JPH0488122A - Temperature control method for continuous type heating furnace - Google Patents

Temperature control method for continuous type heating furnace

Info

Publication number
JPH0488122A
JPH0488122A JP20224590A JP20224590A JPH0488122A JP H0488122 A JPH0488122 A JP H0488122A JP 20224590 A JP20224590 A JP 20224590A JP 20224590 A JP20224590 A JP 20224590A JP H0488122 A JPH0488122 A JP H0488122A
Authority
JP
Japan
Prior art keywords
temperature
furnace
temp
slabs
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20224590A
Other languages
Japanese (ja)
Other versions
JP2581832B2 (en
Inventor
Hidenori Gomi
五味 秀式
Yoshiyuki Furukawa
嘉之 古河
Kazuyuki Oda
織田 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2202245A priority Critical patent/JP2581832B2/en
Publication of JPH0488122A publication Critical patent/JPH0488122A/en
Application granted granted Critical
Publication of JP2581832B2 publication Critical patent/JP2581832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)

Abstract

PURPOSE:To allow the dealing with the operations of considerably different conditions, such as hot slabs and cold slabs or high-temp. ejection materials and low-temp. ejection materials by predicting the optimum set in-furnace temp. at every control period (for example, 2 minutes intervals) from the present time to the extraction time of all the slabs to be successively charged and ejected. CONSTITUTION:This temp. control method for a continuous heating furnace having plural continuous control zones consists in determining the optimum set in-furnace temp. of the respective control bands in order to satisfy the target ejection temp. and target ejection lower limit temp. at the time of ejection of all the slabs to be successively charged and ejected and to save energy by optimizing fuel consumption. The evaluation functions expressing the evaluation values of the target ejection temp., target ejection lower limit temp. and fuel consumption at the time of ejection of all the slabs to be successively charged and ejected by the change rate of the in-furnace temp. are used at the time of determining the above- mentioned optimum set in-furnace temp. These functions are made zero by the partial differentiation executed by the change rate of the in-furnace temp., by which the change rate of the in-furnace temp. is determined. The change rate of the optimum set in-furnace temp. to minimize the evaluation functions is thus determined.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続式加熱炉の温度制御方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a temperature control method for a continuous heating furnace.

〔従来技術〕[Prior art]

複数の連続する制御帯を有する連続加熱炉の温度制御に
おいては、従来より次のような技術力玉知られている。
In the temperature control of a continuous heating furnace having a plurality of continuous control zones, the following technical capabilities have been known so far.

各帯内の各スラブについて必要炉内温度を求め、該必要
炉内温度群のなかから各帯ごとに最も高い炉内温度を代
表炉内温度として温度制御する(特公昭51−3052
6号公報)。
The required furnace temperature is determined for each slab in each zone, and the temperature is controlled using the highest furnace temperature for each zone among the required furnace temperature group as the representative furnace temperature (Japanese Patent Publication No. 51-3052
Publication No. 6).

加熱炉においてスラブの抽出時の予測温度と目標抽出温
度との差を評価関数に含み、その評価関数を最小にする
設定炉内温度変更量を線形計画法で求める(特公昭61
−25771号公報)。
In the heating furnace, the difference between the predicted temperature at the time of extraction of the slab and the target extraction temperature is included in the evaluation function, and the amount of change in the set furnace temperature that minimizes the evaluation function is determined by linear programming.
-25771).

加熱炉においてスラブの予測温度と予め定めた昇温パタ
ーンとの偏差に応じて設定炉内温度を計算する(特公昭
49−29403号公報)。
In a heating furnace, a set furnace temperature is calculated according to the deviation between the predicted temperature of the slab and a predetermined temperature increase pattern (Japanese Patent Publication No. 49-29403).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、特公昭51−30526号公報は、加熱され難
いスラブのみを対象に加熱するため、他のスラブは焼は
過ぎとなり燃料消費量が多くなるため、オペレータ介入
量が多い。特公昭6]−25771号公報は、実際に目
標抽出温度、目標抽出下限温度等の各スラブの製造条件
を満足し、しかも、省エネルギー操業を行なうためには
、評価関数に複数個のスラブを考慮し、目標抽出温度、
目標抽出下限温度、及び燃料消費量の評価値等の複数個
の条件を有する必要があり、該評価関数を制御周期(2
分)にて線形計画法で計算するには、膨大な計算量とな
るとともに、計算誤差等のために最適解が求められない
ことか発生するため、生産性阻害要因となる。また、線
形計画法では、最適解を求めるだめの条件設定に柔軟性
がなく、操業方針等の変化に対応出来ない。特公昭49
−29403号公報の場合。
However, in Japanese Patent Publication No. 51-30526, since only the slabs that are difficult to heat are heated, other slabs are overcooked and fuel consumption increases, requiring a large amount of operator intervention. Japanese Patent Publication No. 6]-25771 discloses that in order to actually satisfy the manufacturing conditions of each slab such as target extraction temperature and target extraction minimum temperature, and to perform energy-saving operation, multiple slabs must be considered in the evaluation function. and the target extraction temperature,
It is necessary to have multiple conditions such as the target extraction lower limit temperature and the evaluation value of fuel consumption, and the evaluation function is
Calculating using linear programming (minutes) requires a huge amount of calculations, and the optimum solution may not be found due to calculation errors, which hinders productivity. Furthermore, linear programming does not have flexibility in setting conditions for obtaining an optimal solution, and cannot respond to changes in operating policies, etc. Special Public Service 1977
- In the case of Publication No. 29403.

炉内温度に対するスラブ温度の応答が緩慢でおるため、
偏差を検知してから温度制御しても遅すぎる。
Because the response of the slab temperature to the furnace temperature is slow,
It is too late to control the temperature after detecting the deviation.

本発明は、上記のような従来の課題を改善することを目
的とする。
The present invention aims to improve the conventional problems as described above.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、このような点に鑑みてなされたものであり、
複数の連続する制御帯を有する連続加熱炉の温度制御方
法において:順次に装入及び抽出される全てのスラブの
抽出時における目標抽出温度、および目標抽出下限温度
を満足して、なおかっ、燃料消費量を最適にして省エネ
ルギーを図るだめの各制御帯の最適設定炉内温度を求め
るに際して、順次に装入及び抽出される全てのスラブに
対して抽出時の目標抽出温度、目標抽出下限温度。
The present invention has been made in view of these points,
In a temperature control method for a continuous heating furnace having a plurality of continuous control zones: If the target extraction temperature and the target extraction lower limit temperature are satisfied during extraction of all the slabs that are sequentially charged and extracted, the fuel When determining the optimal furnace temperature setting for each control zone to optimize consumption and save energy, the target extraction temperature and target extraction lower limit temperature during extraction are determined for all slabs that are sequentially charged and extracted.

および燃料消費量の評価値を炉内温度変更量で表わした
評価間数を用い、該評価関数について炉内温度変更量で
偏微分を行ない零として炉内温度変更量を求め、該評価
関数を最小にする最適設定炉内温度変更量を求める、こ
とを特徴とする。
Using an evaluation interval in which the evaluation value of fuel consumption is expressed as the amount of change in the furnace temperature, partial differentiation is performed on the evaluation function by the amount of change in the furnace temperature, and the amount of change in the furnace temperature is determined as zero, and the evaluation function is The method is characterized in that an optimally set furnace temperature change amount to be minimized is determined.

〔作用〕[Effect]

本発明によれば、評価関数を最小にする最適設定炉内温
度変更量を求める際に、結果を収束させるための繰り返
し計算が不要であり、一意的に結果が得られるので、計
算量が従来に比べて大幅に低減され、計算機の負荷が低
減される。また、評価関数の重み関数を各スラブ条件及
び各制御帯別の炉内温度変更量に対して調整及び決定す
ることができ、事前に調整及び決定しておくことにより
、オンラインにてダイナミックに変更することができる
。これにより例えば、高品質化、省エネルギ化等の操業
変化に対応して加熱炉の最適操業が可能になる。
According to the present invention, when determining the optimally set furnace temperature change amount that minimizes the evaluation function, there is no need for repeated calculations to converge the results, and a unique result can be obtained, so the amount of calculation is reduced compared to the conventional method. It is significantly reduced compared to , and the load on the computer is reduced. In addition, the weighting function of the evaluation function can be adjusted and determined for each slab condition and the amount of furnace temperature change for each control zone, and by adjusting and determining it in advance, it can be changed dynamically online. can do. This makes it possible, for example, to optimally operate the heating furnace in response to operational changes such as higher quality and energy saving.

本発明の好ましい態様においては、順次装入及び抽出さ
れる全てのスラブについて、現在時刻から抽出時刻まで
の制御周期毎(例えば2分間隔)の前記最適設定炉内温
度を予測する。これにより、熱片材と冷片材および高温
抽出材と低温抽出材などのように大幅に条件の異なる操
業に対応することができる。
In a preferred embodiment of the present invention, the optimally set furnace temperature is predicted for each control cycle (for example, at 2-minute intervals) from the current time to the extraction time for all slabs that are sequentially charged and extracted. This makes it possible to handle operations with significantly different conditions, such as hot strip material and cold strip material, high temperature extracted material and low temperature extracted material, etc.

また好ましい態様においては、評価関数のスラプ昇温影
響係数を、ARMAモデル式の係数の積。
In a preferred embodiment, the slap temperature increase influence coefficient of the evaluation function is the product of the coefficients of the ARMA model formula.

算により求める。これにより、スラブ昇温影響係数を簡
単に求めることができ、計算機で処理を行なう上で非常
に効果的に発明を実施しうる。
Calculate by calculation. Thereby, the slab temperature increase influence coefficient can be easily determined, and the invention can be implemented very effectively when processing with a computer.

また本発明によれば、順次装入、抽出される全てのスラ
ブと複数個の評価値が設定可能なため、各種操業条件お
よび各スラブ条件においても加熱炉最適操業ができ、な
おかっ、該評価関数の重み関数を各スラブ毎、および各
制御帯毎に任意に選択することにより、たとえば、品質
指向・省エネルギー指向等の操業変化に対応した加熱炉
最適操業ができる。また、最適設定炉内温度変更量を繰
り返し収束計算をせず一意的に求めることができるため
、制御周期の細分化および計算機負荷低減が図れる。
Further, according to the present invention, since it is possible to set all the slabs to be sequentially charged and extracted and a plurality of evaluation values, it is possible to optimally operate the heating furnace under various operating conditions and each slab condition. By arbitrarily selecting the weighting function for each slab and each control zone, the heating furnace can be operated optimally in response to operational changes such as quality-oriented or energy-saving-oriented. Furthermore, since the optimally set in-furnace temperature change amount can be uniquely determined without repeated convergence calculations, the control cycle can be subdivided and the computer load can be reduced.

〔実施例〕〔Example〕

以下、この発明の実施例を詳細1こ説明する。ここでは
、最適炉内温度変更量を求める評価関数Jを、次式のよ
うに抽出温度・抽出下限温度、及よび燃料流量消費量を
評価値とした2次形式とする。
Hereinafter, an embodiment of the present invention will be described in detail. Here, the evaluation function J for determining the optimum in-furnace temperature change amount is assumed to be a quadratic form with the extraction temperature, extraction lower limit temperature, and fuel flow rate consumption as evaluation values as shown in the following equation.

評価関数J Σr・ (抽出温度・抽出下限温度評価値)2+Σq・
 (燃料流量消費量評価値)2=(A・Δu−B)”R
(A・Δu−B)−PT(A・Δu−B)十ΔuT□Δ
u+W”Δu・・・・(1)ここで、 A  スラブ昇温影響係数(拘束条件行列)    (
mXn)Δu: :最適炉内温度変更量       
   (nXl)A・Δu:゛スラブ抽出温度変化量 
        (mXl)Bニスラブ抽出温度必要変
更量(拘束条件ベクトル)(mXl)R重み関数   
            (mXm)Q  重み関数 
              (nXn)P  重み関
数(非負ベクトル)          (mXりW 
 ゛重み関数(非負ベクトル)          (
nXl)m   2× (スラブ本数) n  予測時間(分)/制御周期(分)×制御帯数であ
る。
Evaluation function J Σr・ (extraction temperature/extraction lower limit temperature evaluation value) 2+Σq・
(Fuel flow rate consumption evaluation value) 2 = (A・Δu−B)”R
(A・Δu−B)−PT(A・Δu−B)×ΔuT□Δ
u+W"Δu...(1) Here, A slab temperature increase influence coefficient (constraint condition matrix) (
mXn)Δu: :Optimum furnace temperature change amount
(nXl)A・Δu: ゛Slab extraction temperature change amount
(mXl) B Nislab extraction temperature required change amount (constraint condition vector) (mXl) R weighting function
(mXm)Q weight function
(nXn)P weighting function (non-negative vector) (mXriW
゛Weight function (non-negative vector) (
nXl) m 2 x (number of slabs) n Prediction time (minutes)/control period (minutes) x number of control bands.

この実施例では、最適炉内温度変更量を求めるために、
上記評価関数Jか最小値になる点を求める。即ち、評価
関数JをΔu:にて偏微分し、その結果がOとなる点が
評価関数Jの最小点であり、最適炉内温度変更量の計算
式は式の第(2)式のようになる。
In this example, in order to find the optimal amount of change in furnace temperature,
Find the point where the above evaluation function J has the minimum value. That is, the point where the evaluation function J is partially differentiated by Δu: and the result is O is the minimum point of the evaluation function J, and the calculation formula for the optimum furnace temperature change is as shown in equation (2). become.

Δu”=(A”RA+Q)−’(A”RB−W/2+A
”P/2)・・・・(2) 第(2)式により、結果の収束のための繰り返し計算を
必要とすることなく、最適設定炉内温度変更量(Δu 
t)を一意的に求めることができ、なおかつ、該評価関
数の重み関数を各スラブ毎および各制御帯毎に任意に選
択することにより、たとえば、後述するように品質指向
・省エネルギー指向等の操業変化に対応した加熱炉最適
操業ができる。
Δu"=(A"RA+Q)-'(A"RB-W/2+A
”P/2)...(2) Equation (2) allows the optimally set furnace temperature change amount (Δu
t) can be uniquely determined, and by arbitrarily selecting the weighting function of the evaluation function for each slab and each control zone, for example, it is possible to improve quality-oriented and energy-saving-oriented operations as described later. The heating furnace can be operated optimally in response to changes.

ここで、上記評価関数を構成する拘束条件について説明
する。まず、スラブ昇温影響係数(A)の考え方につい
て説明する。ある制御帯の制御周期(Δt)において、
炉内温度をΔu:変更した時の該制御帯出側のスラブ温
度の変化量(Δ丁)は次の第(3)式のように表現でき
る。
Here, the constraint conditions constituting the above evaluation function will be explained. First, the concept of slab temperature increase influence coefficient (A) will be explained. In the control period (Δt) of a certain control band,
The amount of change (Δt) in the slab temperature on the control band exit side when the furnace temperature is changed by Δu can be expressed as in the following equation (3).

A T= a T/ a u           −
(3)よって、各制御帯の炉内温度変更量を、Δを刻み
で現時刻t。からt、、までに拡張して上式を考えると
、スラブの抽出温度変更量は次の第(4)式のようにな
る。
A T= a T/ a u −
(3) Therefore, the amount of change in the furnace temperature in each control zone is set at the current time t in increments of Δ. When considering the above equation by expanding it from t to t, the amount of change in the extraction temperature of the slab becomes as shown in the following equation (4).

ΔTk (t、、、 x) = 一0au1 (1・Δt) 一8a+g(1・Δt) 一6aU3(]・Δt) ・・・(4) ここで、 ΔTk(+、、、 x)スラブ厚み方向のXポイント抽
出温度変化量Δu l + Δu2+  Δu3 各制
御帯の炉内温度変更量(ex予熱帯、加熱帯、均熱帯) 11+12+t3各制御帯の残り在帯時間(ex予熱帯
、加熱帯、均熱帯) k′スラブ番号 である。
ΔTk (t,,, x) = -0au1 (1・Δt) -8a+g(1・Δt) -6aU3(]・Δt) ... (4) Here, ΔTk (+,,, x) in the slab thickness direction X point extraction temperature change amount Δu l + Δu2+ Δu3 Amount of furnace temperature change in each control zone (ex pre-preparation zone, heating zone, soaking zone) 11+12+t3 Remaining time in each control zone (ex pre-preparation zone, heating zone, soaking zone) Tropical) k' is the slab number.

ここでは、抽出温度・抽出下限温度を以下のように定義
する。
Here, the extraction temperature and extraction lower limit temperature are defined as follows.

抽出温度=T (t、、、、0) 抽出下限温度=T(tゎ、、、1) T (t、、、、0):全断面平均温度T (t、、、
、1):オンスキッド部断面平均温度この定義に従って
、第(4)式をもとにスラブ昇温影響係数(A)を求め
ると第3図のようになる。
Extraction temperature = T (t,,,,0) Extraction lower limit temperature = T (tゎ,,,1) T (t,,,,0): Total cross-section average temperature T (t,,,,
, 1): On-skid part cross-sectional average temperature According to this definition, the slab temperature increase influence coefficient (A) is determined based on equation (4) as shown in FIG. 3.

ここで、偏微分項は次の第(5)式のようなARMAモ
デル式の係数(a、b)より第(6)式のように簡単に
求めることができ、計算機にて処理をする上で非常に有
効である。
Here, the partial differential term can be easily obtained as shown in Equation (6) from the coefficients (a, b) of the ARMA model equation as shown in Equation (5) below. is very effective.

Tn−ΣaI−T、、、、I+ΣbI−uo−、・・・
(5)但し、 n 現在時刻  J 時刻 T スラブ温度 U゛炉内温度 ここで、 1、−]  ・ Δ t Δ t kニスラブ番号 l二手熱帯(=1)、加熱帯(=2)、均熱帯(・3)
である。
Tn-ΣaI-T,,,I+ΣbI-uo-,...
(5) However, n Current time J Time T Slab temperature U゛ Furnace temperature Here, 1, -] ・ Δ t Δ t k Nisslab number l Two-handed tropical zone (=1), heating zone (=2), soaking zone (・3)
It is.

次に、スラブ抽出温度必要変更量 方について以下に説明する。Next, the required change in slab extraction temperature The method will be explained below.

(B) の考え θu1(1・Δ+)       aU、(]・Δt)
・・・(6) ここで、 Ti (t。。、、0):Siスラブの抽出時全断面平
均温度Ti (t、。l+  1)  :Siスラブの
抽出時オンスキッド部断面平均温度 である。
(B) Idea θu1 (1・Δ+) aU, (]・Δt)
...(6) Here, Ti (t.., 0): Average temperature of the entire cross section of the Si slab during extraction Ti (t,.l+ 1): Average temperature of the on-skid section of the Si slab during extraction .

以上のように、拘束条件(A、B)を求めることにより
第(2)式を解くことができるが、本発明の特徴の1つ
である重み係数による操業変化への対応例を以下に示す
As mentioned above, equation (2) can be solved by determining the constraint conditions (A, B), but an example of how to respond to operational changes using weighting coefficients, which is one of the features of the present invention, is shown below. .

たとえば、スラブ条件が抽出下限温度規制材の時など、
上記の重みを変更することにより、該スラブを優先にし
た最適操業が可能である。
For example, when the slab condition is a material with minimum extraction temperature regulation,
By changing the above weights, it is possible to perform optimal operation with priority given to the slab.

る。Ru.

たとえば、省エネルギーに優れた後段負荷操業等も、上
記の重みを変更することにより可能である。
For example, post-load operation with excellent energy savings is also possible by changing the above-mentioned weights.

ここでは、重みRとPの関係を次式とし、係数Kl(I
Xm)によりPを決定する。
Here, the relationship between weights R and P is expressed as follows, and coefficient Kl(I
P is determined by Xm).

P=に、・R K、を大きくすると抽出温度、抽出下限温度に対して安
全サイドとなり、K1を小さくすると抽出温度、抽出下
限温度に対して最適方向な操業となる。
When P= and RK are increased, the operation is on the safe side with respect to the extraction temperature and the minimum extraction temperature, and when K1 is decreased, the operation is optimized with respect to the extraction temperature and the minimum extraction temperature.

また、重みQとWの関係を次式とし、係数に2(lXn
)により重みWを決定する。
Also, the relationship between weights Q and W is expressed as follows, and the coefficient is 2(lXn
) determines the weight W.

W−に2・Q に2を大きくすると設定炉内温度を積極的に下げて、K
2を小さくすると設定炉内温度を一定に保とうとする操
業となる。
If you increase 2 for W- and 2 for Q, the set furnace temperature will be lowered actively, and K
If 2 is made small, the operation attempts to keep the set furnace temperature constant.

以上に示した制御方法を用いて評価関数の重みを変更し
た例を第1図と第2図に示す。
An example of changing the weight of the evaluation function using the control method described above is shown in FIGS. 1 and 2.

第1図に示した例は、重みを安全方向での焼き上げ設定
にしたものであり、図から明らかなように、目標温度を
すべて満足している。第2図に示した例は、重みを省エ
ネルギー指向での焼き上げ設定にしたものであり、図か
ら明らかなように、目標温度に対して良好に追従してい
ることが分かる。燃料原単位は、かなりこまめにオペレ
ータが介入したとき以上の結果が得られた。
In the example shown in FIG. 1, the weight is set for baking in a safe direction, and as is clear from the figure, all target temperatures are satisfied. In the example shown in FIG. 2, the weights are set for baking with energy saving in mind, and as is clear from the figure, it follows the target temperature well. The fuel consumption rate was better than when the operator intervened more frequently.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、複数個のスラブに
対して抽出時の目標抽出温度・目標抽出下限温度、およ
び燃料消費量の評価値を含む評価係数を用いて、重み関
数を各スラブ毎、および各制御帯毎に任意に選択できる
ため、品質指向・省エネルギー指向等の操業変化に対応
した加熱炉最適操業が可能となり、オペレータ介入頻度
減少および燃料原単位低減が図れる。
As described in detail above, according to the present invention, weighting functions are determined for each slab using evaluation coefficients including target extraction temperature, target extraction lower limit temperature, and evaluation value of fuel consumption for a plurality of slabs. Since it can be selected arbitrarily for each slab and each control zone, it is possible to optimally operate the heating furnace in response to operational changes such as quality-oriented or energy-saving-oriented, reducing the frequency of operator intervention and fuel consumption.

また、最適設定炉内温度変更量を求めるための評価関数
を最小にする計算において、収束のための繰り返し計算
が不要であり、一意的に結果を求めることができるため
、計算量を従来の諸方法に比べて著しく減少させ、計算
機負荷の低減が図れる。
In addition, in the calculation to minimize the evaluation function for determining the amount of change in the optimal furnace temperature, there is no need for repeated calculations for convergence, and the result can be uniquely determined, reducing the amount of calculation compared to conventional methods. It is possible to reduce the computer load significantly compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例における抽出温
度特性を示すグラフ、第3図は第(4)式から求められ
た各スラブ昇温影響係数(A)の集合を示すマツプであ
る。 予熱帯 スラブ番号
Figures 1 and 2 are graphs showing extraction temperature characteristics in one embodiment of the present invention, and Figure 3 is a map showing a set of slab temperature increase influence coefficients (A) obtained from equation (4). be. Preheating slab number

Claims (3)

【特許請求の範囲】[Claims] (1)複数の連続する制御帯を有する連続加熱炉の温度
制御方法において、 順次に装入及び抽出される全てのスラブの抽出時におけ
る目標抽出温度、および目標抽出下限温度を満足して、
なおかつ、燃料消費量を最適にして省エネルギーを図る
ための各制御帯の最適設定炉内温度を求めるに際して、
順次に装入及び抽出される全てのスラブに対して抽出時
の目標抽出温度、目標抽出下限温度、および燃料消費量
の評価値を炉内温度変更量で表わした評価関数を用い、
該評価関数について炉内温度変更量で偏微分を行ない零
として炉内温度変更量を求め、該評価関数を最小にする
最適設定炉内温度変更量を求める、ことを特徴とする連
続式加熱炉の温度制御方法。
(1) In a temperature control method for a continuous heating furnace having a plurality of continuous control zones, the target extraction temperature and the target extraction lower limit temperature are satisfied during extraction of all slabs that are sequentially charged and extracted,
Furthermore, when determining the optimal furnace temperature setting for each control zone in order to optimize fuel consumption and save energy,
Using an evaluation function that expresses the evaluation value of the target extraction temperature, target extraction lower limit temperature, and fuel consumption amount in terms of the amount of furnace temperature change for all slabs that are sequentially charged and extracted,
A continuous heating furnace characterized in that the evaluation function is partially differentiated by the amount of change in the furnace temperature, the amount of change in the furnace temperature is determined as zero, and the optimally set amount of change in the furnace temperature that minimizes the evaluation function is determined. temperature control method.
(2)順次装入及び抽出される全てのスラブについて、
現在時刻から抽出時刻まで、制御周期毎の前記最適設定
炉内温度を予測する、前記請求項1記載の連続式加熱炉
の温度制御方法。
(2) For all slabs that are sequentially charged and extracted,
2. The temperature control method for a continuous heating furnace according to claim 1, wherein the optimally set furnace temperature is predicted for each control cycle from the current time to the extraction time.
(3)前記評価関数を次に示す評価関数Jとし、それの
スラブ昇温影響係数(拘束条件行列A)を、ARMAモ
デル式の係数の積算により求める、前記請求項1記載の
連続式加熱炉の温度制御方法。 評価関数J=Σr・(抽出温度・抽出下限温度評価値)
^2+Σq・(燃料流量消費量評価値)^2=(A・Δ
u−B)^TR(A・Δu−B)−P^T(A・Δu−
B)+Δu^TQΔu+W^TΔu 但し、 A:スラブ昇温影響係数(拘束条件行列)(m×n) Δu:最適炉内温度変更量 (n×l)A・Δu:スラブ抽出温度変化量(m×l) B:スラブ抽出温度必要変更量(拘束条件ベクトル)(
m×l) R:重み関数(m×m) Q:重み関数(n×n) P:重み関数(非負ベクトル)(m×l) W:重み関数(非負ベクトル)(n×l) m:2×(スラブ本数) n:予測時間(分)/制御周期(分)×制御帯数である
(3) The continuous heating furnace according to claim 1, wherein the evaluation function is the evaluation function J shown below, and the slab temperature increase influence coefficient (constraint condition matrix A) thereof is obtained by integrating the coefficients of the ARMA model formula. temperature control method. Evaluation function J=Σr・(extraction temperature/extraction lower limit temperature evaluation value)
^2 + Σq・(Fuel flow rate consumption evaluation value) ^2=(A・Δ
u-B)^TR(A・Δu-B)−P^T(A・Δu−
B)+Δu^TQΔu+W^TΔu However, A: Slab temperature increase influence coefficient (constraint condition matrix) (m×n) Δu: Optimal furnace temperature change amount (n×l) A・Δu: Slab extraction temperature change amount (m ×l) B: Necessary change amount of slab extraction temperature (constraint condition vector) (
m×l) R: Weighting function (m×m) Q: Weighting function (n×n) P: Weighting function (non-negative vector) (m×l) W: Weighting function (non-negative vector) (n×l) m: 2×(number of slabs) n: prediction time (minutes)/control period (minutes)×number of control bands.
JP2202245A 1990-07-30 1990-07-30 Temperature control method for continuous heating furnace Expired - Lifetime JP2581832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2202245A JP2581832B2 (en) 1990-07-30 1990-07-30 Temperature control method for continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2202245A JP2581832B2 (en) 1990-07-30 1990-07-30 Temperature control method for continuous heating furnace

Publications (2)

Publication Number Publication Date
JPH0488122A true JPH0488122A (en) 1992-03-23
JP2581832B2 JP2581832B2 (en) 1997-02-12

Family

ID=16454358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2202245A Expired - Lifetime JP2581832B2 (en) 1990-07-30 1990-07-30 Temperature control method for continuous heating furnace

Country Status (1)

Country Link
JP (1) JP2581832B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117055652A (en) * 2023-09-04 2023-11-14 山东胜星食品科技有限公司 Intelligent temperature regulation and control method for food processing baking oven based on big data

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117055652A (en) * 2023-09-04 2023-11-14 山东胜星食品科技有限公司 Intelligent temperature regulation and control method for food processing baking oven based on big data
CN117055652B (en) * 2023-09-04 2024-03-08 山东胜星食品科技有限公司 Intelligent temperature regulation and control method for food processing baking oven based on big data

Also Published As

Publication number Publication date
JP2581832B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
US5272621A (en) Method and apparatus using fuzzy logic for controlling a process having dead time
JPS5848011B2 (en) Furnace combustion control method
CN105018718A (en) Heating furnace process furnace temperature control method based on thermal load distribution
JP2008024966A (en) Method for controlling furnace temperature in continuous type heating furnace, and method for producing steel material
JPH0488122A (en) Temperature control method for continuous type heating furnace
JP3537215B2 (en) Heating furnace temperature controller
JP2006274401A (en) Method for automatically controlling combustion in continuous heating furnace
JP3436841B2 (en) Temperature control device for continuous heating furnace
CA1314142C (en) Method for bringing a plurality of steel slabs to rolling temperature in a furnace
JPH0415706A (en) Model estimation controller
JPH03138319A (en) Method for controlling furnace temperature for continuous heating furnace
JPH0867918A (en) Method for deciding furnace temperature in continuous type heating furnace
JPH06248362A (en) Method for controlling temperature of material in continuous type heating furnace
KR101169125B1 (en) Material temperature control system in continuous strip material treatment line
JP7052671B2 (en) Metal band temperature control method and temperature control device
JPH0469209B2 (en)
JPH0377851B2 (en)
JPH11335739A (en) Method and device for heating temp. control of continuous heating furnace
Lewis et al. The application of predictive control to steel annealing
JP3848401B2 (en) Temperature control method for continuous heating furnace
JPH1080709A (en) Method for rolling thick plate
JPS6365025A (en) Combustion control method for continuous billet heating furnace
JPH0327608B2 (en)
JPS61124517A (en) Method for putting slab in continuous heating furnace
JPH06248330A (en) Method for controlling combustion in heating furnace