JPS5817808B2 - Method for producing welded steel pipes with excellent stress corrosion cracking resistance - Google Patents

Method for producing welded steel pipes with excellent stress corrosion cracking resistance

Info

Publication number
JPS5817808B2
JPS5817808B2 JP52053207A JP5320777A JPS5817808B2 JP S5817808 B2 JPS5817808 B2 JP S5817808B2 JP 52053207 A JP52053207 A JP 52053207A JP 5320777 A JP5320777 A JP 5320777A JP S5817808 B2 JPS5817808 B2 JP S5817808B2
Authority
JP
Japan
Prior art keywords
corrosion cracking
stress corrosion
steel pipes
welded
cracking resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52053207A
Other languages
Japanese (ja)
Other versions
JPS53138916A (en
Inventor
博義 松原
昌幸 谷村
忠明 平
正孝 須賀
泰男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP52053207A priority Critical patent/JPS5817808B2/en
Publication of JPS53138916A publication Critical patent/JPS53138916A/en
Publication of JPS5817808B2 publication Critical patent/JPS5817808B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 この発明は、サワー系原油または天然ガス等の輸送用に
用いて優れた耐応力腐食割れ性を発揮する溶接鋼管(U
OE鋼管、スパイラル鋼管、電縫鋼管など)を提供する
ための製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to welded steel pipes (U
The present invention relates to a manufacturing method for providing OE steel pipes, spiral steel pipes, electric resistance welded steel pipes, etc.).

サワー系原油または天然ガス等を輸送するためのライン
パイプとしては、耐応力腐食割れ性に優れた大径溶接鋼
管が必要とされている。
Large diameter welded steel pipes with excellent stress corrosion cracking resistance are required as line pipes for transporting sour crude oil or natural gas.

この場合の応力腐食割れとは、湿潤な状況下でH2Sに
より鋼材の一部が腐食し、その時発生したHが鋼中に浸
入して稼動応力または2および各種の残留応力の作用下
で亀裂を生ずる現象を言うものであり、前記した如きラ
インパイプで実際に問題が起っていることは広く知られ
ている。
In this case, stress corrosion cracking refers to a part of the steel material being corroded by H2S in a humid environment, and the H generated at that time penetrating into the steel and causing cracks under the action of operating stress or various residual stresses. This refers to a phenomenon that occurs, and it is widely known that problems actually occur in line pipes such as those described above.

しかして、従来これの改善方法として母材の性能改良が
次の方法によって図られ、一応の成果はみられた。
Conventionally, the following methods have been used to improve the performance of the base material, and some results have been achieved.

(1)Cu、Cr等の耐食性合金元素の添加、(…)S
量の減少(細長く伸びた硫化物の箇所に前述のHかたま
る)、 (ト)介在物の形状調整(同上)、 (5)熱処理による組織、の改善、 ところが実際のラインパイプにおける応力腐食割れ発生
箇所は、殆んど、溶接部であって、ほかの箇所にはあま
り発生しそいないことが判った。
(1) Addition of corrosion-resistant alloying elements such as Cu and Cr, (...)S
(g) Adjustment of the shape of inclusions (same as above); (5) Improvement of the structure through heat treatment; however, stress corrosion cracking occurs in actual line pipes. It was found that most of the locations were welded areas, and that it was less likely to occur in other locations.

このことは、ベーナイト+初析フェライト混合組織およ
び硬度上昇が応力腐食割れ感受性を太きくする傾向があ
るとする従来の知見からみて、一般に溶接の際の熱影響
部が溶接時に受ける熱履歴によってベーナイト+初析フ
ェライト混合組織になることが知られていることから、
ラインパイプ材においても同様に熱影響部は殆んどこの
混合組織になると同時に、そのfus ion l i
ne (融合線)近傍で硬度が上昇し、そのために応力
腐食割れ感受性が高くなるものと考えられる。
This is based on the conventional knowledge that a mixed structure of bainite + pro-eutectoid ferrite and increased hardness tend to increase stress corrosion cracking susceptibility. + Since it is known that it becomes a pro-eutectoid ferrite mixed structure,
Similarly, in line pipe materials, the heat affected zone has almost the same mixed structure, and at the same time its fusion structure
It is thought that the hardness increases near the ne (fusion line), which increases the stress corrosion cracking susceptibility.

したがって、耐応力腐食割れ性の優れた溶接鋼管を得る
には母材、溶接部の両方の面で、その性能を有する”こ
とが要求されるわけであるが、前述の母材に対する対策
も溶接部に対しては有効な方法とならず、今迄のところ
有効な改善方法が見出されてい□ないため、腐食割れの
発生ず;6′環境下における使用に大きな問題となって
いる。
Therefore, in order to obtain a welded steel pipe with excellent stress corrosion cracking resistance, both the base metal and the welded part must have the same performance. Since no effective method has been found to date, corrosion cracking does not occur; 6' is a major problem when used in an environment.

この発明は、上述の問題に鑑みこれを解決するために創
案されたものであって、そめ誉子とするところは、従来
の製造方法で問題となっている溶接部の耐応力腐食割れ
性を改善するため゛造管完了後に溶接部または溶接部を
含むパイプ全体に対して所定の温度条件によって焼入□
焼戻処理を施すものであって、斯くすることにより、溶
接の際に生じた硬度上昇部分も焼入れに先行する□・オ
ーステナイト域の加熱及びこれに続く均一冷却により解
消されると同時に焼戻しによつそ溶接部の組織も全体が
一様な焼戻しマルテンサイトまたは微細な粒のフェライ
ト+パーライト組織に変化し、この両方の作用により耐
応力腐食割れ性の向上が図られるものである。
This invention was devised to solve the above-mentioned problems, and the purpose of this invention is to improve the stress corrosion cracking resistance of welded parts, which is a problem with conventional manufacturing methods. In order to do this, after pipe making is completed, the welded part or the entire pipe including the welded part is quenched under predetermined temperature conditions.
By doing this, the increased hardness that occurs during welding is eliminated by heating the □-austenite region prior to quenching and then uniformly cooling it. The overall structure of the hem weld changes to a uniform tempered martensite or a fine-grained ferrite+pearlite structure, and both effects improve stress corrosion cracking resistance.

本発明で対象とする溶接鋼管は、特にサワー系原油また
は天然ガス等を輸送するためのラインパイプとして用い
られている。
The welded steel pipe targeted by the present invention is used particularly as a line pipe for transporting sour crude oil or natural gas.

UOE鋼管、スパイラル鋼管、電縫鋼管など、今日迄に
一般的な組成、例えば代表的にはC:0.05〜0.2
0%、Si:0.01〜0.8%、Mn : 0.5〜
1.6%、P:0.03%以下、S二0.04%以下、
Cu:tr〜0.8%、N i : t r〜1.0%
、AI:tr〜0.1%、Cr:tr〜1.0%、N
b : t r〜0.1%、V:tr〜0.1%、Mo
:tr〜1.0%、Ca : t r 〜0.005%
、L a+Ce : t r 〜0.005%、Ti:
tr〜0.1%、B : t r〜0.001%、残部
Feおよび不可避不純物からなる通常の組成の鋼を母材
として造管された溶接鋼管全般に及び、これは本発明が
母材自体の性能改良ではなしに溶接部の性能を母材のそ
れと同等にするためのものであることに基づいている。
UOE steel pipes, spiral steel pipes, electric resistance welded steel pipes, etc. have common compositions to date, typically C: 0.05 to 0.2.
0%, Si: 0.01~0.8%, Mn: 0.5~
1.6%, P: 0.03% or less, S2 0.04% or less,
Cu: tr~0.8%, Ni: tr~1.0%
, AI: tr ~ 0.1%, Cr: tr ~ 1.0%, N
b: tr~0.1%, V: tr~0.1%, Mo
: tr ~ 1.0%, Ca: tr ~ 0.005%
, La+Ce: tr ~0.005%, Ti:
tr ~ 0.1%, B: tr ~ 0.001%, the balance covers all welded steel pipes made using steel with a normal composition as a base material consisting of Fe and unavoidable impurities. It is based on the fact that it is not intended to improve the performance of the weld itself, but to make the performance of the welded part equivalent to that of the base metal.

本発明では、溶接部または溶接部を含む鋼管全体を85
0〜1000℃の温度から焼入れし、しかるのち550
°C’4Ac、以下の温度で焼戻すが、この場合、焼入
れ温度は、耐応力腐食割れ性については殆んど影響がな
いので一般の焼入れと同様と考えればよく、従ってこの
面からの制限はないが、強度ならびに低温靭性の面から
850〜ioo。
In the present invention, the welded portion or the entire steel pipe including the welded portion is
Quenched from a temperature of 0 to 1000℃, then 550℃
Tempering is performed at a temperature below °C'4Ac, but in this case, the quenching temperature has almost no effect on stress corrosion cracking resistance, so it can be considered to be the same as general quenching, and therefore there are no restrictions from this point of view. However, from the viewpoint of strength and low-temperature toughness, it is 850 to ioo.

℃であることが望ましい。It is desirable that the temperature is ℃.

又、焼戻し温度については550℃未満では焼戻しが十
分に行われないため耐応力腐食割れ性が向上せず、Ac
1を超えるとフェライト+硬化組織の混合組織となって
耐応力腐食割れ性が大巾に劣化するので、550℃〜A
c、にすべきであり、特に望ましい範囲は600℃〜A
c1である。
Regarding the tempering temperature, if the tempering temperature is lower than 550°C, the stress corrosion cracking resistance will not improve because the tempering will not be performed sufficiently.
If it exceeds 1, it will become a mixed structure of ferrite + hardened structure and the stress corrosion cracking resistance will be greatly deteriorated.
c, with a particularly desirable range of 600°C to A
It is c1.

この焼戻し温度としては焼入組織を十分軟化させること
および耐応力腐食割れ性付与の上からはAc 1’以下
でできるだけ高温を選ぶことが好ましいが、これとても
要求される強度、靭性をも考慮しつつ行われるべきであ
ることは言うまでもない。
As for this tempering temperature, it is preferable to select a temperature as high as possible within Ac 1' in order to sufficiently soften the quenched structure and impart stress corrosion cracking resistance, but this also takes into consideration the required strength and toughness. Needless to say, this should be done in a consistent manner.

この発明の方法の応力腐食割れに対する有効性を確認す
るため、ひとつの実施例として、C:0.06〜0,1
5%、Si:0.15〜0.35%、Mn : 0.6
7〜1.53%、P : 0.012〜0.075%、
S : 0.004〜0.026%、Cu:tr〜0
.18%、N i : t r 〜0.23%1Mo:
tr〜0.14%、Nb: tr 〜0.041%、C
r: tr〜0.31%、V : t r 〜0.09
5%、残部Feおよび不可避不純物の組成からなる鋼を
母材としてUOE鋼管とし、造管後浴接部を含むパイプ
全体をこの発明の方法の温度条件に従って焼入・焼戻処
理を施したものについて、母材部(溶接部以外の部分)
および溶接部の硬度と5hell方式の小型3点曲げ試
験を実施した結果を第1表に示す。
In order to confirm the effectiveness of the method of this invention against stress corrosion cracking, as an example, C: 0.06 to 0.1
5%, Si: 0.15-0.35%, Mn: 0.6
7-1.53%, P: 0.012-0.075%,
S: 0.004-0.026%, Cu: tr-0
.. 18%, N i : t r ~0.23% 1Mo:
tr~0.14%, Nb: tr~0.041%, C
r: tr~0.31%, V: tr~0.09
A UOE steel pipe is made of steel with a composition of 5% Fe, the balance being Fe and unavoidable impurities as a base material, and after pipe making, the entire pipe including the bath contact part is quenched and tempered according to the temperature conditions of the method of this invention. Regarding the base metal part (parts other than the welded part)
Table 1 shows the hardness of the welded part and the results of a small 5-hell three-point bending test.

尚、前述の5hell方式の小型3点曲げ試験とは5h
el1石油会社が開発した応力腐食割れ試験方法で、広
く用いら□れている試験方法である。
The above-mentioned 5-hell method small three-point bending test is a 5-hour test.
This is a stress corrosion cracking test method developed by EL1 Oil Company, and is a widely used test method.

試験片は第4図に示す如きLニア5朋xW : 4.5
mmXT : 1.5朋の試験片の巾方向両端から1
距った2点に夫々0.02gインチ径のドリル孔を穿ち
、かつ長さ方向の両端から各−インチ距った位置に、後
に述べる押上げの際に試験片の支点となるグラスロット
を置き、しかるのち試験片の長さ方向はぼ中央下面に位
置させた押上げスクリューで押上げて試験片に歪を与え
、このとき得られた試験片表面の歪×ヤング率KSi(
キロポンド・スクエア・インチ)×−でS値を定義する
The test piece was L near 5 x W: 4.5 as shown in Figure 4.
mmXT: 1 from both widthwise ends of the 1.5 mm test piece
Drill holes with a diameter of 0.02 g inch at two points apart, and glass slots that will serve as fulcrums for the test piece during pushing up, which will be described later, at positions spaced apart by an inch from both ends in the length direction. Then, the test piece is pushed up with a push-up screw located at the lower surface in the center in the longitudinal direction to give a strain to the test piece.
The S value is defined as kilopound square inch) × -.

荷重レベルをいろいろに変えた多水率のかつ多数の荷重
を加えた試験片を、その荷重を加えたま□まの状態で≦
試験液中に28日間浸漬したのち引出し、肉眼で試験片
を観察する。
Test specimens with various water content and multiple loads applied at various load levels are □ while the loads are still being applied.
After immersing in the test liquid for 28 days, the test piece is pulled out and observed with the naked eye.

尚、試験箪は0.5%酢酸にH2Sを飽和させた溶液を
用いる。
The test chamber uses a solution of 0.5% acetic acid saturated with H2S.

この場合応力腐食割れが生じたものはドリル孔近傍にク
ラックが認められる。
In this case, if stress corrosion cracking occurs, cracks are observed near the drill hole.

Sc値はクラックが認められなくなるS値の上限を示し
たものである。
The Sc value indicates the upper limit of the S value at which cracks are no longer observed.

上記第1表に示したこの発明の方法による鋼管の試験結
果と、従来法による鋼管の性能とを第1図において比較
すると、この発明の方法による鋼管の溶接部の耐応力腐
食割れ性能は、母材の耐応力腐食割れ性能とほぼ等し東
また従来法による鋼管の溶接部と比較して著しく改善さ
れていることがわかる。
Comparing the test results of the steel pipe according to the method of the present invention shown in Table 1 above with the performance of the steel pipe according to the conventional method in Fig. 1, the stress corrosion cracking resistance performance of the welded part of the steel pipe according to the method of the present invention is It can be seen that the stress corrosion cracking resistance of the base material is almost the same as that of the base metal, and it is significantly improved compared to the welded parts of steel pipes made using conventional methods.

さらにこの発明の方法による場合は、溶接部にのみ焼入
・焼戻処理を施しても、鋼管全体に該熱処理を施した場
合に劣らぬ優れた性能が得られる。
Further, according to the method of the present invention, even if only the welded portion is subjected to the quenching/tempering treatment, excellent performance can be obtained that is as good as when the entire steel pipe is subjected to the heat treatment.

第2図A、Bは、第1表に示したこの発明の方法の焼入
パターンおよび焼戻しパターンの一例を示したグラフで
ある。
FIGS. 2A and 2B are graphs showing examples of the quenching pattern and tempering pattern of the method of the present invention shown in Table 1.

なお、熱処理条件については鋼管の強度、靭性について
も同時に考慮しなければならないことは既に述べたが、
第3図A、Bは第1表に示したこの発明の方法の実施例
におけるSc値測定と並行して行った引張試験、シャル
ピー試験の結果を示したグラフであり、第3図Aにみら
れるように本実施例のものは、焼入れの際の焼入温度の
上昇と共に強度(YS、TS)は上昇するもののオステ
ナイト粒径が大きくなるためシャルピー試験による靭性
(vTs )は−1050℃以上で低下する傾向を示し
た。
As already mentioned, the strength and toughness of the steel pipe must also be taken into account when considering the heat treatment conditions.
3A and 3B are graphs showing the results of a tensile test and a Charpy test conducted in parallel with the Sc value measurement in the example of the method of the present invention shown in Table 1. As can be seen, in this example, the strength (YS, TS) increases as the quenching temperature rises during quenching, but the austenite grain size increases, so the toughness (vTs) according to the Charpy test increases at -1050°C or higher. It showed a decreasing trend.

また同図Bにみられるように焼戻温度の影響は特に60
0°C−=Ac1で良好な結果を示している。
Also, as seen in Figure B, the influence of the tempering temperature is particularly high at 60°C.
Good results are shown at 0°C-=Ac1.

したがってSc値、強度、靭性のバランスを考慮すれば
、第2図A、Bの熱処理パターンから焼入温度850〜
1000℃、焼戻温度550°C”A c1以下でかつ
高温はど望ましいことが理解されよう。
Therefore, considering the balance of Sc value, strength, and toughness, the quenching temperature is 850 ~
It will be understood that a high temperature of 1000° C., a tempering temperature of 550° C.”A c1 or less, and a high temperature are desirable.

また前記実施例と同機にして下記第2表に示すA 、
B、 、 C、Dの4種類の鋼で造管した溶接鋼管につ
いて本発明に係る焼入れ焼戻しの前後の母材部と溶接部
の5hell方式小型3点曲げ試験を行なったところ第
3表の如き結果が得られた。
In addition, A shown in Table 2 below for the same machine as the above example,
Welded steel pipes made from four types of steel: B, , C, and D were subjected to a 5-hell small-scale 3-point bending test on the base metal and welded parts before and after quenching and tempering according to the present invention, and the results are shown in Table 3. The results were obtained.

尚、前記第1表の実施例の鋼に比べて、鋼種AはMoを
若干多く含みしかもTiを添加したもの。
Incidentally, compared to the steels of Examples shown in Table 1 above, steel type A contains slightly more Mo and also has Ti added thereto.

鋼種BはCuを若干多く含みしかもBを添加したもの、
鋼種CはCuを若干多く含みT1とCuを添加したもの
、鋼種りはCuとCrの含有率を若干高めたものに相当
するが、いずれの鋼種による溶接鋼管でも本発明の効果
は第3表の如く得られるものである。
Steel type B contains slightly more Cu and has B added,
Steel type C contains slightly more Cu and T1 and Cu are added, and steel type corresponds to one with a slightly higher content of Cu and Cr, but Table 3 shows the effects of the present invention on welded steel pipes made of either steel type. This is obtained as follows.

経験上、Sc値が〉10の溶接鋼管はサワー系原油また
は天然ガスの輸送用として安全に使用されることが知ら
れており、この観点からこの発明の方法による溶接鋼管
は、上記用途に適用されて顕著な効果を奏するものであ
る。
It is known from experience that welded steel pipes with an Sc value of >10 can be safely used for transporting sour crude oil or natural gas, and from this point of view, the welded steel pipes produced by the method of the present invention are applicable to the above-mentioned applications. It has a remarkable effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法と本発明法のSc値と硬度の関係を示し
たグラフ、第2図A、Bは各々この発明の焼入れパター
ン、焼戻しパターンを示すグラフ、第3図A、Bは各々
強度、靭性とこの発明の焼入温度、焼戻温度の関係を示
すグラフ、第4図は5hell方式の小型3点曲げ試験
方法を示す説明図である。
Fig. 1 is a graph showing the relationship between Sc value and hardness for the conventional method and the present invention. Fig. 2 A and B are graphs showing the quenching pattern and tempering pattern of the present invention, respectively. FIG. 4 is a graph showing the relationship between strength and toughness and the quenching temperature and tempering temperature of the present invention. FIG. 4 is an explanatory diagram showing a small-sized 3-point bending test method using a 5-hell system.

Claims (1)

【特許請求の範囲】[Claims] I UOE鋼管、スパイラル鋼管、電縫鋼管など、C
:0.05〜0.20%、Si:0.01〜0.8%、
Mn : 0.5〜1.6%、P:0.03%以下、S
:0.04%以下、Cu:tr〜0.8%、N i :
t r〜1.0%、Al:tr〜0.1%、Cr:t
r〜1.0%、Nb:tr〜0.1%、V:tr〜0.
1%、Mo:tr〜1.0%、Ca : t r 〜0
.005%、L a十Ce : t r 〜0.005
%、Ti:tr〜0.1%、B : t r〜0.00
1%、残部Feおよび不可避不純物からなる組成の鋼を
母材として造管された溶接鋼管の溶接部または溶接部を
含む鋼管全体を850〜1000℃の温度から焼入れし
、しかるのち550℃〜Ac1以下の温度で焼戻すこと
を特徴とする耐応力腐食割れ性に優れた溶接鋼管の製造
方法。
I UOE steel pipes, spiral steel pipes, electric resistance welded steel pipes, etc.
:0.05~0.20%, Si:0.01~0.8%,
Mn: 0.5-1.6%, P: 0.03% or less, S
: 0.04% or less, Cu: tr~0.8%, Ni:
tr~1.0%, Al: tr~0.1%, Cr:t
r~1.0%, Nb: tr~0.1%, V: tr~0.
1%, Mo: tr ~ 1.0%, Ca: tr ~ 0
.. 005%, La+Ce: tr ~0.005
%, Ti: tr~0.1%, B: tr~0.00
A welded steel pipe made using a steel having a composition of 1% Fe, the balance Fe and unavoidable impurities as a base metal, or the entire steel pipe including the welded part, is quenched at a temperature of 850 to 1000°C, and then quenched at a temperature of 550°C to Ac1. A method for manufacturing a welded steel pipe with excellent stress corrosion cracking resistance, characterized by tempering at the following temperature.
JP52053207A 1977-05-11 1977-05-11 Method for producing welded steel pipes with excellent stress corrosion cracking resistance Expired JPS5817808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52053207A JPS5817808B2 (en) 1977-05-11 1977-05-11 Method for producing welded steel pipes with excellent stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52053207A JPS5817808B2 (en) 1977-05-11 1977-05-11 Method for producing welded steel pipes with excellent stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS53138916A JPS53138916A (en) 1978-12-04
JPS5817808B2 true JPS5817808B2 (en) 1983-04-09

Family

ID=12936408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52053207A Expired JPS5817808B2 (en) 1977-05-11 1977-05-11 Method for producing welded steel pipes with excellent stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS5817808B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161500A (en) * 2010-02-12 2011-08-25 Nippon Steel Corp Method for producing spiral steel tube, and spiral steel tube

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943827A (en) * 1982-09-04 1984-03-12 Sumitomo Metal Ind Ltd Manufacture of high toughness electric welded steel pipe
JPS5943826A (en) * 1982-09-04 1984-03-12 Sumitomo Metal Ind Ltd Manufacture of high toughness electric welded steel pipe
GB2155950B (en) * 1984-03-01 1988-01-20 Nippon Steel Corp Erw-oil well pipe and process for producing same
JPS60187663A (en) * 1984-03-01 1985-09-25 Nippon Steel Corp Electric welded oil well pipe having low hardness and high yield strength and its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529535A (en) * 1975-07-11 1977-01-25 Takata Kojyo Co Seat belt buckle
JPS5252114A (en) * 1975-10-24 1977-04-26 Nippon Steel Corp Process for producing steel of excellent sulfide corrosion cracking re sistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529535A (en) * 1975-07-11 1977-01-25 Takata Kojyo Co Seat belt buckle
JPS5252114A (en) * 1975-10-24 1977-04-26 Nippon Steel Corp Process for producing steel of excellent sulfide corrosion cracking re sistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161500A (en) * 2010-02-12 2011-08-25 Nippon Steel Corp Method for producing spiral steel tube, and spiral steel tube

Also Published As

Publication number Publication date
JPS53138916A (en) 1978-12-04

Similar Documents

Publication Publication Date Title
CA1169682A (en) High tensile steel and process for producing the same
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JP3906779B2 (en) Manufacturing method of low temperature steel with excellent stress corrosion cracking resistance
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
JP3502691B2 (en) Fitting material excellent in hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance and method for producing the same
JPS5817808B2 (en) Method for producing welded steel pipes with excellent stress corrosion cracking resistance
JPS59232225A (en) Manufacture of bent pipe with high tension and toughness
JP3457498B2 (en) High-strength PC steel bar and method of manufacturing the same
JP2960771B2 (en) Door guard bar with excellent crushing strength
JP3548419B2 (en) High strength steel wire
JPS6254062A (en) Low c-cr-mo steel used under damp steam
JPH09324217A (en) Manufacture of high strength steel for line pipe, excellent in hic resistance
JPS61147812A (en) Production of high strength steel superior in delayed breaking characteristic
JPH09279303A (en) High strength pc steel bar excellent in delayed fracture characteristic and its production
JPS59232226A (en) Production of clad pipe bend having excellent corrosion resistance and toughness
JPH07113126B2 (en) Method for producing stainless steel with excellent resistance to stress corrosion cracking
JPH09263831A (en) Production of extra thick high strength bent pipe excellent in toughness at low temperature
JP3457494B2 (en) High-strength PC steel bar and method of manufacturing the same
JPS59232222A (en) Manufacture of high strength steel with superior resistance to sulfide corrosion cracking
JPS6240345A (en) High tension steel pipe for oil well having superior delayed fracture resistance
KR0143498B1 (en) Making method of pc wire rod
JPH0570681B2 (en)
JPH07278663A (en) Manufacture of pc steel bar of high strength
JPS5844726B2 (en) Method for manufacturing high-strength ERW steel pipes for oil wells with excellent hydrogen embrittlement resistance
JPH036206B2 (en)