JPH0570682B2 - - Google Patents

Info

Publication number
JPH0570682B2
JPH0570682B2 JP28272985A JP28272985A JPH0570682B2 JP H0570682 B2 JPH0570682 B2 JP H0570682B2 JP 28272985 A JP28272985 A JP 28272985A JP 28272985 A JP28272985 A JP 28272985A JP H0570682 B2 JPH0570682 B2 JP H0570682B2
Authority
JP
Japan
Prior art keywords
steel
strength
toughness
cal
cold working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28272985A
Other languages
Japanese (ja)
Other versions
JPS62142723A (en
Inventor
Tadashi Koseki
Kazunari Yamato
Hisashi Inoe
Ken Kanetani
Yukio Tomita
Fumihiro Kawazoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28272985A priority Critical patent/JPS62142723A/en
Publication of JPS62142723A publication Critical patent/JPS62142723A/en
Publication of JPH0570682B2 publication Critical patent/JPH0570682B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は溶接性に優れた高張力鋼の製造方法に
係り、特に溶接構造物として使用する場合の溶接
部ボンド靭性に優れた主として80Kg/mm2級高張力
鋼の製造方法に関する。 (従来の技術) 一般に高張力鋼はその強度の高いことから鋼構
造物等の建造に際し板厚の減少等がはかれるた
め、構造物の重量軽減等を目的として近年ますま
す多用される傾向にあり、特に80Kg/mm2級の高張
力鋼が海上、陸上などの大型溶接構造物に使用さ
れる頻度が増大している。 たとえば近年、水深100m以上の石油試掘用の
構造物の建造が進められているが、このような建
造物は海象、気象等の環境条件が厳しく、波高30
mにも及ぶ波浪にもさらされるような使用環境に
耐える必要があるた、かかる要求の応えられるよ
うな鋼材の開発が望まれている。このような鋼材
としては、京置80Kg/mm2級の特に溶接鋼管を使用
することが構造物の設計上有利と考えられるが、
このような鋼管は現在1985年4月号溶接学会誌の
22〜34頁に報文にみられるように合金元素の多い
従来の80Kg/mm2級高張力鋼板を熱間曲げにより半
円状に成形して後それらの鋼板2枚を合せて管状
にした合せ部を溶接して造管し、その後焼入、焼
戻しを行つて80Kg/mm2高張力溶接鋼管としてい
る。 しかしながら、従来の80Kg/mm2高張力鋼は、C
量が高いことと、合金元素が多いことにより溶接
時の溶接ボンド靭性は十分と言えない。 一方、これらの合金成分を低めに抑えて強度を
60Kg/mm2程度とした鋼を素材として、これを冷間
加工と時効熱処理の工程により強度を80Kg/mm2
度に上昇せしめる手段も、HARTZELL氏の論文
「スチール フオー スペシヤル アプリケーシ
ヨンズ イン オフ ジヨアー ストラクチヤー
ズ(STEELES FOR SPECIAL
APPLICATIONS IN OFFSHORE
STRUCTURES)」により知られているが、この
ようにして得られる部材も溶接性の点では溶接ボ
ンド部靭性は十分と言えず、やはり前記の如き要
望には応え難い。 (発明が解決しようとする問題点) 本発明は特に冷間加工により成形される溶接構
造用部材として用いられ、溶接時の溶接ボンド部
靭性に優れた新規な高張力鋼の製造方法を提供す
ることを目的とするものである。 (問題点を解決するための手段) 本発明者らは、高張力鋼の製造手段を検討した
結果、低Cにして且つ、焼入性の指標となる成分
による焼入臨界直径DIを35〜65とした成分系で、
冷間曲げ加工を行つた時に生じる加工硬化と、そ
の後の時効熱処理によつて生じる時効硬化とを利
用して80Kg/mm2以上の強度確保を行うことを可能
とし、これによつて溶接ボンド部靭性を従来80
Kg/mm2高張力鋼管に比べて格段に改善したもので
ある。 即ち本発明の要旨とする所は重量(%)で
C0.04〜0.07%、Si0.05〜040%、Mn0.8〜1.5%、
Ni0.5〜1.8%、Cu0.8〜1.7%、Mo≦0.20%、
Al0.005〜0.05%が基本成分でこれらの成分によ
るDI(cal)が35〜65(mm)を満し、Nb0.005〜0.015
%、Ti0.005〜0.020%、N0.0010〜0.0050%を含
有し、残部Feからなる鋼を、950〜1200℃に加熱
し、700〜850℃で制御圧延を行つて水冷したの
ち、10〜40%の冷間加工を実施してから加熱温度
500〜600℃で時効熱処理を施すことを特徴とする
溶接性に優れた高張力鋼の製造方法にある。 但し DI(cal)=0.367×√(1+0.7Si)(1+3.33Mn)(
1+0.35Cu) ×(1+0.36Ni)(1+2.16Cr)(1+3.0Mo)(1
+1.75V)×(1+1.77Al)×25 で表わされるものである。 以下本発明を詳細に説明する。 (作用) まず本発明において、冷間加工とは冷間におい
て目的をする溶接構造部材の所望の形状に成形す
る加工を指し、たとえば鋼板を扇形、半円状、円
状に曲げ加工するもの、或いは鋼板をV形やU形
に局部曲げ加工したもの、さらには鋼板を凸や凹
状などにパンチ加工したものなど鋼構造部材の形
状に応じて適宜選択するものである。 次に本発明においては、冷間加工前の強度を低
くして、加工性を良くし、冷間加工による加工硬
化と、時効熱処理による時効効果を十分発揮する
ことができるように、鋼材成分組成として重量
(%)でC0.04〜0.07%、Si0.05〜040%、Mn0.8〜
1.5%、Ni0.5〜1.8%、Cu0.8〜1.7%、Mo≦0.20
%、Al0.005〜0.05%が基本成分で、これらの成
分による焼入臨界直径D1(cal)が35〜65(mm)を満
し、Nb0.005〜0.015%、Ti0.005〜0.020%、
N0.0010〜0.0050%を含有し残部Feからなる鋼を
対象とするものである。 但し DI(cal)=0.367×√(1+0.7Si)(1+3.33Mn) ×(1+0.35Cu)(1+0.36Ni)(1+2.16Cr)×(1
+3.0Mo)(1+1.75V)(1+1.77Al)×25 本発明においてこのように化学成分を限定した
のは次の理由による。 まずCは強度を得るのに必要であるが、0.07%
超では従来の80Kg級高張力鋼と同程度の溶接ボン
ド部靭性が得られず、十分な改善のあるためには
0.07%以下とする。また0.04%未満えあると焼入
性が極端に低下するため、下限を0.04%とする。 次にSiは製鋼時の脱酸元素として必要であり、
0.05%未満であると効果がなく、0.40%を超える
と靭性が低下するので0.05〜0.40%とする。 またMnは焼入製確保に有用な元素で、Cuの時
効硬化時間を短時間側に移行する特性も有してい
るため、時効硬化を利用した鋼に有用であり、
0.8%以上の添加が効果的である。しかし1.5%超
の添加は延性及び靭性の在延異方性が大きくな
り、圧延直角方向及び板厚方向の靭性及び延性が
劣化するので0.8〜1.5%とする。 さらに、Niは母材および溶接ボンド部靭性を
向上させるのに有効であるが、0.5%未満ではそ
の効果は小さく、一方、1.8%超含有しても、効
果が飽和することからその上限を1.8%とする。 次に、Cuは時効硬化の顕著な元素で時効硬化
を利用する鋼に有効であり、0.8〜1.7%添加が最
も効果的である。0.8%未満では時効硬化が小さ
く、1.7%超でも小さくなることからその量を0.8
〜1.7%とする。 また、Moは焼もど軟化抵抗を高め強度の増大
に有効であるが、0.20%超の添加はCuの時効硬化
を低下させる。従つてその量を0.20%以下とす
る。 さらに、Alは脱酸に有効であるのみでなく、
Nを固定してAlNとなつて結晶粒細粒化の役目
も果たす有能な合金元素であるため下限を0.005
%とし、一方0.05%を超えると脱酸時に生成する
Al2O3が冷間曲げ加工時の表層割れの原因となる
ため上限を0.05%とする。 以上が本発明の対象とする鋼の基本成分である
が、さらに本発明においてはこれらの成分による
焼入臨界直径DI(cal)が35〜65(mm)を満すことを骨
子の一つとしている。DI(cal)とは丸棒をできるだ
けはやく水冷した時に、中心まで焼きの入る(中
心部50%マルテンナイト)最大直径の成分回帰計
算式を表わすもので、(mm)単位で示される。こ
の場合DI(cal)が35未満では冷間加工および時効熱
処理前の強度が低くすぎて、80Kg/mm2級の高張力
鋼の製造が困難となる。また65超では冷間加工前
の強度が高すぎて、10%以上の冷間曲げ加工が困
難となるためDI(cal)を35〜65(mm)に限定した。こ
の場合、 DI(cal)=0.367×√(1+0.7Si)(1+3.33Mn)×
(1+0.35Cu) ×(1+0.36Ni)(1+2.16Cr)(1+3.0Mo)(1
+1.75V)×(1+1.77Al)×25 であつてこの式はGrossman氏が1979年9月25
日、日刊工業新聞社初版発行の「焼入性」の34頁
5行で提唱した式より導かれたものであり、C%
と結晶粒度(この場合Nr=8とした)から決ま
るDI値に、各種添加元素の影響力を、各元素の
倍数に元素量をかけて求めたものである。 次に本発明の対象とする鋼は、上記成分に加え
て、さらにNb、Ti、Nを含有するものである
が、これの元素を上記関係から除外したのは、
DI(cal)に影響を及ぼさない元素だからである。 以下にこれらの3元素の成分限定理由を述べる
と、先ず、NbはCuと同様時効硬化の顕著な元素
であり、0.005%以上の添加に効果がみられるが、
0.015%を超えると溶接性(溶接部のボンド靭性)
を低下させるので、その量を0.005%〜0.015%と
する。 次に、TiはNを固定する有効な元素であり、
TiNが溶接ボンド部において微細フエライト発
生の核となり溶接ボンド部靭性を改善するため、
その効果が発揮される0.005%以上の添加とし、
0.020%を超えると逆に劣化するため、その量を
0.005〜0.020%とする。 さらに、Nは多いと焼もどし脆性を引き起こ
し、延性・靭性を低下させることから極力低減す
べきであるが、TiNWして溶接ボンド部靭性を
改善する効果を考え、その量を0.0010〜0.0040%
とする。 次に、本発明における製造条件についてのべる
と、まず前記成分の鋼を、950〜1200℃に加熱し、
700〜850℃で制御圧延を行つて水冷したのち、10
〜40%の冷間加工を実施してから加熱温度500〜
600℃で時効熱処理を施すものである。 まず加熱温度を1200℃以下とするのは1200℃を
超えると、γ粒の粗大化をきたし、後の制御圧延
によつて細粒化することが難しくなり、母材靭性
を低下させるためである。又、下限を950℃以上
としたのは、Cu、Nb、などの析出元素の溶体化
を目的としたためであつて950℃未満では溶体化
が不十分となり、後の時効熱処理による強度の上
昇が十分望めなくなる。 次に700〜850℃で制御圧延を行つて水冷するの
は、γ粒を細粒化し母材靭性向上を計つたもので
あつて、制御圧延の開始温度が850℃超では制御
圧延によるγ粒の細粒化効果が小さくなり、終了
温度が700℃未満ではオーステナイト→フエライ
ト変態が始まり不均一組織となつてともに母材靭
性は改善されず、さらに終了温度が700℃未満で
は圧延時の変形抵抗が増大し、圧延が困難とな
る。又、制御圧延後水冷しないと粒の大きいフエ
ライトとアツパーベイナイトの混合組織となるた
め、母材靭性が低くなる。 これによつて冷間加工前の強度を60〜70Kg/mm2
程度に低く押えることが出来、次いで10〜40%の
冷間加工を実施する事によつてその強度を73〜81
Kg/mm2とするものである。ここで冷間加工とは先
に述べた如く鋼板を冷間において目的とする溶接
構造部材の所望の形状にするものであり引続き行
なわれる時効熱処理と共に、本発明方法の構成用
件の内、最大の特徴となるものである。即ち前記
成分の鋼はこの冷間加工により強度を5Kg/mm2
上上昇させて80Kg/mm2以上とすることが可能とな
る。そのためには10%以上の冷間曲げ加工が必要
であるが、40%超になるとC方向靭性が低下する
のでその量を10〜40%とする。 次に加熱温度500〜600℃で時効熱処理を施すこ
とにより、その強度は81〜87Kg/mm2となり、80
Kg/mm2級高張力鋼の製造が可能となる。 ここで、加熱温度500〜600℃での時効熱処理に
よる強度の上昇はCu、Nbによる析出硬化による
もので、500℃未満の加熱は析出硬化に長時間を
要し、実用的でなく、600℃超の加熱はCu、Nb
の析出元素が成長し、席週硬化量が減少する。そ
のため、時効熱処理温度を500〜600℃とする。な
お時効熱処理時間は特に定めないが500〜600℃の
温度で、1〜17時間の保持が最も時効硬化を発揮
するので、1〜17時間の保持が望ましい。 なお、本発明の製造方法によつて得られる高張
力鋼は、造管溶接によつて得られる溶接鋼管、溶
接により組立てられる構造物の部材、たとえばラ
ツク付の脚のコード材などに適用可能であり、溶
接手段としては通常のサブマージアーク溶接法の
他、手溶接法、MIG溶接法、電子ビーム溶接法
などの手段を用いることが出来る。 以下本発明の効果を実施例によりさらに具体的
に示す。 (実施例) 第1表に示す化学成分の鋼1〜7を50ton転炉
で溶製し、分塊圧延して厚さ200mm×幅1500mm×
長さ3000mmのスラブを作り、それらの各スラブを
条件を変えて熱間圧延を行い82tmmとしたものを
冷間曲げにより半円状の加工を曲率を変えて行
い、さらに時効熱処理条件を変えた材料を共試材
として製造した。その製造条件を第2表に示す。 以上の条件で製造した半円状の82tmm材を全厚
引張試験により引張特性を調査し、またJIS4号フ
ルサイズシヤルピー試験片により1/4tの母材C
方向靭性を調査した。 次に上記半円状の材料2枚を板厚177.8mmの80
Kg/mm2鋼のラツク材を挾持するようにすみ肉潜弧
溶接により取り付けて海洋構造物の脚部材を製作
した。該部材の形状、寸法は第1図A,Bに示す
通りであつて、同図Aは斜面図、Bは平面図であ
り、図中aは冷間加工を受けた半円状材料、bは
ラツク材、cは該ラツク材に形成されたラツク、
dはすみ肉溶接金属であり、寸法はmmで表わされ
ている。溶接条件としては半円状材料に10°のレ
型開先をとりフラツクスは焼成型フラツクスでワ
イヤはSi−Mn系70Kgワイヤの組合せで入熱を
45kJ/cmとしたサブマージアーク溶接を行つた。
そして溶接ボンド部の靭性はJIS4号フルサイズシ
ヤルピー試験片により1/4t部を調査した。その
結果を第3表に示す。 同表から明らかな如く、本発明法によれば、母
材の強度が80Kg以上を確保し、溶接ボンド靭性も
比較例に比べて格段に改善され、しかも母材靭性
も十分である。 比較例は母材強度あるいは溶接ボンド部靭性が
低くなつている。
(Industrial Application Field) The present invention relates to a method for manufacturing high-strength steel with excellent weldability, and in particular, the present invention relates to a method for manufacturing high-strength steel with excellent weldability, and in particular, 80Kg/mm class 2 high-strength steel with excellent weld bond toughness when used as a welded structure. Regarding the manufacturing method. (Prior art) In general, high-strength steel is used more and more frequently in recent years for the purpose of reducing the weight of structures, etc., because the plate thickness can be reduced when constructing steel structures due to its high strength. In particular, high tensile strength steel of 80Kg/ mm2 class is increasingly being used for large welded structures on the sea and on land. For example, in recent years, construction of structures for oil test drilling at depths of 100 m or more has been progressing, but such structures are subject to severe environmental conditions such as sea conditions and weather, and wave heights of 30 m or more are required.
It is necessary to withstand usage environments in which steel is exposed to waves of up to 300 m long, and there is a desire to develop steel materials that can meet such demands. For such steel materials, it is considered advantageous to use Kyoto 80Kg/mm 2 class welded steel pipes in terms of structural design.
Such steel pipes are currently featured in the April 1985 issue of the Welding Society Journal.
As seen in the report on pages 22 to 34, conventional 80Kg/mm class 2 high-strength steel plates containing many alloying elements were formed into a semicircular shape by hot bending, and then the two steel plates were joined together to form a tube. The joints are welded to form a pipe, and then quenched and tempered to produce an 80Kg/ mm2 high-tensile welded steel pipe. However, conventional 80Kg/ mm2 high tensile strength steel
Due to the high amount and the large number of alloying elements, the weld bond toughness during welding cannot be said to be sufficient. On the other hand, these alloy components can be kept low to increase strength.
HARTZELL's paper ``Steel for Special Applications'' describes how to use steel with a strength of about 60Kg/ mm2 as a material and increase its strength to about 80Kg/ mm2 through cold working and aging heat treatment. Kutiyas (STEELES FOR SPECIAL)
APPLICATIONS IN OFFSHORE
However, in terms of weldability, the toughness of the weld bond part cannot be said to be sufficient in the parts obtained in this way, and it is difficult to meet the above-mentioned demands. (Problems to be Solved by the Invention) The present invention provides a method for manufacturing a novel high-strength steel that is used particularly as a welded structural member formed by cold working and has excellent weld bond toughness during welding. The purpose is to (Means for Solving the Problems) As a result of studying methods for producing high-strength steel, the present inventors have determined that the critical diameter D With an ingredient system of ~65,
By utilizing the work hardening that occurs during cold bending and the age hardening that occurs during the subsequent aging heat treatment, it is possible to secure a strength of 80 kg/mm 2 or more, and this makes it possible to secure the strength of the weld bond. Toughness compared to conventional 80
Kg/mm 2 This is a significant improvement over high-tensile steel pipes. In other words, the gist of the present invention is the weight (%)
C0.04~0.07%, Si0.05~040%, Mn0.8~1.5%,
Ni0.5~1.8%, Cu0.8~1.7%, Mo≦0.20%,
Al0.005~0.05% is the basic component, and the D I (cal) due to these ingredients satisfies 35~65 (mm), and Nb0.005~0.015
%, Ti 0.005-0.020%, N 0.0010-0.0050%, and the balance Fe is heated to 950-1200°C, controlled rolling at 700-850°C, water-cooled, Heating temperature after 40% cold working
The present invention provides a method for producing high-strength steel with excellent weldability, characterized by performing aging heat treatment at 500 to 600°C. However, D I(cal) = 0.367×√(1+0.7Si)(1+3.33Mn)(
1 + 0.35Cu) × (1 + 0.36Ni) (1 + 2.16Cr) (1 + 3.0Mo) (1
+1.75V)×(1+1.77Al)×25. The present invention will be explained in detail below. (Function) First, in the present invention, cold working refers to the process of cold forming a target welded structural member into a desired shape, such as bending a steel plate into a fan shape, a semicircle shape, a circular shape, Alternatively, the material may be appropriately selected depending on the shape of the steel structural member, such as a steel plate partially bent into a V-shape or a U-shape, or a steel plate punched into a convex or concave shape. Next, in the present invention, the strength of the steel before cold working is lowered to improve workability, and the composition of the steel material is adjusted so that the work hardening due to cold working and the aging effect due to aging heat treatment can be fully exerted. As weight (%) C0.04~0.07%, Si0.05~040%, Mn0.8~
1.5%, Ni0.5~1.8%, Cu0.8~1.7%, Mo≦0.20
%, Al0.005~0.05% are the basic components, and the quenching critical diameter D 1 (cal) due to these ingredients satisfies 35~65 (mm), Nb0.005~0.015%, Ti 0.005~0.020% ,
This applies to steel containing 0.0010 to 0.0050% N, with the remainder being Fe. However, D I(cal) = 0.367×√(1+0.7Si)(1+3.33Mn)×(1+0.35Cu)(1+0.36Ni)(1+2.16Cr)×(1
+3.0Mo) (1+1.75V) (1+1.77Al)×25 The reason for limiting the chemical components in this way in the present invention is as follows. First, C is necessary to obtain strength, but 0.07%
It is not possible to obtain the same level of weld bond toughness as conventional 80Kg class high tensile strength steel, and in order to achieve sufficient improvement, it is necessary to
0.07% or less. Furthermore, if the content is less than 0.04%, the hardenability will be extremely reduced, so the lower limit is set at 0.04%. Next, Si is necessary as a deoxidizing element during steel manufacturing.
If it is less than 0.05%, there will be no effect, and if it exceeds 0.40%, the toughness will decrease, so the content should be 0.05 to 0.40%. In addition, Mn is a useful element for ensuring hardening, and has the property of shortening the age hardening time of Cu, so it is useful for steels that utilize age hardening.
Addition of 0.8% or more is effective. However, if it is added in excess of 1.5%, the rolling anisotropy of ductility and toughness becomes large, and the toughness and ductility in the direction perpendicular to rolling and in the thickness direction deteriorate, so the content is set at 0.8 to 1.5%. Furthermore, Ni is effective in improving the toughness of the base metal and weld bond, but if it is less than 0.5%, the effect is small; on the other hand, if it is contained more than 1.8%, the effect is saturated, so the upper limit has been set to 1.8%. %. Next, Cu is an element that undergoes significant age hardening and is effective in steels that utilize age hardening, and addition of 0.8 to 1.7% is most effective. If it is less than 0.8%, age hardening will be small, and if it exceeds 1.7%, it will be small, so the amount should be reduced to 0.8%.
~1.7%. Furthermore, Mo is effective in increasing resistance to temper softening and increasing strength, but addition of more than 0.20% reduces age hardening of Cu. Therefore, the amount should be 0.20% or less. Furthermore, Al is not only effective in deoxidizing;
The lower limit is set at 0.005 because it is a capable alloying element that fixes N and becomes AlN, which also plays the role of refining crystal grains.
%, and on the other hand, if it exceeds 0.05%, it will be generated during deoxidation.
Since Al 2 O 3 causes surface cracks during cold bending, the upper limit is set at 0.05%. The above are the basic components of the steel that is the object of the present invention, but one of the main points of the present invention is that the quenching critical diameter D I (cal) of these components satisfies 35 to 65 (mm). It is said that D I(cal) is a component regression formula for the maximum diameter that is hardened to the center (50% martenite in the center) when a round bar is water-cooled as quickly as possible, and is expressed in mm. In this case, if D I (cal) is less than 35, the strength before cold working and aging heat treatment is too low, making it difficult to manufacture 80 Kg/mm 2 class high tensile strength steel. In addition, if it exceeds 65, the strength before cold working is too high and cold bending of 10% or more becomes difficult, so D I (cal) was limited to 35 to 65 (mm). In this case, D I(cal) = 0.367×√(1+0.7Si)(1+3.33Mn)×
(1+0.35Cu) × (1+0.36Ni) (1+2.16Cr) (1+3.0Mo) (1
+1.75V) × (1 + 1.77Al) × 25 This formula was written by Mr. Grossman on September 25, 1979.
It was derived from the formula proposed in page 34, line 5 of "Harenability" published by Nikkan Kogyo Shimbun, first edition, and C%
The influence of various added elements was calculated by multiplying the multiple of each element by the amount of the element on the D I value determined from the and crystal grain size (Nr = 8 in this case). Next, the steel targeted by the present invention further contains Nb, Ti, and N in addition to the above components, but these elements are excluded from the above relationship because
This is because it is an element that does not affect D I (cal) . The reasons for limiting the composition of these three elements are explained below. First, like Cu, Nb is an element that exhibits remarkable age hardening, and an effect is seen when added at a concentration of 0.005% or more.
If it exceeds 0.015%, weldability (bond toughness of welded part)
Therefore, the amount is set at 0.005% to 0.015%. Next, Ti is an effective element for fixing N,
TiN acts as a nucleus for the generation of fine ferrite in the weld bond and improves the toughness of the weld bond.
Addition should be at least 0.005% to achieve its effect,
If it exceeds 0.020%, it will deteriorate, so reduce the amount.
Set to 0.005-0.020%. Furthermore, if too much N causes tempering brittleness and reduces ductility and toughness, it should be reduced as much as possible, but considering the effect of TiNW to improve the toughness of the weld bond, the amount should be reduced to 0.0010 to 0.0040%.
shall be. Next, talking about the manufacturing conditions in the present invention, first, steel with the above components is heated to 950 to 1200°C,
After controlled rolling at 700 to 850℃ and water cooling, 10
~40% cold working then heating temperature 500~
It is subjected to aging heat treatment at 600℃. First, the heating temperature is set to 1200°C or less because if it exceeds 1200°C, the γ grains will become coarser, making it difficult to refine them through controlled rolling later, and reducing the toughness of the base material. . In addition, the lower limit was set at 950°C or higher for the purpose of solutionizing precipitated elements such as Cu, Nb, etc. Below 950°C, the solutioning will be insufficient and the strength will not increase due to subsequent aging heat treatment. I can't hope enough. Next, controlled rolling is performed at 700 to 850°C followed by water cooling in order to refine the γ grains and improve the toughness of the base material. If the finishing temperature is less than 700℃, the austenite → ferrite transformation will begin, resulting in a non-uniform structure, and the toughness of the base material will not be improved.Furthermore, if the finishing temperature is less than 700℃, the deformation resistance during rolling will decrease. increases, making rolling difficult. Furthermore, if water cooling is not performed after controlled rolling, a mixed structure of large-grained ferrite and upperbainite will be formed, resulting in low base material toughness. This increases the strength before cold working to 60-70Kg/mm 2
The strength can be increased to 73 to 81 by cold working by 10 to 40%.
Kg/ mm2 . As mentioned above, cold working is the process of cold forming a steel plate into the desired shape of the target welded structural member, and together with the subsequent aging heat treatment, it is one of the most important requirements of the method of the present invention. This is a characteristic of That is, the strength of the steel having the above-mentioned components can be increased by 5 kg/mm 2 or more to 80 kg/mm 2 or more by this cold working. To achieve this, 10% or more of cold bending is required, but if it exceeds 40%, the C-direction toughness decreases, so the amount is set to 10 to 40%. Next, by applying aging heat treatment at a heating temperature of 500 to 600℃, the strength becomes 81 to 87Kg/ mm2 , and 80
It becomes possible to manufacture Kg/mm class 2 high tensile strength steel. Here, the increase in strength due to aging heat treatment at a heating temperature of 500 to 600°C is due to precipitation hardening due to Cu and Nb; heating below 500°C requires a long time for precipitation hardening and is not practical; Super heating Cu, Nb
The precipitated elements grow, and the amount of hardening decreases. Therefore, the aging heat treatment temperature is set at 500 to 600°C. Although the aging heat treatment time is not particularly determined, age hardening is best achieved by holding at a temperature of 500 to 600°C for 1 to 17 hours, so holding for 1 to 17 hours is desirable. Note that the high-strength steel obtained by the manufacturing method of the present invention can be applied to welded steel pipes obtained by pipe manufacturing welding, and structural members assembled by welding, such as cord materials for legs with racks. In addition to the usual submerged arc welding method, other methods such as manual welding, MIG welding, and electron beam welding can be used. The effects of the present invention will now be illustrated in more detail with reference to Examples. (Example) Steels 1 to 7 having the chemical composition shown in Table 1 were melted in a 50 ton converter and bloomed to a thickness of 200 mm x width of 1500 mm.
Slabs with a length of 3000 mm were made, and each slab was hot-rolled to 82 t mm under different conditions.The slabs were cold bent into semicircular shapes with different curvatures, and then subjected to aging heat treatment conditions. The different materials were manufactured as co-test materials. The manufacturing conditions are shown in Table 2. The tensile properties of the semicircular 82 t mm material manufactured under the above conditions were investigated by a full thickness tensile test, and the 1/4 t base material
The directional toughness was investigated. Next, the two semicircular materials mentioned above were
Leg members of an offshore structure were fabricated by attaching Kg/ mm2 steel racks using fillet arc welding. The shape and dimensions of the member are as shown in Figures 1A and 1B, where A is a slope view and B is a plan view, where a is a semicircular material that has undergone cold working, and b is a semicircular material that has undergone cold working. is a rack material, c is a rack formed in the rack material,
d is the fillet weld metal, the dimensions are expressed in mm. The welding conditions were a 10° rectangular bevel on the semicircular material, the flux was a sintered type flux, and the wire was a combination of Si-Mn 70 kg wire for heat input.
Submerged arc welding was performed at 45kJ/cm.
The toughness of the welded bond was examined using a JIS No. 4 full-size Shapey test piece at 1/4t. The results are shown in Table 3. As is clear from the table, according to the method of the present invention, the strength of the base metal is ensured to be 80 kg or more, the weld bond toughness is significantly improved compared to the comparative example, and the base metal toughness is also sufficient. Comparative examples have low base metal strength or weld bond toughness.

【表】【table】

【表】【table】

【表】【table】

【表】 (発明の効果) 上記の実施例からも明らかなごとく本発明によ
ればボンド部靭性を従来材に比べ格段に改善した
高張力鋼を提供することが可能となるものであ
り、産業上その効果は極めて顕著である。
[Table] (Effects of the Invention) As is clear from the above examples, the present invention makes it possible to provide high-tensile steel with significantly improved bond toughness compared to conventional materials, and is suitable for industrial use. Moreover, the effect is extremely remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例において製作された構造物の形
状、寸法を示す図でAは斜視図、Bは平面図であ
る。 a……半円状材料、b……ラツク材、c……ラ
ツク、d……すみ肉溶接金属。
FIG. 1 is a diagram showing the shape and dimensions of the structure manufactured in the example, where A is a perspective view and B is a plan view. a... Semicircular material, b... Rack material, c... Rack, d... Fillet weld metal.

Claims (1)

【特許請求の範囲】 1 重量(%)でC0.04〜0.07%、Si0.05〜0.40
%、Mn0.8〜1.5%、Ni0.5〜1.8%、Cu0.8〜1.7
%、Mo≦0.20%、Al0.005〜0.05%が基本成分で、
これらの成分による焼入臨界直径DI(cal)が35〜65
(mm)を満し、Nb0.005〜0.015%、Ti0.005〜
0.020%、N0.0010〜0.0050%を含有し、残部Feか
らなる鋼を、950〜1200℃に加熱し、700〜850℃
で制御圧延を行つて水冷したのち、10〜40%の冷
間加工を実施してから加熱温度500〜600℃で時効
熱処理を施すことを特徴とする溶接性に優れた高
張力鋼の製造方法。 但し DI(cal)=0.367×√(1+0.7Si)(1+3.33Mn)(
1+0.35Cu) ×(1+0.36Ni)(1+2.16Cr)(1+3.0Mo)(1
+1.75V)×(1+1.77Al)×25
[Claims] 1. C0.04~0.07%, Si0.05~0.40 by weight (%)
%, Mn0.8~1.5%, Ni0.5~1.8%, Cu0.8~1.7
%, Mo≦0.20%, Al0.005~0.05% are the basic components,
The quenching critical diameter D I (cal) due to these components is 35 to 65
(mm), Nb0.005~0.015%, Ti0.005~
Steel containing 0.020%, N0.0010~0.0050%, and the balance Fe is heated to 950~1200℃, then heated to 700~850℃.
A method for producing high-strength steel with excellent weldability, which is characterized by performing controlled rolling at a temperature, water cooling, cold working by 10 to 40%, and then subjecting it to aging heat treatment at a heating temperature of 500 to 600°C. . However, D I(cal) = 0.367×√(1+0.7Si)(1+3.33Mn)(
1 + 0.35Cu) × (1 + 0.36Ni) (1 + 2.16Cr) (1 + 3.0Mo) (1
+1.75V)×(1+1.77Al)×25
JP28272985A 1985-12-18 1985-12-18 Manufacture of high tension steel superior in weldability Granted JPS62142723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28272985A JPS62142723A (en) 1985-12-18 1985-12-18 Manufacture of high tension steel superior in weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28272985A JPS62142723A (en) 1985-12-18 1985-12-18 Manufacture of high tension steel superior in weldability

Publications (2)

Publication Number Publication Date
JPS62142723A JPS62142723A (en) 1987-06-26
JPH0570682B2 true JPH0570682B2 (en) 1993-10-05

Family

ID=17656282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28272985A Granted JPS62142723A (en) 1985-12-18 1985-12-18 Manufacture of high tension steel superior in weldability

Country Status (1)

Country Link
JP (1) JPS62142723A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159296B2 (en) * 2007-12-26 2013-03-06 株式会社神戸製鋼所 Steel wire rod or bar for cold working, method for producing the same, and cold worked steel parts

Also Published As

Publication number Publication date
JPS62142723A (en) 1987-06-26

Similar Documents

Publication Publication Date Title
KR0157540B1 (en) High tensile strength steel having superior fatigue strength and weldability at welds and method for manufacturing the same
JP4767590B2 (en) Production method of low yield ratio high strength steel and low yield ratio high strength steel
JP4676871B2 (en) Steel sheet with excellent fatigue crack growth control
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JPH0636993B2 (en) Method for producing stainless clad steel sheet with excellent corrosion resistance and toughness
JP4038166B2 (en) Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof
JP2020019995A (en) Thick steel sheet, manufacturing method therefor, and weldment structure
JP3399983B2 (en) Method for producing high-strength steel sheet with excellent weldability and low yield ratio of 570 N / mm2 or more
JP7410438B2 (en) steel plate
JPH0570681B2 (en)
JP3220406B2 (en) Manufacturing method of high strength welded joint with excellent crack resistance
JPH0570682B2 (en)
JP2000017379A (en) Steel sheet improved in fatigue crack propagating characteristic by crystal orientation control and its production
JPH09324216A (en) Manufacture of high strength steel or line pipe, excellent in hic resistance
JPS60181229A (en) Production of low-yield ratio high-tension thick steel plate
JPH09324217A (en) Manufacture of high strength steel for line pipe, excellent in hic resistance
JP3602396B2 (en) Low yield ratio high strength steel sheet with excellent weldability
JP3396132B2 (en) Low-yield-ratio high-strength steel sheet with excellent heat-affected zone toughness in large heat input welds and method for producing the same
JPH0579728B2 (en)
JP3508189B2 (en) Submerged arc welding of high toughness UOE steel pipe for low temperature
JPS5817808B2 (en) Method for producing welded steel pipes with excellent stress corrosion cracking resistance
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing
JPH06100933A (en) Production of high tensile strength steel for structure excellent in weldability
JP2500019B2 (en) High-strength steel plate with low yield ratio of 570 N / mm2 or higher with excellent weldability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees