JPH04187713A - Production of high tensile strength steel structure excellent in weldability - Google Patents

Production of high tensile strength steel structure excellent in weldability

Info

Publication number
JPH04187713A
JPH04187713A JP31584790A JP31584790A JPH04187713A JP H04187713 A JPH04187713 A JP H04187713A JP 31584790 A JP31584790 A JP 31584790A JP 31584790 A JP31584790 A JP 31584790A JP H04187713 A JPH04187713 A JP H04187713A
Authority
JP
Japan
Prior art keywords
cold working
heating
steel
toughness
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31584790A
Other languages
Japanese (ja)
Inventor
Tadashi Koseki
小関 正
Hisashi Inoue
井上 尚志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31584790A priority Critical patent/JPH04187713A/en
Publication of JPH04187713A publication Critical patent/JPH04187713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high tensile strength steel structure excellent in weldability by successively applying heating, controlled rolling, water cooling, heating, air cooling, cold working, and ageing heat treatment to a steel bloom, in which composition and critical hardening diameter are respectively specified, under respectively specified conditions. CONSTITUTION:A steel bloom which has a composition consisting of, by weight, 0.04-0.07% C, 0.05-0.40% Si, 0.8-1.5% Mn, 0.5-1.8% Ni, 0.8-1.7% Cu, <=0.2% Mo, 0.05-0.05% Al, 0.005-0.015% Nb, 0.005-0.02% Ti, <=0.0050% N, and the balance Fe and in which critical hardening diameter Di(cal) represented by equation is regulated to 35-65(mm) is heated to 950-1200 deg.C, subjected to controlled rolling at 700-750 deg.C to >=80mm plate thickness, and water-washed. Further, heating is applied to the region between the surface and the position at a depth of 10mm from the surface at a temp. between Ac3 and 1200 deg.C, followed by air cooling. Then, after cold working is exerted at >40-<50% draft, ageing heat treatment is performed at 600-700 deg.C heating temp. By this method, the 80kg/mm<2> class high tensile strength steel structure improved in toughness in a welded bond zone can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、溶接性に優れた高張力鋼の製造方法に係り、
特に溶接構造物として使用する場合の溶接ホント靭性に
優れ、40%超50%未満の冷間加工を達成できる80
kg/mm2級高張力鋼構造物の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing high-strength steel with excellent weldability.
Especially when used as a welded structure, it has excellent weld toughness and can achieve cold working of more than 40% and less than 50%.
The present invention relates to a method for manufacturing a kg/mm class 2 high tensile strength steel structure.

[従来の技術] 一般に高張力鋼はその強度の高いことから鋼構造物等の
建造に際して板厚減小等がはかれるため、構造物の重量
軽減等を目的として近年ますます多用される傾向にあり
、特に80kgf/m+n2級の高張力鋼か海上、陸上
などの大型溶接構造物に使用される頻度が増大している
[Prior Art] Generally speaking, high-strength steel is used more and more frequently in recent years for the purpose of reducing the weight of structures, etc., because it is generally used to reduce the thickness of steel structures when constructing steel structures due to its high strength. In particular, high tensile strength steel of 80 kgf/m+n2 class is increasingly being used for large welded structures on the sea and on land.

例えば近年、水深100m以上の石油試掘用の構造物の
建造が進められているが、このような建造物は海象、気
象等の環境条件か厳しく、波高30mにも及ぶ波浪にも
さらされるような使用環境に耐える必要があるため、か
かる要求に応えられるような鋼材の開発が望まれている
。このような鋼材としては、強度80kgf/mm2級
の特に溶接鋼管を使用することが構造物設計上有利と考
えられる。このような鋼管に対し現在は1985年4月
号溶接学会誌の22〜33頁の報文に見られるように合
金元素の多い従来80kgf/mm”縁高張力鋼板を熱
間油げにより半円状に成形して後それらの鋼板2枚を合
わせて管状にした合わせ部を溶接して造管し、その後焼
入れ、焼戻しを行って80kgf/mm2高張力溶接鋼
管としている。しかしながら、従来の80kgf/mm
z高張力鋼は、C量が高いことと、合金元素が多いこと
より溶接時の溶接ボンド靭性は十分と言えない。
For example, in recent years, construction of structures for oil test drilling at depths of 100 m or more has been underway, but such structures are subject to harsh environmental conditions such as sea conditions and weather, and are exposed to waves up to 30 m in height. Since it is necessary to withstand the environment in which it is used, it is desired to develop steel materials that can meet such demands. As such a steel material, it is considered advantageous to use a particularly welded steel pipe with a strength of 80 kgf/mm2 class in terms of structural design. For such steel pipes, as can be seen in the report on pages 22-33 of the April 1985 issue of the Journal of the Welding Society, conventional 80 kgf/mm" edge high-strength steel plates with many alloying elements are now semicircular by hot oiling. After forming the two steel plates into a tubular shape, welding the joined parts together to form a pipe, and then quenching and tempering to make a high tensile strength welded steel pipe of 80 kgf/mm2.However, the conventional 80 kgf/mm mm
Z High tensile strength steel cannot be said to have sufficient weld bond toughness during welding due to its high C content and large number of alloying elements.

一方、本発明8等は、特開昭62−142723号公報
に示すように高張力鋼の製造手段を検討した結果、低C
にして且つ、焼入わ性の指標となる成分による焼入臨界
直径Diを35〜65(mm)とした成分系で、冷間曲
げ加工を行った時に生じる加工硬化と、その後の時効熱
処理によって生じる時効硬化とを利用して80kgf/
mm2以上の強度確保を行うことを可能とし、これによ
って溶接ホント部靭性を従来80kgf/mm2鋼管に
比へて格段に改善したものである。
On the other hand, the present invention 8 etc. has been developed as a result of studying the manufacturing means of high tensile strength steel as shown in JP-A No. 62-142723.
In addition, it is a composition system with a quenching critical diameter Di of 35 to 65 (mm), which is an indicator of hardenability, and the work hardening that occurs when performing cold bending and the subsequent aging heat treatment. 80kgf/ by utilizing the age hardening that occurs.
It is possible to secure a strength of 2 mm2 or more, and as a result, the toughness of the welded part is significantly improved compared to the conventional 80 kgf/mm2 steel pipe.

ところが、最近、溶接鋼管は極厚でさらに小径化する傾
向にあり、40%を超える冷間加工が必要となっている
。しかし上記発明では40%を超える冷間加工は表面割
れを生じるため加工が達成てきない問題と、母材C方向
靭性か低下する。そこで、その改善が必要である。
However, recently, welded steel pipes have become extremely thick and have a smaller diameter, requiring more than 40% cold working. However, in the above-mentioned invention, cold working exceeding 40% causes surface cracks, so that the working cannot be achieved, and the toughness of the base material in the C direction decreases. Therefore, improvement is necessary.

[発明か解決しようとする課題] 本発明は特に40%超50%未満の冷間加工により成形
される溶接構造部材として用いられ、溶接時の溶接ボン
ド靭性に優れた新規な高張力鋼構造物の製造方法を提供
することを目的とするものである。
[Problem to be solved by the invention] The present invention provides a novel high-strength steel structure that is particularly used as a welded structural member formed by cold working of more than 40% and less than 50%, and has excellent weld bond toughness during welding. The purpose of this invention is to provide a method for manufacturing.

[課題を解決するための手段] 本発明者等は、高張力鋼の製造手段を検討した結果、冷
間加工を40%超とするには、板表面層の硬さを低下さ
せれば良く、また強度に対しても板表面層のみ強度低下
であれば、全板厚での強度低下への影響は小さいこと、
さらに40%超の冷間加工における母材C方向靭性低下
は焼戻し温度の上昇で改善でき、それによる強度低下は
冷間加工の上昇で相殺できることを確認した。
[Means for Solving the Problems] As a result of studying methods for manufacturing high-strength steel, the present inventors found that in order to increase cold working to over 40%, it is sufficient to reduce the hardness of the plate surface layer. , Also, regarding strength, if the strength decreases only in the surface layer of the plate, the effect on the strength decrease across the entire plate thickness is small;
Furthermore, it was confirmed that the decrease in toughness of the base material in the C direction due to cold working of more than 40% can be improved by increasing the tempering temperature, and that the resulting decrease in strength can be offset by increasing the cold working.

そこで本発明は、合金元素と制御圧延によって得られた
高張力鋼の表面層を加熱して40%超50%未満の冷間
加工を達成させ、さらに焼戻し処理を行って溶接時の溶
接ボンド靭性に優れた新規な高張力鋼構造物の製造方法
を確立した。
Therefore, the present invention heats the surface layer of high-strength steel obtained by alloying elements and controlled rolling to achieve cold working of more than 40% and less than 50%, and then performs a tempering treatment to improve the weld bond toughness during welding. We have established a new manufacturing method for high-strength steel structures with excellent performance.

すなわち、重量(%’) テC: 0.04〜0.07
%、 Si二 0.05〜0.40 % 、   Mn
:  0.8 〜1.5   % 、Ni:0.5 〜
1.8%、 Cu: 0.8〜1.7%、Mo:0.2
%以下、 Al: 0.005〜0.05%、 Nb 
: 0.005〜0.015%、Ti:0.005〜0
.02%を含有し、N・0.0050%以−トて残部が
Feからなり、焼入れ臨界直径Di (cat)が35
〜65(mm)テある鋼片を、950℃〜12oo℃ニ
加熱し、700〜850℃で板厚80mm以上までの範
囲て制御圧延を行って水冷し、さらにAC3〜1200
℃の温度で表面から表面下10mmまでの領域を加熱し
てのち空冷し、40%超50%未満の冷間加工を実施し
てから加熱温度600〜700℃で時効熱処理を施すこ
とを特徴とした高張力鋼構造物の製造方法。
That is, weight (%') TeC: 0.04-0.07
%, Si2 0.05-0.40%, Mn
: 0.8 to 1.5%, Ni: 0.5 to 1.5%
1.8%, Cu: 0.8-1.7%, Mo: 0.2
% or less, Al: 0.005-0.05%, Nb
: 0.005-0.015%, Ti: 0.005-0
.. 0.02%, more than 0.0050% of N, the balance is Fe, and the critical diameter Di (cat) for quenching is 35.
A steel slab with a thickness of ~65 (mm) is heated to 950°C to 120°C, then controlled rolling is performed at 700 to 850°C to a thickness of 80 mm or more, water-cooled, and further heated to an AC of 3 to 1200°C.
It is characterized by heating the area from the surface to 10 mm below the surface at a temperature of 10°C, then air cooling, performing cold working of more than 40% but less than 50%, and then subjecting it to aging heat treatment at a heating temperature of 600 to 700°C. A method for manufacturing high-strength steel structures.

但し Di(cal)=9.175 コ(1+0.7Sj) 
(1+3.33Mn)(1十 〇、35Cu)(++0
J6Ni)(1+2.]6Cr)x (1+3.0Mo
) (]+1.75V) (1+1.77AI)(mm
) [作用コ 以下に本発明の詳細な説明する。
However, Di (cal) = 9.175 ko (1 + 0.7Sj)
(1+3.33Mn) (100, 35Cu) (++0
J6Ni) (1+2.]6Cr)x (1+3.0Mo
) (]+1.75V) (1+1.77AI) (mm
) [Function] The present invention will be explained in detail below.

まず本発明において、冷間加工とは冷間において目的と
する溶接構造部材の所望の形状に成形する加工を指し、
例えば鋼板を扇形、半円状、円状に曲げ加工するもの、
あるいは鋼板をV形やU形に局部曲げ加工したもの、さ
らには鋼板を凸や凹状などにパンチ加工したものなど鋼
構造部材の形状に応じて適宜選択するものである。
First, in the present invention, cold working refers to a process of cold forming a target welded structural member into a desired shape,
For example, those that bend steel plates into fan, semicircular, or circular shapes;
Alternatively, the material may be appropriately selected depending on the shape of the steel structural member, such as a steel plate partially bent into a V-shape or a U-shape, or a steel plate punched into a convex or concave shape.

次に本発明においては、冷間加工前の強度を低くして、
加工性を良くし、冷間加工による加工硬化と、時効熱処
理による時効硬化を十分発揮することができるように、
鋼材成分組成としてC:0.04〜0.07%、 Si
 : 0.05〜0.40%、 Mn: 0.8〜1.
5%、Ni:0.5〜1.8%、Cu:0.8〜1.7
%。
Next, in the present invention, the strength before cold working is lowered,
In order to improve workability and fully demonstrate work hardening by cold working and age hardening by aging heat treatment,
Steel component composition: C: 0.04-0.07%, Si
: 0.05-0.40%, Mn: 0.8-1.
5%, Ni: 0.5-1.8%, Cu: 0.8-1.7
%.

MO:0.2%以下、 Al : 0.005〜0.0
5%、 Nb : 0.005〜0.015%、 Ti
 : 0.005〜0.02%を含有し、N: 0.0
050%以下で残部がFeからなり、焼入れ臨界直径D
i (cat)が35〜65(mm)である鋼片を、対
象とするものである。
MO: 0.2% or less, Al: 0.005-0.0
5%, Nb: 0.005-0.015%, Ti
: Contains 0.005-0.02%, N: 0.0
050% or less, the remainder consists of Fe, and the quenching critical diameter D
The object is a steel billet whose i (cat) is 35 to 65 (mm).

但し Di (cal)=9.175  J7r(+ +0.
7Si)(1+3.33Mn)(1+0.35Cu) 
(1+0.36Ni) (++2.16Cr) X (
1+3.0Mo) (1+1.75V)(1+1.77
AI)  (mm) 本発明においてこのように化学成分を限定したのは次の
理由による。
However, Di (cal) = 9.175 J7r (+ +0.
7Si) (1+3.33Mn) (1+0.35Cu)
(1+0.36Ni) (++2.16Cr)
1+3.0Mo) (1+1.75V)(1+1.77
AI) (mm) The reason why the chemical components are limited in this way in the present invention is as follows.

まずCは強度を得るのに必要であるか、0.07%超で
は従来の80kg級高張力鋼と同程度の溶接ホント部靭
性か得られず、十分な改善のためには0.07%以下と
する。また0、04%未満であると焼入わ性か極端に低
下するため、下限を0.04%とする。
First of all, C is necessary to obtain strength. If it exceeds 0.07%, it will not be possible to obtain the same level of toughness in the welded area as conventional 80kg class high-strength steel, and for sufficient improvement, 0.07% The following shall apply. If it is less than 0.04%, the hardenability will be extremely reduced, so the lower limit is set at 0.04%.

Slは製鋼時の脱酸元素として必須であり、005%未
満であると効果がなく、0.4%を超えると靭性か低下
するので0.05〜0゜4%とする。
Sl is essential as a deoxidizing element during steel manufacturing, and if it is less than 0.005%, it is ineffective, and if it exceeds 0.4%, the toughness decreases, so it is set at 0.05 to 0.4%.

Mnは焼入わ性確保に有効な元素て、Cuの時効硬化時
間を短時間に移行する特性も有しているため、時効硬化
を利用した鋼に有効てあり、08%以上の添加か効果的
である。しかし、1.5%超の添加は延性及び靭性の圧
延異方性が大きくなり、圧延直角方向及び板厚方向の靭
性及び延性が劣化するので0.8〜1.5%とする。
Mn is an effective element for ensuring hardenability, and it also has the property of shortening the age hardening time of Cu, so it is effective in steels that utilize age hardening, and it is effective when added at 0.8% or more. It is true. However, addition of more than 1.5% increases the rolling anisotropy of ductility and toughness and deteriorates the toughness and ductility in the direction perpendicular to rolling and in the thickness direction, so the content is set at 0.8 to 1.5%.

Niは母材及び溶接ホント部靭性を向−トさせるのに有
効であるが、0.5%未満てはその効果は小さく、一方
、1.8%超金含有ても、効果か飽和することからその
上限を1.8%とする。
Ni is effective in improving the toughness of the base metal and the weld core, but if it is less than 0.5%, the effect is small, and on the other hand, even if it contains 1.8% super gold, the effect is saturated. Therefore, the upper limit is set at 1.8%.

Cuは時効硬化の顕著な元素で時効硬化を利用する鋼に
有効であり、0.8〜1.7%添加が最も効果的である
。0.8を未満では時効硬化が小さく、1.7%超でも
小さくなることからその量を0.8〜1.7%とする。
Cu is an element that undergoes significant age hardening and is effective in steels that utilize age hardening, and is most effective when added in an amount of 0.8 to 1.7%. If it is less than 0.8, age hardening is small, and even if it exceeds 1.7%, it is also small, so the amount is set to 0.8 to 1.7%.

また、Moは焼戻し軟化抵抗を高め強度の増大に有効で
あるが、0.2%超の添加はCuの時効硬化を低下させ
る。従ってその量を0,2%以下とした。
Further, although Mo is effective in increasing resistance to temper softening and increasing strength, addition of more than 0.2% reduces age hardening of Cu. Therefore, the amount was set to 0.2% or less.

さらに、Alは脱酸に有効であるのみでなく、Nを固定
してAINとなって結晶粒細粒化の役目も果たす有効な
合金元素であるため下限を0.005%とし、一方、0
.05%を超えると脱酸時に生成するAl2O3が冷間
曲げ加工時の表層割れの原因になることから上限を0.
05%とする。
Furthermore, since Al is an effective alloying element that is not only effective in deoxidizing, but also fixes N and becomes AIN to refine the crystal grains, the lower limit is set at 0.005%.
.. If it exceeds 0.05%, Al2O3 generated during deoxidation will cause surface cracks during cold bending, so the upper limit is set at 0.05%.
05%.

NbはCuと同様時効硬化の顕著な元素であり、0.0
05%以上の添加に効果がみられるが、0.015%を
超えると溶接性(溶接部のポンド靭性)を低]させるの
で、その量を0.005〜0.015%とする。
Nb, like Cu, is an element that exhibits remarkable age hardening, and 0.0
An effect is seen when the addition amount is 0.05% or more, but if it exceeds 0.015%, the weldability (pound toughness of the welded part) decreases, so the amount is set to 0.005 to 0.015%.

TiはNを固定し溶接部の靭性向上に寄与する元素であ
り、0.005%以上の添加に効果かみられるか、0.
02%を超えるとTiCを生成して母材靭性低下の原因
となるので、その量を0.005〜0.02%とする。
Ti is an element that fixes N and contributes to improving the toughness of welded parts, and is effective when added at 0.005% or more.
If it exceeds 0.02%, TiC will be generated and cause a decrease in the toughness of the base material, so the amount is set to 0.005 to 0.02%.

さらに、Nは多いと焼戻し脆性を引き起こし、延性・脆
性を低下させることから極力低減ずへきてあり、その量
を0.0040%以下とする。
Furthermore, if there is too much N, it causes tempering brittleness and reduces ductility and brittleness.

以上か本発明の対象とする鋼の基本成分であるか、さら
に本発明においてこれ等の成分による焼入臨界直径Di
 (cal)か35〜65(mm)であることを骨子の
一つとしている。Di(cal)とは丸棒をできるたけ
はやく水冷した時に、中心まて焼きの入る(中心部50
%マルテンサイト)最大直径の成分回帰計算式を表わす
ものて、(mm)単位で示される。この場合Di(ca
l)か35未満では冷間加T及び時効熱処理前の強度か
低くすぎて、80kgf/mm2級高張力鋼の製造か困
難となる。また、65超ては表面層の加熱処理をしても
冷間加工前の強度が高すきて、40%超の冷間曲げ加工
が困難となるためD i (ca l)を35〜65(
mm)に限定した。この場合、Di(cal)=9.1
75 コ(1+0.7si)(]+3.33Mn>(1
+0.35Cu)(++0.36Ni)(]+2.16
Cr)X  (++3.OMo)(1+1.75V)(
]−]、77Al)   (1m) であってこの式は Grossman氏が1979年9
月25日、日刊工業新聞社初版発行の「焼入性」の34
頁5行で提唱した式より導かれたものであり、6%と結
晶粒度(この場合Nγ−8とした)から決まるDi値に
、各種添加元素の影響力を、各元素の倍数に元素量をか
けて求めたものである。
Are the above basic components of the steel targeted by the present invention? Furthermore, in the present invention, the quenching critical diameter Di due to these components
(cal) or 35 to 65 (mm). Di (cal) means that when a round bar is cooled in water as quickly as possible, the center is fried (center part 50
% martensite) represents the component regression calculation formula for the maximum diameter, expressed in (mm). In this case Di(ca
If l) is less than 35, the strength before cold working T and aging heat treatment is too low, making it difficult to manufacture 80 kgf/mm2 class high tensile strength steel. In addition, if the temperature exceeds 65, even if the surface layer is heat-treated, the strength before cold working will be high, making it difficult to cold bend over 40%, so D i (cal) should be set at 35 to 65 (
mm). In this case, Di(cal)=9.1
75 Ko(1+0.7si)(]+3.33Mn>(1
+0.35Cu)(++0.36Ni)(]+2.16
Cr)X (++3.OMo)(1+1.75V)(
]-], 77Al) (1m), and this formula was written by Grossman in 1979.
34 of ``Harenability'' published by Nikkan Kogyo Shimbun, first edition, on 25th April.
This was derived from the formula proposed in line 5 of page 5, and the influence of various added elements is calculated based on the Di value determined from 6% and the crystal grain size (in this case, Nγ-8), and the element amount is calculated as a multiple of each element. It was calculated by multiplying

次に本発明による製造条件について述べると、前記成分
の鋼を950℃〜1200℃に加熱し、700〜850
℃て板厚80mm以上までの範囲で制御圧延を行って水
冷し、さらにAC3〜1200℃の温度で表面から表面
下10mmまでの領域を加熱してのち空冷し、40%超
50%未満の冷間加工を実施してから加熱温度600〜
700℃で時効熱処理を施すものである。
Next, the manufacturing conditions according to the present invention will be described. Steel having the above components is heated to 950°C to 1200°C,
Controlled rolling is performed at ℃ to a plate thickness of 80 mm or more, water-cooled, and then the area from the surface to 10 mm below the surface is heated at a temperature of AC 3 to 1200 ℃, and then air-cooled to achieve a cooling rate of more than 40% and less than 50%. Heating temperature 600~ after performing temporary processing
Aging heat treatment is performed at 700°C.

ま1゛熱間圧延時の加熱温度を1200℃以下とするの
は1200℃を超えると、γ粒の粗大化をきたし、後の
制御圧延によって細粒化することが難しくなり、母材靭
性を低下させるためである。また、下限を950℃とし
たのは、にu、Nbなとの析出元素の溶体化を目的とし
たためてあって950℃未満テハ溶体化か不十分となり
、後の時効処理による強度の上昇か十分望めなくなる。
1) The reason why the heating temperature during hot rolling should be 1200℃ or lower is that if it exceeds 1200℃, the γ grains will become coarser and it will be difficult to make them finer by later controlled rolling, which will reduce the toughness of the base material. This is to reduce the In addition, the lower limit was set at 950°C for the purpose of solutionizing precipitated elements such as U and Nb. I can't hope enough.

次に板厚80t+ua以1−まての範囲て700〜85
0℃て制御圧延を行って水冷するのは、γ粒を細粒化し
母材靭性向上を図フたものであって、制御圧延の開始温
度が850℃起ては制御圧延によるγ粒の細粒化効果か
小さくなり、終了温度か700℃未満ては圧延時の変形
抵抗か増大し、圧延か困箭となる。また、制御圧延後水
冷しないと粒の大きいフェライトとアッパーへイナイト
の混合組織となり、強度が低下するため°である。これ
によって冷間加工前の強度を60〜70kgf/n+m
2程度に低く抑えることが出来、その後40%以下の冷
間加工であれば達成できる。
Next, the plate thickness is 80t + ua or more in the range of 700 to 85
The purpose of performing controlled rolling at 0°C and water cooling is to refine the γ grains and improve the toughness of the base material. The granulation effect becomes small, and if the finishing temperature is less than 700°C, the deformation resistance during rolling increases, making rolling difficult. Furthermore, if the steel is not water-cooled after controlled rolling, it will become a mixed structure of large-grained ferrite and upper heinite, resulting in a decrease in strength. This increases the strength before cold working to 60 to 70 kgf/n+m.
It can be kept to a low level of about 2, and then achieved by cold working of 40% or less.

さらに、本発明の目的とする冷間加工を40%超とする
には、板表面層の硬さの低下を狙った処理か必要となる
。即ち、AC3〜1200℃の温度て表面から表面下1
0[DIllまで領域を加熱してのち空冷によってフェ
ライト及びアッパーベイナイト組織として表面硬さを低
下させることによる。
Furthermore, in order to increase the cold working to more than 40%, which is the objective of the present invention, a treatment aimed at reducing the hardness of the plate surface layer is required. That is, from the surface to the subsurface temperature at AC3~1200°C.
This is because the surface hardness is reduced by heating the region to 0[DIll and then air cooling to form a ferrite and upper bainite structure.

ここで加熱温度はAC3以下ではフェライト変態による
硬さの低下は望めず、1200 ℃を超えるとγ粒の粗
大化によりフェライト粒も粗大化し靭性が劣化する。
Here, if the heating temperature is AC3 or lower, no reduction in hardness due to ferrite transformation can be expected, and if it exceeds 1200°C, the ferrite grains will also become coarse due to the coarsening of the γ grains and the toughness will deteriorate.

また空冷しないと本開発の成分系ではフェライトができ
ず、炉冷すると軟化し過ぎて強度の確保が困難となるの
で空冷とする。
In addition, if air cooling is not used, ferrite cannot be formed with the component system developed in this study, and furnace cooling causes excessive softening, making it difficult to maintain strength, so air cooling is used.

加熱の深さは、表面下] Ommより浅いと40%超5
0%未満の冷間加工が達成できす、深いと板厚に対して
強度低下の割合が大きくなって80kgf/ll1m2
の達成が困難となることから、表面から表面下10mI
I+までと指定する。その場合板厚80mm以上が必要
である。
The depth of heating is below the surface] If it is shallower than 40%5
Cold working of less than 0% can be achieved, but the deeper the plate thickness, the greater the rate of strength reduction relative to the plate thickness.
10 mI below the surface.
Specify up to I+. In that case, a plate thickness of 80 mm or more is required.

その場合、表面から表面下10mmまでの加熱手段とし
ては、表面の加熱深さが制御できる高周波表面加熱方法
かよい。また炉中加熱法は表面部のみの加熱が困難であ
るが、表面部と板厚中心部には昇温差かあるため、表面
から表面下10111111までAC3〜1200℃達
したら直ちに抽出すれば適用が可能である。
In that case, the heating means from the surface to 10 mm below the surface may be a high-frequency surface heating method that can control the heating depth of the surface. In addition, it is difficult to heat only the surface part of the furnace heating method, but since there is a difference in temperature rise between the surface part and the center of the plate thickness, it can be applied as long as extraction is carried out as soon as the temperature reaches AC3~1200°C from the surface to the subsurface 10111111. It is possible.

本熱処理は、板表面層の硬さ低下によって冷間加工特性
を向上させるものであり、表面において冷間加工度が最
も高い冷間曲げ加工にその効果を最も発揮するものであ
る。
This heat treatment improves the cold working characteristics by reducing the hardness of the plate surface layer, and is most effective in cold bending, where the degree of cold working on the surface is highest.

次いで40%超50%未満の冷間加工の実施によって強
度を78〜86kgf/’mm2とするものである。こ
こで冷間加工とはさきに述へた如く鋼板を冷間加工にお
いて目的とする溶接構造物材の所望の形状にするもので
あり引続き行われる時効熱処理と共に、本発明方法の構
成要件の内、最大の特徴となるものである。即ち前記成
分の鋼はこの冷間加工ニヨリ強度を15kgf/ma+
2以上上昇サセテ80kgf/mm2以上とすることが
可能となる。そのためには40%超あわば十分であり、
50%以上の冷間加工はC方向の靭性か低下するので、
その量を40%超50%未満とした。
Next, the strength is made to be 78 to 86 kgf/'mm2 by performing cold working of more than 40% and less than 50%. As mentioned earlier, cold working refers to cold working a steel plate into the desired shape of the target welded structural material, and together with the subsequent aging heat treatment, it is one of the constituent requirements of the method of the present invention. , is the biggest feature. In other words, the steel with the above components has a cold working strength of 15 kgf/ma+
It becomes possible to set the rising sassage rate of 2 or more to 80 kgf/mm2 or more. For that purpose, more than 40% is sufficient,
Cold working of 50% or more will reduce the toughness in the C direction.
The amount was set to more than 40% and less than 50%.

次に加熱温度は600〜700℃で時効熱処理を施すこ
とにより、その強度は82〜88kgf/mm2となり
、80kgf/mm2級高張力鋼の製造が可能となる。
Next, by performing aging heat treatment at a heating temperature of 600 to 700°C, the strength becomes 82 to 88 kgf/mm2, making it possible to manufacture 80 kgf/mm2 class high tensile strength steel.

ここで、時効熱処理による強度の上昇は[;u 、 N
bによる析出硬化によるもので、加熱温度500〜55
0℃か最も有効である。しかし、本発明においては40
%超の冷間加工が必要で、そゎによる靭性低下の改善と
して600℃以上か必要となる。しかし、700℃以上
ては80kgf/mm2が確保できなくなるので、その
温度600〜700℃とする。
Here, the increase in strength due to aging heat treatment is [;u, N
Due to precipitation hardening according to b, heating temperature 500-55
0°C is most effective. However, in the present invention, 40
% or more is required, and in order to improve the decrease in toughness caused by cold working, a temperature of 600°C or higher is required. However, since 80 kgf/mm2 cannot be ensured at 700°C or higher, the temperature is set at 600 to 700°C.

その場合、加熱時間は10分間以上加熱しないとCu、
Nbの析出硬化か小さく、600分間以上加熱すると過
時効となるので、10分〜600分間か有効である。
In that case, if the heating time is not longer than 10 minutes, the Cu
Since precipitation hardening of Nb is small and heating for more than 600 minutes will result in overaging, heating for 10 minutes to 600 minutes is effective.

ここで、円状、半円状の曲げ加工あるいはV形やU形に
局部曲げ加したものは、表面部の加工度か最も高く、板
厚中央部の中立軸で最も低いため表面部では80kgf
/mm2超でも板厚中央部では80kgf/mm2以下
である。しかし、設計立場からは全厚ての強度保証か一
般的であり、全厚で80kgf/[l]m2確保できれ
ば良い。
Here, for those with circular or semicircular bending or local bending into V-shapes or U-shapes, the degree of processing is highest at the surface and lowest at the neutral axis at the center of the plate thickness, so the surface area has a weight of 80 kgf.
/mm2 or less, it is less than 80 kgf/mm2 at the center of the plate thickness. However, from a design standpoint, it is common to guarantee the strength of the entire thickness, and it is sufficient if 80 kgf/[l]m2 can be secured for the entire thickness.

なお、本発明の製造方法によって得られる高張力鋼は、
造管溶接によって得られる溶接鋼管、溶接によって組立
てられる構造物の部材、例えばラック付きのコート材な
どに適用可能であり、溶接手段としては通常のサブマー
ジアーク溶接法の他、手溶接、MIG溶接法、電子ヒー
ム溶接法なとの手段を用いることがてきる。
Note that the high tensile strength steel obtained by the manufacturing method of the present invention is
It can be applied to welded steel pipes obtained by pipe making welding, structural members assembled by welding, such as coating materials with racks, etc. Welding methods include normal submerged arc welding, manual welding, and MIG welding. , electronic beam welding, etc. can be used.

以下、本発明の効果を実施例によりさらに具体的に示す
Hereinafter, the effects of the present invention will be illustrated in more detail with reference to Examples.

[実施例] 第1表に示す化学成分の鋼1〜6を50ton転炉て溶
製し、分塊圧延して厚さ200mm x幅+500+n
mX長さ3000mmのスラブを作り、これ等の各スラ
ブを条件を変えて制御圧延して板厚80mmとし、AC
3〜1200℃の温度で表面から表面下10mmまて領
域を加熱処理したもの及びしないものを、さらに冷間的
げにより半円状の加工を曲率を変えて行って後、時効熱
処理条件を変えた材料を供試材料として製造した。その
製造条件を第2表に示す。
[Example] Steels 1 to 6 having the chemical composition shown in Table 1 were melted in a 50 ton converter, and then bloomed to a thickness of 200 mm x width + 500 + n.
Slabs with a length of m
Those with and without heat treatment from the surface to 10 mm below the surface at a temperature of 3 to 1200°C were further processed into semicircular shapes with different curvatures by cold targeting, and then the aging heat treatment conditions were changed. This material was manufactured as a test material. The manufacturing conditions are shown in Table 2.

以上の条件て製造した半円状の板厚80mm材を全厚引
張試験により引張特性を調査し、またJIS4号フルサ
イズシャルど一試験片により1/4tの母材C方向靭性
を調査した。
The tensile properties of the semicircular plate material having a thickness of 80 mm manufactured under the above conditions were investigated by a full-thickness tensile test, and the toughness of the 1/4 t base material in the C direction was investigated using a JIS No. 4 full-size square test piece.

次に上記半円状の材料2枚を板厚177.8mmの80
kgf/mm2鋼のラック材を指示するように隅肉サブ
マージアーク溶接により取り付けて海洋構造物の脚部材
を製作した。該部材の形状、寸法は第1図(A) (B
)に示す通りてあって、同図(A)は斜面図、(B)は
平面図であり、図中aは冷間加工を受けた半円状材料、
bはラック材、Cは該ラック材に形成されたラック、d
は隅肉溶接金属で、Dは直径てあり、寸法はmmで表わ
されている。溶接条件としては半円状材料に10°のし
型開先をとりフラックスは焼成型フラックスで溶接ワイ
ヤは51−Mn系70kgf/mm2ワイヤの組合せで
入熱を45kJ/cmとしたサブマージアーク溶接を行
フた。
Next, the two semicircular materials mentioned above were
A leg member of an offshore structure was manufactured by attaching kgf/mm2 steel rack material by fillet submerged arc welding as instructed. The shape and dimensions of this member are shown in Figure 1 (A) (B
), in which (A) is a slope view and (B) is a plan view, where a is a semicircular material that has undergone cold working,
b is a rack material, C is a rack formed on the rack material, d
is the fillet weld metal, D is the diameter, and the dimensions are expressed in mm. The welding conditions were submerged arc welding with a 10° diamond groove on the semicircular material, the flux was a sintered type flux, the welding wire was a combination of 51-Mn based 70kgf/mm2 wire, and the heat input was 45kJ/cm. There was no line.

そして溶接ポンド部の靭性はJIS4号シャルピー試験
片により1/4を部を調査した。その結果を第3表に示
す。
The toughness of the welded pound part was investigated using a JIS No. 4 Charpy test piece. The results are shown in Table 3.

同表から明らかな如く、本発明によれば、板厚と直径か
ら求められる曲げ加工(曲げ加工(’4)−a/(D−
a) X 100、a:板厚、D:曲げ直径)が40%
超の冷間曲げ加工で表面割れは無く、母材の強度が80
kgf/mm2以上を確保し、溶接ボンド靭性も比較例
に比べて格段に改善され、し゛かも母材靭性も十分であ
る。
As is clear from the table, according to the present invention, the bending process (bending process ('4)-a/(D-
a) X 100, a: plate thickness, D: bending diameter) is 40%
There is no surface cracking due to super cold bending, and the strength of the base material is 80.
kgf/mm2 or more, the weld bond toughness is significantly improved compared to the comparative example, and the base metal toughness is also sufficient.

比較例は冷間曲げ加工で表面割れが発生し、あるいは母
材強度および溶接ポンド部靭性か低くなっている。
In the comparative example, surface cracking occurred during cold bending, or the strength of the base metal and the toughness of the weld pound were low.

[発明の効果コ 上記実施例からも明らかなごとく本発明によれば、ホン
ト部靭性を従来材に比べ格段に改善した高張力鋼を提供
することが可能となるものであり、産業上その効果は極
めて顕著である。
[Effects of the Invention] As is clear from the above examples, according to the present invention, it is possible to provide a high tensile strength steel whose true part toughness is significantly improved compared to conventional materials. is extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例において製作された構造物の形状、寸法
を示す図で(A)は斜視図、(B)は平面図である。 a・・・半円状材料、b−・・ラック材、C・・・ラッ
ク、d・・・隅肉溶接金属、D −・・直径。
FIG. 1 is a diagram showing the shape and dimensions of a structure manufactured in an example, in which (A) is a perspective view and (B) is a plan view. a: semicircular material, b: rack material, C: rack, d: fillet weld metal, D: diameter.

Claims (1)

【特許請求の範囲】 1、重量(%)で C:0.04〜0.07%、 Si:0.05〜0.40%、 Mn:0.8〜1.5%、 Ni:0.5〜1.8%、 Cu:0.8〜1.7%、 Mo:0.2%以下、 Al:0.005〜0.05%、 Nb:0.005〜0.015%、 Ti:0.005〜0.02%を含有し、 N:0.0050%以下で残部がFeからなり、焼入れ
臨界直径Di(cal)が35〜65(mm)である鋼
片を、950℃〜1200℃に加熱し、700〜850
℃で板厚80mm以上までの範囲で制御圧延を行って水
冷し、さらにAc_3〜1200℃の温度で表面から表
面下10mmまでの領域を加熱してのち空冷し、40%
超50%未満の冷間加工を実施してから加熱温度600
〜700℃で時効熱処理を施すことを特徴とした高張力
鋼構造物の製造方法。 但し Di(cal)=9.175√C(1+0.7Si)(
1+3.33Mn)(1+0.35Cu)(1+0.3
6Ni)(1+2.16Cr)×(1+3.0Mo)(
1+1.75V)(1+1.77Al)(mm)
[Claims] 1. By weight (%): C: 0.04-0.07%, Si: 0.05-0.40%, Mn: 0.8-1.5%, Ni: 0. 5-1.8%, Cu: 0.8-1.7%, Mo: 0.2% or less, Al: 0.005-0.05%, Nb: 0.005-0.015%, Ti: A steel billet containing N: 0.005% to 0.02%, the balance consisting of Fe at 0.0050% or less, and having a quenching critical diameter Di (cal) of 35 to 65 (mm) was heated at 950°C to 1200°C. Heat to 700-850℃
Controlled rolling is performed at ℃ to a plate thickness of 80 mm or more, water-cooled, and then the area from the surface to 10 mm below the surface is heated at a temperature of Ac_3 to 1200 ℃, and then air-cooled to 40%
Heating temperature 600 after cold working of less than 50%
A method for manufacturing a high-strength steel structure, characterized by subjecting it to aging heat treatment at ~700°C. However, Di(cal)=9.175√C(1+0.7Si)(
1+3.33Mn)(1+0.35Cu)(1+0.3
6Ni) (1+2.16Cr)×(1+3.0Mo)(
1+1.75V) (1+1.77Al) (mm)
JP31584790A 1990-11-22 1990-11-22 Production of high tensile strength steel structure excellent in weldability Pending JPH04187713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31584790A JPH04187713A (en) 1990-11-22 1990-11-22 Production of high tensile strength steel structure excellent in weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31584790A JPH04187713A (en) 1990-11-22 1990-11-22 Production of high tensile strength steel structure excellent in weldability

Publications (1)

Publication Number Publication Date
JPH04187713A true JPH04187713A (en) 1992-07-06

Family

ID=18070301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31584790A Pending JPH04187713A (en) 1990-11-22 1990-11-22 Production of high tensile strength steel structure excellent in weldability

Country Status (1)

Country Link
JP (1) JPH04187713A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193917A (en) * 2014-03-28 2015-11-05 Jfeスチール株式会社 Refining high tension thick steel and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193917A (en) * 2014-03-28 2015-11-05 Jfeスチール株式会社 Refining high tension thick steel and production method thereof

Similar Documents

Publication Publication Date Title
US20080295920A1 (en) High Tension Steel Plate with Small Acoustic Anisotropy and with Excellent Weldability and Method of Production of Same
JP4264177B2 (en) Method for producing a steel material having a coarse ferrite layer on the surface layer
JP2008248359A (en) Method for manufacturing on-line cooling type high tension steel sheet
JP2002256380A (en) Thick high tensile strength steel plate having excellent brittle crack propagation arrest property and weld zone property and production method therefor
JPS60230960A (en) Steel for cold forging
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP7410438B2 (en) steel plate
JP3220406B2 (en) Manufacturing method of high strength welded joint with excellent crack resistance
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JP2828754B2 (en) Manufacturing method of low yield ratio 70kg / fmm / mm2 upper grade steel sheet with excellent weldability
JPH04187713A (en) Production of high tensile strength steel structure excellent in weldability
JPS60181229A (en) Production of low-yield ratio high-tension thick steel plate
JP2828755B2 (en) Manufacturing method of low yield ratio 80 ▲ kgff / ▲ mm ▼▼ 2 上 class steel sheet with excellent weldability
JPS63183123A (en) Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
JPH06100933A (en) Production of high tensile strength steel for structure excellent in weldability
JPH0570681B2 (en)
JPH08283836A (en) Production of steel excellent in weldability and acoustic anisotropy
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JPH0247525B2 (en)
JP2006045644A (en) METHOD FOR PRODUCING STEEL FOR WELDING HAVING TENSILE STRENGTH OF &gt;=1,150 MPa
JPH0570682B2 (en)
JPH0711331A (en) Manufacture of pipe coupling
KR19990047106A (en) Tensile strength 600 MPa hardened sheet steel with excellent weld toughness and manufacturing method
JP2004211200A (en) High strength cold rolled steel sheet having excellent press formability, and production method therefor