more.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.

成分組成
本発明の調質高張力厚鋼板は、質量%で、C:0.04〜0.30%、Si:0.50%以下、Mn:2.0%以下、P:0.020%以下、S:0.006%以下、Al:0.05%以下、N:0.0060%以下、Ti:0.005〜0.30%を含み、残部Feおよび不可避的不純物からなる成分組成を有する。また、本発明の調質高張力厚鋼板は、任意成分として、Ca:0.0005〜0.0050%、REM:0.0010〜0.0050%、Mg:0.0010〜0.0050%のうちから選ばれた1種または2種以上を含んでもよい。以下、各成分について説明する。なお、成分組成の説明における「%」は「質量%」を意味する。
Component composition The tempered high-tensile steel plate of the present invention is in mass%, C: 0.04 to 0.30%, Si: 0.50% or less, Mn: 2.0% or less, P: 0.020%. Hereinafter, S: 0.006% or less, Al: 0.05% or less, N: 0.0060% or less, Ti: 0.005 to 0.30%, the component composition consisting of the balance Fe and inevitable impurities Have. Further, the tempered high-tensile thick steel plate of the present invention includes, as optional components, Ca: 0.0005-0.0050%, REM: 0.0010-0.0050%, Mg: 0.0010-0.0050%. You may include 1 type, or 2 or more types chosen from the inside. Hereinafter, each component will be described. In the description of the component composition, “%” means “% by mass”.

C:0.04〜0.30%
Cは、鋼の強度を増加させ、鉄鋼構造物に必要な強度を付与するのに有用な元素である。「鉄鋼構造物に必要な強度」とは、用途によって異なるが、本明細書では、調質高張力厚鋼板の引張強度(TS)が550MPa以上であることを意味する。このような効果を得るためには、Cの含有量を0.04%以上とする必要がある。好ましくは、0.10%以上である。一方、Cの含有量が0.30%を超えると、鋼の溶接性と靭性が顕著に低下する。このため、Cの含有量は0.30%以下とする。好ましくは、0.20%以下である。
C: 0.04 to 0.30%
C is an element useful for increasing the strength of steel and imparting the necessary strength to steel structures. The “strength necessary for the steel structure” varies depending on the application, but in this specification, it means that the tensile strength (TS) of the tempered high-tensile steel plate is 550 MPa or more. In order to obtain such an effect, the C content needs to be 0.04% or more. Preferably, it is 0.10% or more. On the other hand, if the C content exceeds 0.30%, the weldability and toughness of the steel are significantly reduced. For this reason, content of C shall be 0.30% or less. Preferably, it is 0.20% or less.

Si:0.50%以下
Siは、脱酸剤として作用するとともに、鋼中に固溶し鋼の強度を増加させる。これらの効果を得るためには、Siの含有量は0.01%以上であることが好ましい。より好ましくは0.10%以上である。一方、Siの含有量が0.50%を超えると、鋼の靱性が低下する。このため、Siの含有量は0.50%以下の範囲に限定した。好ましくは0.40%以下である。
Si: 0.50% or less Si acts as a deoxidizer and dissolves in steel to increase the strength of the steel. In order to obtain these effects, the Si content is preferably 0.01% or more. More preferably, it is 0.10% or more. On the other hand, if the Si content exceeds 0.50%, the toughness of the steel decreases. For this reason, the Si content is limited to a range of 0.50% or less. Preferably it is 0.40% or less.

Mn:2.0%以下
Mnは、固溶して鋼の強度を増加させる元素である。また、鋼中のSと化合してMnSを形成しSによる靭性低下を防止する。これらの効果を得るためにはMnの含有量を0.4%以上にすることが好ましい。より好ましくは1.0%以上である。一方、Mnの含有量が2.0%を超えると、溶接後の母材の靱性および溶接熱影響部(HAZ)の靱性が著しく低下する。このため、Mnの含有量は2.0%以下に限定した。好ましくは1.8%以下である。
Mn: 2.0% or less Mn is an element that increases the strength of steel by solid solution. Moreover, it combines with S in steel to form MnS and prevent toughness deterioration due to S. In order to obtain these effects, the Mn content is preferably 0.4% or more. More preferably, it is 1.0% or more. On the other hand, if the content of Mn exceeds 2.0%, the toughness of the base metal after welding and the toughness of the weld heat affected zone (HAZ) are significantly reduced. For this reason, the Mn content is limited to 2.0% or less. Preferably it is 1.8% or less.

P:0.020%以下
Pは靱性、特に溶接部の靱性を低下させる元素であり、本発明ではP含有量をできるだけ低減することが望ましく、Pを含まなくてもよいものの、Pの含有量の過度の低減は、精錬コストを高騰させ経済的に不利となる。このため、厚鋼板の製造コストを抑える観点からPの含有量は0.005%以上とすることが好ましい。一方、Pの含有量が0.020%を超えると、上記した悪影響が顕著となるため、Pの含有量は0.020%以下に限定した。好ましくは0.016%以下である。
P: 0.020% or less P is an element that lowers toughness, particularly toughness of a welded portion. In the present invention, it is desirable to reduce the P content as much as possible. Excessive reduction of the cost increases the refining cost and is economically disadvantageous. For this reason, it is preferable to make content of P 0.005% or more from a viewpoint of suppressing the manufacturing cost of a thick steel plate. On the other hand, when the P content exceeds 0.020%, the above-described adverse effects become remarkable, so the P content is limited to 0.020% or less. Preferably it is 0.016% or less.

S:0.006%以下
Sは、鋼中ではMnS等の硫化物系介在物として存在し、オーステナイト(γ)からフェライト(α)への変態の核となり、溶接部の靭性を向上させる作用を有する。このような効果を得るためには、Sの含有量を0.0010%以上とすることが好ましい。一方、Sの含有量が0.006%を超えると、鋼の中央偏析部などに多量のMnSが生成し、靭性は低下する。また、0.006%を超えるSの含有は、鋳片等における欠陥を発生させやすくする。そこで、Sの含有量は0.006%以下とする。このため、Sの含有量は0.0010〜0.006%の範囲にすることが好ましい。なお、より好ましくは0.0010〜0.0025%である。
S: 0.006% or less S is present in the steel as sulfide inclusions such as MnS, and serves as a nucleus of transformation from austenite (γ) to ferrite (α), and improves the toughness of the weld. Have. In order to obtain such an effect, the S content is preferably 0.0010% or more. On the other hand, if the S content exceeds 0.006%, a large amount of MnS is generated in the central segregation portion of the steel and the toughness is lowered. Moreover, inclusion of S exceeding 0.006% facilitates generation of defects in slabs and the like. Therefore, the S content is 0.006% or less. For this reason, it is preferable to make content of S into the range of 0.0010 to 0.006%. In addition, More preferably, it is 0.0010 to 0.0025%.

Al:0.05%以下
Alは、脱酸剤として作用する元素である。高張力鋼の溶鋼脱酸プロセスにおいては、脱酸剤として、Alが最も汎用的に使われる。このような効果を得るためには、Alの含有量を0.01%以上とすることが好ましい。また、Alの含有量が0.05%を超えると、溶接後のHAZ靱性が低下するとともに、溶接時に溶接金属にAlが混入して溶接金属の靱性も低下する。このため、Alの含有量は0.05%以下に限定した。好ましくは0.04%以下である。
Al: 0.05% or less Al is an element that acts as a deoxidizer. In the high-strength steel deoxidation process, Al is most commonly used as a deoxidizer. In order to obtain such an effect, the Al content is preferably 0.01% or more. Further, if the Al content exceeds 0.05%, the HAZ toughness after welding is lowered, and Al is mixed into the weld metal during welding, so that the toughness of the weld metal is also lowered. For this reason, the content of Al is limited to 0.05% or less. Preferably it is 0.04% or less.

N:0.0060%以下
Nは、鋼中に固溶している場合には、冷間加工後に歪時効を起こし靭性を劣化させる。このため、Tiなどの窒化物形成元素を添加して窒化物として固定することにより、固溶窒素は可能な限り低減することが好ましい。TiNなどの窒化物は、粒界をピンニングして結晶粒の粗大化を防止し、あるいは、フェライト変態核として作用し、HAZ靭性の向上に寄与する。このため、Nは0.0010%以上とすることが好ましい。一方、Nの含有量が0.0060%を超えると、Tiなどの窒化物形成元素により窒化物として固定しても、窒化物が粗大になり、靭性の劣化が著しくなる。このため、Nの含有量は0.0060%以下に限定した。好ましくは0.0050%以下である。
N: 0.0060% or less N, when dissolved in steel, causes strain aging after cold working and deteriorates toughness. For this reason, it is preferable to reduce solute nitrogen as much as possible by adding a nitride-forming element such as Ti and fixing it as a nitride. Nitrides such as TiN prevent grain coarsening by pinning grain boundaries, or act as ferrite transformation nuclei and contribute to the improvement of HAZ toughness. For this reason, N is preferably 0.0010% or more. On the other hand, when the N content exceeds 0.0060%, even if the nitride is fixed as a nitride by a nitride-forming element such as Ti, the nitride becomes coarse and the deterioration of toughness becomes remarkable. For this reason, the N content is limited to 0.0060% or less. Preferably it is 0.0050% or less.

Ti:0.005〜0.30%
Tiは、Nとの親和力が強い元素であり、凝固時にTiNとして析出し、鋼中の固溶Nを減少させ、冷間加工後のNの歪時効による靭性劣化を低減する作用を有する。また、Tiは、HAZの組織改善を介して、HAZ靭性の向上にも寄与する。このような効果を得るためには、Tiの含有量を0.005%以上とする。一方、Tiの含有量が0.30%を超えると、TiN粒子が粗大化し、上記した効果が期待できなくなる。このため、Tiの含有量は0.005〜0.30%の範囲に限定した。
Ti: 0.005 to 0.30%
Ti is an element having a strong affinity for N, and precipitates as TiN during solidification, thereby reducing solid solution N in the steel and reducing the toughness deterioration due to strain aging of N after cold working. Ti also contributes to the improvement of HAZ toughness through the improvement of the HAZ structure. In order to obtain such an effect, the Ti content is set to 0.005% or more. On the other hand, if the Ti content exceeds 0.30%, the TiN particles become coarse and the above-described effects cannot be expected. For this reason, the Ti content is limited to a range of 0.005 to 0.30%.

上記した成分が基本の成分であるが、これら基本成分に加えて、必要に応じて、選択元素として、Ca:0.0005〜0.0050%、REM:0.0010〜0.0050%、Mg:0.0010〜0.0050%のうちから選ばれた1種または2種を含有できる。   The above-described components are basic components. In addition to these basic components, if necessary, as optional elements, Ca: 0.0005 to 0.0050%, REM: 0.0010 to 0.0050%, Mg : One or two selected from 0.0010 to 0.0050% can be contained.

Ca、Mg、REMはいずれも、硫化物の形態制御を介して、鋼の延性向上、溶接後の母材の靭性向上に寄与する。また、これらの元素を含み、微細な硫化物粒子が鋼中に分散した場合、分散した硫化物粒子がフェライト変態核として作用することによってHAZ靱性が向上する。これらの効果を得るためには、Caであればその含有量が0.0005%以上であることが好ましく、REMであればその含有量が0.0010%以上であることが好ましく、Mgであればその含有量が0.0010%以上であることが好ましい。また、Ca、Mg、REMのそれぞれの含有量が0.0050%を超えると、過剰な介在物が生成し、靱性が低下する。したがって、Ca、Mg、REMの含有量は上記範囲にあることが好ましい。   Ca, Mg, and REM all contribute to the improvement of the ductility of steel and the toughness of the base material after welding through the control of sulfide morphology. Further, when fine sulfide particles containing these elements are dispersed in steel, the dispersed sulfide particles act as ferrite transformation nuclei, thereby improving the HAZ toughness. In order to obtain these effects, if Ca, the content is preferably 0.0005% or more, and if REM, the content is preferably 0.0010% or more. For example, the content is preferably 0.0010% or more. Moreover, when each content of Ca, Mg, and REM exceeds 0.0050%, an excessive inclusion will produce | generate and toughness will fall. Therefore, the content of Ca, Mg, and REM is preferably in the above range.

なお、上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、例えば、O:0.005%以下が許容できる。   The balance other than the above components is Fe and inevitable impurities. As an inevitable impurity, for example, O: 0.005% or less is acceptable.

鋼組織
次いで、本発明の調質高張力鋼板の鋼組織について説明する。本発明の調質高張力厚鋼板においては、板厚方向に厚鋼板表面からtmm(t=(厚鋼板板厚t)×0.1)までの領域である厚鋼板表層部と、板厚中央位置から板厚方向に±2mmの領域である厚鋼板中央部が、以下の特徴を有する。
Steel structure Next, the steel structure of the tempered high-tensile steel sheet of the present invention will be described. In the tempered high-tensile steel plate of the present invention, a steel plate surface layer portion that is a region from the steel plate surface to t 1 mm (t 1 = (thick steel plate thickness t) × 0.1) in the plate thickness direction; The central portion of the thick steel plate which is an area of ± 2 mm in the plate thickness direction from the plate thickness central position has the following characteristics.

なお、厚鋼板表層部と厚鋼板中央部との間の領域がある場合、当該領域の鋼組織は、厚鋼板表層部と同様の鋼組織、厚鋼板中央部と同様の鋼組織、これら以外の鋼組織のいずれでもよい。「これら以外の鋼組織」とは、例えば、平均フェライト粒径が、厚鋼板中央部の平均フェライト粒径の2.00倍未満の鋼組織である場合が例示できる。   In addition, when there is a region between the thick steel plate surface layer portion and the thick steel plate central portion, the steel structure of the region is the same steel structure as the thick steel plate surface layer portion, the same steel structure as the thick steel plate central portion, other than these Any of steel structures may be used. “A steel structure other than these” can be exemplified by a steel structure having an average ferrite grain size of less than 2.00 times the average ferrite grain size in the central portion of the thick steel plate.

本発明の調質高張力厚鋼板において、厚鋼板表層部の平均フェライト粒径が30μm以上であり、厚鋼板中央部の平均フェライト粒径が15μm以下である。厚鋼板表層部の平均フェライト粒径が30μm未満になると、表層軟化の効果が小さく十分な曲げ加工性が得られない。また、厚鋼板中央部の平均フェライト粒径が15μmを超えると、細粒化強化が少なく鋼板全体の強度が低下してしまう。さらに、厚鋼板表層部の平均フェライト粒径は、厚鋼板中央部の平均フェライト粒径の2.00〜5.00倍である。厚鋼板表層部の平均フェライト粒径が厚鋼板中央部の平均フェライト粒径の2.00倍未満になると、厚鋼板表層部と厚鋼板中央部との強度差が小さく、十分な曲げ加工性と鋼板全体の強度を両立できない。また、5.00倍を超えると、表層が軟化し過ぎてしまい、鋼板全体の強度が低下してしまう。なお、組織中にフェライトが含まれない場合には、フェライト粒径が便宜的に0であるとして、厚鋼板中央部の平均フェライト粒径と厚鋼板表層部の平均フェライト粒径の比を求めるものとする。   In the tempered high-tensile thick steel plate of the present invention, the average ferrite particle size of the thick steel plate surface layer portion is 30 μm or more, and the average ferrite particle size of the thick steel plate central portion is 15 μm or less. When the average ferrite grain size of the surface layer portion of the thick steel plate is less than 30 μm, the effect of softening the surface layer is small and sufficient bending workability cannot be obtained. On the other hand, when the average ferrite grain size in the central part of the thick steel plate exceeds 15 μm, the strength of the whole steel plate is reduced due to less refinement strengthening. Furthermore, the average ferrite particle size of the thick steel plate surface layer portion is 2.00 to 5.00 times the average ferrite particle size of the thick steel plate central portion. When the average ferrite grain size of the steel plate surface layer is less than 2.00 times the average ferrite particle size of the thick steel plate center, the difference in strength between the thick steel plate surface and the thick steel plate center is small, and sufficient bending workability is achieved. The strength of the entire steel sheet cannot be achieved. Moreover, when it exceeds 5.00 times, a surface layer will soften too much and the intensity | strength of the whole steel plate will fall. In the case where ferrite is not included in the structure, the ratio of the average ferrite particle size of the thick steel plate central portion and the average ferrite particle size of the thick steel plate surface layer portion is obtained assuming that the ferrite particle size is 0 for convenience. And

また、本発明の効果をより高いものとするためには、厚鋼板表層部の平均フェライト粒径は40〜70μmであることが好ましく、厚鋼板中央部の平均フェライト粒径は3〜15μmであることが好ましい。   Moreover, in order to make the effect of the present invention higher, it is preferable that the average ferrite particle size of the thick steel plate surface layer portion is 40 to 70 μm, and the average ferrite particle size of the thick steel plate central portion is 3 to 15 μm. It is preferable.

本発明の厚鋼板表層部にはフェライト相が含まれる。厚鋼板表層部におけるフェライト相の含有量は面積率で40〜90%であることが好ましい。より好ましくは50〜80%である。また、鋼板の引張強度を550MPa以上とするため、厚鋼板表層部にはフェライト相以外に、パーライト、ベイナイト相を含むことが好ましい。パーライト、ベイナイト相はフェライト相よりも硬質であり、引張強度の向上に寄与する。パーライト、ベイナイト相の含有量(面積率)は合計で10〜60%であることが好ましく、より好ましくは20〜50%である。   The surface layer of the thick steel plate of the present invention contains a ferrite phase. The ferrite phase content in the surface layer of the thick steel plate is preferably 40 to 90% in terms of area ratio. More preferably, it is 50 to 80%. Moreover, in order to make the tensile strength of a steel plate 550 Mpa or more, it is preferable that a thick steel plate surface layer part contains a pearlite and a bainite phase other than a ferrite phase. The pearlite and bainite phases are harder than the ferrite phases and contribute to the improvement of tensile strength. The total content (area ratio) of the pearlite and bainite phases is preferably 10 to 60%, more preferably 20 to 50%.

また、本発明の厚鋼板中央部にはフェライト相が含まれる。厚鋼板中央部におけるフェライト相の含有量は面積率で40〜90%であることが好ましい。より好ましくは50〜80%である。また、鋼板の引張強度を550MPa以上とするため、厚鋼板中央部にはフェライト相以外に、パーライト、ベイナイト相を含むことが好ましい。パーライト、ベイナイト相の含有量(面積率)は合計で10〜60%であることが好ましく、より好ましくは20〜50%である。   Moreover, the ferrite phase is contained in the center part of the thick steel plate of the present invention. The ferrite phase content in the central portion of the thick steel plate is preferably 40 to 90% in terms of area ratio. More preferably, it is 50 to 80%. Moreover, in order to make the tensile strength of a steel plate 550 Mpa or more, it is preferable that the center part of a thick steel plate contains a pearlite and a bainite phase other than a ferrite phase. The total content (area ratio) of the pearlite and bainite phases is preferably 10 to 60%, more preferably 20 to 50%.

調質高張力厚鋼板の製造方法
次いで、本発明の調質高張力厚鋼板の製造方法について説明する。本発明の調質高張力厚鋼板は以下の方法で製造されることが好ましい。
Next, the manufacturing method of the tempered high-tensile steel plate of the present invention will be described. The tempered high-tensile thick steel plate of the present invention is preferably produced by the following method.

好ましい製造方法は、上記成分組成を有する鋼スラブを加熱し、熱間圧延を施す熱延工程と、熱延工程後の厚鋼板に焼きならし処理を施す焼ならし工程と、を備える。   A preferable manufacturing method includes a hot rolling process in which a steel slab having the above component composition is heated and subjected to hot rolling, and a normalizing process in which a thick steel sheet after the hot rolling process is subjected to a normalizing process.

一般的に、焼ならしとは、Ac3以上の温度に加熱してフェライト相からオーステナイト相に変態させ、その後、空冷して、再度、オーステナイト相からフェライト相に変態させることにより、組織の微細化、均一化をはかるための熱処理である。 In general, normalization is a process in which the microstructure is refined by heating to a temperature of Ac3 or higher to transform from a ferrite phase to an austenite phase, then air-cooling and transforming from an austenite phase to a ferrite phase again. This is a heat treatment for achieving uniformity and uniformity.

熱間圧延工程は、上記鋼スラブを1000〜1250℃の温度に加熱し、圧延仕上温度を800℃以上とする熱間圧延を施す工程である。   A hot rolling process is a process which heats the said steel slab to the temperature of 1000-1250 degreeC, and performs the hot rolling which makes a rolling finishing temperature 800 degreeC or more.

上記鋼スラブの加熱温度が1000℃未満では得られる調質高張力厚鋼板の強度が低下する場合があり、一方、1250℃を超えると、組織が粗大化して、調質高張力厚鋼板の靱性が低下したり、その後の熱間圧延、焼きならし工程を経ても、所望のフェライト粒径が得られなくなったりする場合がある。このため、鋼スラブの加熱温度は1000℃〜1250℃の範囲とすることが好ましい。なお、より好ましくは1080℃〜1150℃である。   When the heating temperature of the steel slab is less than 1000 ° C., the strength of the tempered high strength thick steel plate may be reduced. On the other hand, when it exceeds 1250 ° C., the structure becomes coarse and the toughness of the tempered high strength thick steel plate. In some cases, the desired ferrite grain size may not be obtained even after the subsequent hot rolling and normalizing steps. For this reason, it is preferable to make the heating temperature of a steel slab into the range of 1000 to 1250 degreeC. In addition, More preferably, it is 1080 to 1150 degreeC.

また、熱間圧延における圧延仕上温度が800℃未満であると、圧延能率が低下する。よって、圧延仕上温度は800℃以上とする。   Moreover, rolling efficiency falls that the rolling finishing temperature in hot rolling is less than 800 degreeC. Therefore, the rolling finishing temperature is set to 800 ° C. or higher.

焼ならし工程とは、上記熱延工程で得られた厚鋼板に焼ならし処理を施す工程である。本発明の焼ならし工程は、熱延工程後、厚鋼板をフェライト変態が完了する400℃程度以下まで一旦、冷却し、その後、加熱炉で加熱し、その後、厚鋼板を加熱炉から取り出し空冷する方法で行われることが好ましく、以下この方法について説明する。なお、加熱炉とは、通常の熱処理のための炉であり、本発明の調質高張力厚鋼板を製造するために必要な新たな設備ではない。このように、既存設備を利用できる点が本発明の特徴の一つである。   The normalizing process is a process of applying a normalizing process to the thick steel plate obtained in the hot rolling process. In the normalizing step of the present invention, after the hot rolling step, the thick steel plate is once cooled to about 400 ° C. or less after the ferrite transformation is completed, and then heated in a heating furnace, and then the thick steel plate is taken out of the heating furnace and air-cooled. This method is preferably performed, and this method will be described below. In addition, a heating furnace is a furnace for normal heat processing, and is not a new equipment required in order to manufacture the tempered high tension thick steel plate of this invention. Thus, the point which can utilize the existing installation is one of the characteristics of this invention.

本発明の調質高張力厚鋼板の製造においては、上記焼きならし工程で、厚鋼板を加熱炉から取り出すタイミングが重要である。具体的には、厚鋼板を加熱炉から取り出すときの、加熱条件から伝熱計算で算出した厚鋼板表面温度(T)、板厚方向の厚鋼板中心温度(T)が、下記(式1)〜(式4)を満たす。
c3+30≦T(℃)≦Ac3+120 (式1)
(℃/min)≧−0.0036×t+0.54 (式2)
c3≦T(℃)≦Ac3+20 (式3)
−T≧30(℃) (式4)
ただし、Ac3=937−476.5C+56Si−19.7Mn+136.3Ti+198.4Alであり(元素記号は、各元素の含有量(質量%)を意味する。)、
は、厚鋼板表面温度(T)の5分前の、加熱条件から伝熱計算で算出した厚鋼板表面温度をTs−5としたときに、V=(T−Ts−5)/5で表され、
tは、前記焼きならし処理を施される厚鋼板の厚みである。
In the production of the tempered high-tensile thick steel plate of the present invention, the timing of taking out the thick steel plate from the heating furnace in the normalizing step is important. Specifically, when the thick steel plate is taken out of the heating furnace, the thick steel plate surface temperature (T s ) calculated by heat transfer calculation from the heating conditions, and the thick steel plate center temperature (T c ) in the thickness direction are as follows (formula 1) to (Formula 4) are satisfied.
A c3 + 30 ≦ T s (° C.) ≦ A c3 +120 (Formula 1)
V s (° C./min)≧−0.0036×t+0.54 (Formula 2)
A c3 ≦ T c (° C.) ≦ A c3 +20 (Formula 3)
T s −T c ≧ 30 (° C.) (Formula 4)
However, an A c3 = 937-476.5C + 56Si-19.7Mn + 136.3Ti + 198.4Al ( element symbol means the content of each element (mass%).),
V s is V s = (T s −T s) , where T s−5 is the steel plate surface temperature calculated by heat transfer calculation from the heating conditions 5 minutes before the steel plate surface temperature (T s ). −5 ) / 5,
t is the thickness of the thick steel plate to be subjected to the normalizing process.

式1において、加熱条件から伝熱計算で算出した厚鋼板表面温度TをAc3+30℃以上とするのは以下の理由による。厚鋼板表面温度TがAc3+30℃未満では、厚鋼板表層部におけるオーステナイト結晶粒が成長しない。その結果、焼きならし後の冷却においてオーステナイトから変態して生ずるフェライト結晶粒も小さく、厚鋼板表面の平均フェライト粒径を30μm以上とすることができない。このため、厚鋼板表面温度TをAc3+30℃以上とする。好ましくはAc3+40℃以上である。 In Formula 1, the steel plate surface temperature T s calculated by heat transfer calculation from the heating conditions is set to A c3 + 30 ° C. or more for the following reason. When the steel plate surface temperature T s is less than A c3 + 30 ° C., austenite crystal grains in the thick steel plate surface layer portion do not grow. As a result, ferrite crystal grains generated by transformation from austenite in cooling after normalization are small, and the average ferrite grain size on the surface of the thick steel plate cannot be made 30 μm or more. For this reason, the steel plate surface temperature T s is set to A c3 + 30 ° C. or higher. Preferably it is Ac3 + 40 degreeC or more.

また、式1においてTがAc3+120(℃)を超えると、粗大なオーステナイトが形成されるため、オーステナイトから変態して生ずるフェライトが粗大になり、厚鋼板表層部における平均フェライト粒径が厚鋼板中央部の平均フェライト粒径の5.00倍を超えてしまい、鋼板強度が低下する。そこで、TはAc3+120(℃)以下とした。 Further, when T s exceeds A c3 +120 (° C.) in the formula 1, coarse austenite is formed, and thus the ferrite generated by transformation from austenite becomes coarse, and the average ferrite grain size in the thick steel plate surface layer portion is large. It exceeds 5.00 times the average ferrite grain size in the central part of the steel sheet, and the steel sheet strength decreases. Therefore, T s was set to A c3 +120 (° C.) or less.

式3について、加熱条件から伝熱計算で算出した、板厚方向の厚鋼板中心温度T(℃)が、Ac3以上Ac3+20(℃)以下であれば、鋼板内部のフェライトをより細粒にして、調質高張力厚鋼板に十分な強度を持たせることができる。Ac3以上に加熱することでフェライトを一旦、オーステナイトに変態させ、その後の冷却において再度、フェライトに変態させることで、微細なフェライト粒からなる組織とすることができる。一方、板厚方向の厚鋼板中心温度T(℃)が、Ac3+20(℃)を超えると、オーステナイト粒が成長するため、その後の冷却において、オーステナイトから、再度フェライトに変態させても、フェライト結晶粒は大きくなり、所望の組織が得られなくなる。フェライトをより細粒にする観点からは厚鋼板中心温度T(℃)は、Ac3以上であれば、低いほど好ましいが、Ac3未満になると、焼きならしによる結晶粒の調整ができなくなるため、Ac3+10(℃)を目標として温度制御することが好ましい。 For Equation 3, if the thick steel plate center temperature T c (° C.) in the plate thickness direction calculated by heat transfer calculation from the heating conditions is A c3 or more and A c3 +20 (° C.) or less, the ferrite inside the steel plate is made finer. It is possible to give sufficient strength to the tempered high-tension thick steel plate by making it into grains. By heating to Ac3 or higher, the ferrite is once transformed into austenite, and then transformed into ferrite again in the subsequent cooling, whereby a structure composed of fine ferrite grains can be obtained. On the other hand, when the steel plate center temperature T c (° C.) in the plate thickness direction exceeds A c3 +20 (° C.), since austenite grains grow, in the subsequent cooling, even if the austenite is transformed into ferrite again, The ferrite crystal grains become large and a desired structure cannot be obtained. From the viewpoint of making the ferrite finer, the thick steel plate center temperature T c (° C.) is preferably as low as A c3 or more, but if it is less than A c3, it becomes impossible to adjust the crystal grains by normalization. For this reason, it is preferable to control the temperature with A c3 +10 (° C.) as a target.

式4に示すように、厚鋼板表面温度と厚鋼板中心温度の温度差は30℃以上とする。厚鋼板表層と厚鋼板中央の温度差が30℃未満であると、鋼板表層と厚鋼板中央のフェライト結晶粒径の差が小さく、鋼板表層の平均フェライト粒径を、厚鋼板中央部の平均フェライト粒径の2.00倍以上とすることができない。このため、厚鋼板表面温度と厚鋼板中心温度の温度差は30℃以上とする。   As shown in Equation 4, the temperature difference between the thick steel plate surface temperature and the thick steel plate center temperature is 30 ° C. or more. When the temperature difference between the thick steel plate surface layer and the thick steel plate center is less than 30 ° C., the difference in ferrite crystal grain size between the steel plate surface layer and the thick steel plate center is small. It cannot be 2.00 times the particle size or more. For this reason, the temperature difference between the thick steel plate surface temperature and the thick steel plate center temperature is 30 ° C. or more.

式2について、V(℃/min)を−0.0036×t+0.54以上とするのは以下の理由による。通常の焼きならしは、厚鋼板全体が加熱炉の温度に達してから、厚鋼板を加熱炉内で5分程度保持して取り出す。このため、通常の焼ならしでは、Tに達する5分前の温度をTs−5℃とすると、(T−Ts−5)/5は0となる。しかし、本工程では、加熱炉から厚鋼板を取り出すときに、厚鋼板表層と厚鋼板内部に温度差を持たせる必要があるため、昇温途中で加熱炉から厚鋼板を取り出す。厚鋼板中心温度、厚鋼板表面温度が前記、式1、式3、式4を満足するように、昇温途中で厚鋼板を加熱炉から取り出すタイミングを、加熱炉の温度がAc3+30〜Ac3+200℃、厚鋼板の板厚tが15mm〜60mmの条件で、伝熱計算により検討したところ、V(℃/min)を−0.0036×t+0.54以上にすれば、厚鋼板表層と厚鋼板内部の温度差が、30℃以上となることが確認された。 In Equation 2, V s (° C./min) is set to −0.0036 × t + 0.54 or more for the following reason. In normal normalization, after the entire thick steel plate reaches the temperature of the heating furnace, the thick steel plate is held in the heating furnace for about 5 minutes and taken out. Therefore, the normalizing normal baked, when a temperature of 5 minutes before reaching the T s and T s-5 ° C., the (T s -T s-5) / 5 0. However, in this step, when the thick steel plate is taken out from the heating furnace, it is necessary to give a temperature difference between the thick steel plate surface layer and the inside of the thick steel plate. The temperature of the heating furnace is such that the temperature of the heating furnace is A c3 +30 to A so that the center temperature of the thick steel sheet and the surface temperature of the thick steel sheet satisfy the above-mentioned formulas 1, 3, and 4. As a result of heat transfer calculation under the conditions of c3 + 200 ° C. and a thickness t of the thick steel plate of 15 mm to 60 mm, the surface layer of the thick steel plate can be obtained by setting V s (° C./min) to −0.0036 × t + 0.54 or more. It was confirmed that the temperature difference inside the thick steel plate was 30 ° C. or more.

上記のようなタイミングで厚鋼板を加熱炉から取り出すことで、本発明の調質高張力厚鋼板が得られる。   The tempered high-tensile thick steel plate of the present invention is obtained by removing the thick steel plate from the heating furnace at the timing as described above.

なお、加熱炉から取り出した後は、空冷により厚鋼板を冷却する。このとき、厚鋼板の冷却速度を鋼厚鋼板中心温度で0.3℃/s以上1.0℃/s以下とすることが好ましい。冷却速度は800℃から500℃までの平均冷却速度である。この冷却速度で冷却することにより、フェライト相に加えて、パーライトとベイナイト相の含有量(面積率)が合計で10〜60%である組織を得ることができる。   In addition, after taking out from a heating furnace, a thick steel plate is cooled by air cooling. At this time, it is preferable that the cooling rate of the thick steel plate is 0.3 ° C./s or higher and 1.0 ° C./s or lower at the steel thick steel plate center temperature. The cooling rate is an average cooling rate from 800 ° C to 500 ° C. By cooling at this cooling rate, in addition to the ferrite phase, a structure having a total content (area ratio) of pearlite and bainite phase of 10 to 60% can be obtained.

表1に示す成分組成を有する鋼スラブ(厚み250mm)を、加熱し、その後、熱間圧延した。熱間圧延により得られた厚鋼板を、一旦、300℃以下まで冷却し、その後、加熱して焼ならし処理をした。具体的な製造条件は表2に示した。   A steel slab (thickness 250 mm) having the component composition shown in Table 1 was heated and then hot-rolled. The thick steel plate obtained by hot rolling was once cooled to 300 ° C. or less, and then heated to normalize. Specific production conditions are shown in Table 2.

なお、表2に示す条件のうち「鋼板取出時表面温度」は、厚鋼板を加熱炉から取り出すときの、加熱条件から伝熱計算で算出した厚鋼板表面温度(T)である。また、「鋼板取出時中心温度」は、厚鋼板を加熱炉から取り出すときの、加熱条件から伝熱計算で算出した、板厚方向の厚鋼板中心温度である。 In addition, "surface temperature at the time of steel plate taking out" among the conditions shown in Table 2 is the thick steel plate surface temperature (T s ) calculated by heat transfer calculation from the heating conditions when the thick steel plate is taken out from the heating furnace. Further, the “center temperature at the time of taking out the steel plate” is the center temperature of the thick steel plate in the plate thickness direction calculated by heat transfer calculation from the heating conditions when the thick steel plate is taken out from the heating furnace.

以上のように製造した厚鋼板について以下の評価を行った。   The following evaluation was performed about the thick steel plate manufactured as mentioned above.

[組織観察]
鋼板の組織は、圧延方向に垂直な断面のサンプルを採取し、断面を鏡面まで研磨後、硝酸メタノール溶液で腐食し、鋼板表面から板厚方向にtmm(t=(厚鋼板板厚t)×0.1)まで、および板厚中央部から板厚方向に±2mmの範囲を光学顕微鏡により400倍で当該範囲を、画面が連続した複数枚で写真撮影し、写真より当該範囲の相を同定し、各相の面積分率を決定した。主な相の含有量を表3に示した。また、上記で撮影した写真より、フェライト粒数n個、フェライトの面積A(mm)を求め、厚鋼板表層部、厚鋼板中央部のフェライト相の平均フェライト粒径D(mm)を、下記式5により導出した。測定結果を表3に示した。
D=1/(n/A)−1/2 (式5)
[引張り特性]
圧延方向に対して90°方向(C方向)にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/minで引張試験をおこない、降伏応力(YS)、引張強度(TS)を測定した。測定結果を表3に示した。引張強度(TS)が550MPa以上を良好と評価できる。
[曲げ加工性]
JIS Z2248(2006年)に基づき、鋼材サンプル(幅100mm×長さ300mm×鋼板の元厚のまま;tmm)を用いて、曲げ半径R=板厚(t)の条件で押曲げ法による180度曲げ試験を行った。曲げ試験後のサンプルに裂け傷やその他の欠陥が無ければ、曲げ加工性が良好であるとした。
[母材靭性]
各鋼板の板厚1/2位置の圧延方向と垂直な方向から、JIS Z 2202(1998年)の規定に準拠してVノッチ試験片を採取し、JIS Z 2242(1998年)の規定に準拠して各鋼板について各温度3本のシャルピー衝撃試験を実施し、試験温度0℃での吸収エネルギーを求め、母材靭性を評価した。試験温度−40℃での吸収エネルギー(vE−40と言う場合がある)の3本の平均値が200J以上を母材靭性に優れるものとした。
[Tissue observation]
The steel sheet structure was obtained by taking a sample of a cross section perpendicular to the rolling direction, polishing the cross section to a mirror surface, then corroding with a methanolic nitric acid solution, and t 1 mm (t 1 = (thick steel plate thickness) from the steel plate surface to the plate thickness direction. t) × 0.1), and a range of ± 2 mm in the thickness direction from the central portion of the plate thickness is photographed with an optical microscope at a magnification of 400 times with a plurality of continuous screens. Phases were identified and the area fraction of each phase was determined. Table 3 shows the contents of the main phases. Further, from the photograph taken above, the number of ferrite grains n, the area A (mm 2 ) of the ferrite was obtained, and the average ferrite particle diameter D (mm) of the ferrite phase at the thick steel plate surface layer portion and the thick steel plate central portion was as follows: It was derived from Equation 5. The measurement results are shown in Table 3.
D = 1 / (n / A) -1/2 (Formula 5)
[Tensile properties]
A JIS No. 5 tensile test piece is taken in the 90 ° direction (C direction) with respect to the rolling direction, and subjected to a tensile test at a crosshead speed of 10 mm / min in accordance with the provisions of JIS Z 2241. Yield stress (YS), tensile Strength (TS) was measured. The measurement results are shown in Table 3. It can be evaluated that the tensile strength (TS) is 550 MPa or more.
[Bending workability]
Based on JIS Z2248 (2006), a steel material sample (width 100 mm × length 300 mm × original thickness of steel plate; tmm) is used, and the bending radius R = plate thickness (t) and 180 ° by the bending method. A bending test was performed. If the sample after the bending test had no tears or other defects, the bending workability was considered good.
[Base material toughness]
V-notch test specimens were collected from the direction perpendicular to the rolling direction at the plate thickness 1/2 position of each steel plate in accordance with JIS Z 2202 (1998), and conformed to JIS Z 2242 (1998). Then, each steel plate was subjected to a Charpy impact test at three temperatures, the absorbed energy at a test temperature of 0 ° C. was determined, and the base material toughness was evaluated. The average value of the three absorbed energy at the test temperature of −40 ° C. (sometimes referred to as “vE- 40 ”) was 200 J or more, indicating excellent base material toughness.

表4に示す通り、本発明の調質高張力厚鋼板は、十分な引張特性、加工性、母材靭性を有する。   As shown in Table 4, the tempered high-tensile thick steel plate of the present invention has sufficient tensile properties, workability, and base material toughness.

Figure 2015193917
Figure 2015193917

Figure 2015193917
Figure 2015193917

Figure 2015193917
Figure 2015193917

Claims (3)

質量%で、
C:0.04〜0.30%
Si:0.50%以下
Mn:2.0%以下
P:0.020%以下
S:0.006%以下
Al:0.05%以下
N:0.0060%以下
Ti:0.005〜0.30%を含み、残部Feおよび不可避的不純物からなる成分組成を有し、
板厚方向に厚鋼板表面からtmm(t=(厚鋼板板厚t)×0.1)までの領域である厚鋼板表層部の平均フェライト粒径が30μm以上であり、板厚中央位置から板厚方向に±2mmの領域である厚鋼板中央部の平均フェライト粒径が15μm以下であり、さらに、前記厚鋼板表層部の平均フェライト粒径が前記厚鋼板中央部の平均フェライト粒径の2.00〜5.00倍であることを特徴とする、調質高張力厚鋼板。
% By mass
C: 0.04 to 0.30%
Si: 0.50% or less Mn: 2.0% or less P: 0.020% or less S: 0.006% or less Al: 0.05% or less N: 0.0060% or less Ti: 0.005 to 0. Containing 30%, having a component composition consisting of the balance Fe and inevitable impurities,
The average ferrite grain size of the thick steel sheet surface layer portion, which is an area from the surface of the thick steel sheet to t 1 mm (t 1 = (thick steel sheet thickness t) × 0.1) in the thickness direction, is 30 μm or more, and the center of the thickness The average ferrite grain size in the central part of the thick steel plate that is ± 2 mm from the position in the thickness direction is 15 μm or less, and the average ferrite grain size in the surface layer part of the thick steel sheet is the average ferrite grain size in the central part of the thick steel plate A tempered high-tensile thick steel plate characterized by being 2.00 to 5.00 times greater than
さらに質量%で、Ca:0.0005〜0.0050%、REM:0.0010〜0.0050%、Mg:0.0010〜0.0050%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1に記載の、調質高張力厚鋼板。   Furthermore, by mass%, one or more selected from Ca: 0.0005-0.0050%, REM: 0.0010-0.0050%, Mg: 0.0010-0.0050% The tempered high-tensile thick steel plate according to claim 1, which is contained. 請求項1又は2に記載の成分組成を有する鋼スラブを、1000〜1250℃の温度に加熱し、圧延仕上温度を800℃以上とする熱間圧延を施す熱延工程と、
前記熱延工程後の厚鋼板に焼きならし処理を施す焼ならし工程と、を備え、
前記焼きならし工程では、厚鋼板を加熱炉から取り出すときの、加熱条件から伝熱計算で算出した厚鋼板表面温度(T)、板厚方向の厚鋼板中心温度(T)が、下記(式1)〜(式4)を満たすことを特徴とする、板厚方向に厚鋼板表面からtmm(t=(厚鋼板板厚t)×0.1)までの領域である厚鋼板表層部の平均フェライト粒径が30μm以上であり、板厚中央位置から板厚方向に±2mmの領域である厚鋼板中央部の平均フェライト粒径が15μm以下であり、さらに、前記厚鋼板表層部の平均フェライト粒径が前記厚鋼板中央部の平均フェライト粒径の2.00〜5.00倍である調質高張力厚鋼板の製造方法。
c3+30≦T(℃)≦Ac3+120 (式1)
(℃/min)≧−0.0036×t+0.54 (式2)
c3≦T(℃)≦Ac3+20 (式3)
−T≧30(℃) (式4)
ただし、Ac3=937−476.5C+56Si−19.7Mn+136.3Ti+198.4Alであり(元素記号は、各元素の含有量(質量%)を意味する。)、
は、厚鋼板の表面温度が前記Tになる5分前の、加熱条件から伝熱計算で算出した厚鋼板表面温度をTs−5としたときに、V=(T−Ts−5)/5で表され、
tは、前記焼きならし処理を施される厚鋼板の厚みである。
A steel slab having the component composition according to claim 1 or 2 is heated to a temperature of 1000 to 1250 ° C, and a hot rolling step of performing hot rolling with a rolling finishing temperature of 800 ° C or higher,
A normalizing step of performing a normalizing treatment on the thick steel plate after the hot rolling step,
In the normalizing step, the steel plate surface temperature (T s ) calculated by heat transfer calculation from the heating conditions when the steel plate is removed from the heating furnace, and the steel plate center temperature (T c ) in the plate thickness direction are as follows: Thickness satisfying (Equation 1) to (Equation 4), which is a region from the surface of the thick steel plate to t 1 mm (t 1 = (thick steel plate thickness t) × 0.1) in the thickness direction The average ferrite particle size of the steel plate surface layer portion is 30 μm or more, the average ferrite particle size of the thick steel plate central portion, which is an area of ± 2 mm in the plate thickness direction from the plate thickness central position, is 15 μm or less, and the thick steel plate surface layer A method for producing a tempered high-tensile steel plate having an average ferrite particle size of 2.00 to 5.00 times the average ferrite particle size of the center portion of the thick steel plate.
A c3 + 30 ≦ T s (° C.) ≦ A c3 +120 (Formula 1)
V s (° C./min)≧−0.0036×t+0.54 (Formula 2)
A c3 ≦ T c (° C.) ≦ A c3 +20 (Formula 3)
T s −T c ≧ 30 (° C.) (Formula 4)
However, an A c3 = 937-476.5C + 56Si-19.7Mn + 136.3Ti + 198.4Al ( element symbol means the content of each element (mass%).),
V s, when the surface temperature of the steel plate is the T s of 5 minutes before a, the steel plate surface temperature calculated by the heat transfer calculations from heating conditions and T s-5, V s = (T s - Ts -5 ) / 5,
t is the thickness of the thick steel plate to be subjected to the normalizing process.
JP2015044494A 2014-03-28 2015-03-06 Tempered high tensile steel plate and method for producing the same Active JP6146429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015044494A JP6146429B2 (en) 2014-03-28 2015-03-06 Tempered high tensile steel plate and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014068435 2014-03-28
JP2014068435 2014-03-28
JP2015044494A JP6146429B2 (en) 2014-03-28 2015-03-06 Tempered high tensile steel plate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015193917A true JP2015193917A (en) 2015-11-05
JP6146429B2 JP6146429B2 (en) 2017-06-14

Family

ID=54433196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015044494A Active JP6146429B2 (en) 2014-03-28 2015-03-06 Tempered high tensile steel plate and method for producing the same

Country Status (1)

Country Link
JP (1) JP6146429B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287528A (en) * 2016-04-04 2017-10-24 鞍钢股份有限公司 A kind of production method of bridge normalizing Q370qE steel plates
JP2019026927A (en) * 2017-02-16 2019-02-21 Jfeスチール株式会社 Thick steel sheet and manufacturing method of thick steel sheet
CN113234999A (en) * 2021-04-27 2021-08-10 南京钢铁股份有限公司 Efficient welding bridge steel and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187713A (en) * 1990-11-22 1992-07-06 Nippon Steel Corp Production of high tensile strength steel structure excellent in weldability
JPH04210421A (en) * 1990-12-11 1992-07-31 Kobe Steel Ltd Production of normalized type thick steel plate excellent in toughness
JPH05255762A (en) * 1992-03-10 1993-10-05 Sumitomo Metal Ind Ltd Method for controlling furnace temperature of continuous heating furnace
JPH0649596A (en) * 1992-07-30 1994-02-22 Nippon Steel Corp Steel plate reduced in yield strength in surface layer and excellent in bendability and its production
JPH0790479A (en) * 1993-09-13 1995-04-04 Nippon Steel Corp Steel sheet good in fatigue fracture resistance and its production
JP2001240936A (en) * 2000-03-01 2001-09-04 Nippon Steel Corp Steel having coarse-grained ferritic layer on surface layer and its production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187713A (en) * 1990-11-22 1992-07-06 Nippon Steel Corp Production of high tensile strength steel structure excellent in weldability
JPH04210421A (en) * 1990-12-11 1992-07-31 Kobe Steel Ltd Production of normalized type thick steel plate excellent in toughness
JPH05255762A (en) * 1992-03-10 1993-10-05 Sumitomo Metal Ind Ltd Method for controlling furnace temperature of continuous heating furnace
JPH0649596A (en) * 1992-07-30 1994-02-22 Nippon Steel Corp Steel plate reduced in yield strength in surface layer and excellent in bendability and its production
JPH0790479A (en) * 1993-09-13 1995-04-04 Nippon Steel Corp Steel sheet good in fatigue fracture resistance and its production
JP2001240936A (en) * 2000-03-01 2001-09-04 Nippon Steel Corp Steel having coarse-grained ferritic layer on surface layer and its production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287528A (en) * 2016-04-04 2017-10-24 鞍钢股份有限公司 A kind of production method of bridge normalizing Q370qE steel plates
JP2019026927A (en) * 2017-02-16 2019-02-21 Jfeスチール株式会社 Thick steel sheet and manufacturing method of thick steel sheet
CN113234999A (en) * 2021-04-27 2021-08-10 南京钢铁股份有限公司 Efficient welding bridge steel and manufacturing method thereof
CN113234999B (en) * 2021-04-27 2022-05-20 南京钢铁股份有限公司 Efficient welding bridge steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP6146429B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP5522084B2 (en) Thick steel plate manufacturing method
JP5958666B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4874434B1 (en) Thick steel plate manufacturing method
JP4874435B2 (en) Thick steel plate manufacturing method
JP5028760B2 (en) Method for producing high-tensile steel plate and high-tensile steel plate
JP6354065B2 (en) Thick steel plate and manufacturing method thereof
JP6212956B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and wear resistance and method for producing the same
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
JP5958667B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP6409598B2 (en) High-strength ultra-thick H-shaped steel with excellent toughness and method for producing the same
JP6252291B2 (en) Steel sheet and manufacturing method thereof
JP2016079459A (en) Abrasion resistant steel sheet and manufacturing method therefor
JP2014029003A (en) Method of producing high tensile steel sheet excellent in delayed fracture resistance
WO2020136829A1 (en) Nickel-containing steel sheet
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP2019081930A (en) Nickel-containing steel plate for low temperature excellent in toughness and method for manufacturing the same
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
JP6146429B2 (en) Tempered high tensile steel plate and method for producing the same
JP6314921B2 (en) Low yield ratio high tensile thick steel plate excellent in bending workability and manufacturing method thereof
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP7048379B2 (en) High strength and high ductility steel sheet
JP2019052341A (en) Non-modified low yield ratio high tension thick steel sheet excellent in flexure processability, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R150 Certificate of patent or registration of utility model

Ref document number: 6146429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250