JPH06248362A - Method for controlling temperature of material in continuous type heating furnace - Google Patents

Method for controlling temperature of material in continuous type heating furnace

Info

Publication number
JPH06248362A
JPH06248362A JP3967693A JP3967693A JPH06248362A JP H06248362 A JPH06248362 A JP H06248362A JP 3967693 A JP3967693 A JP 3967693A JP 3967693 A JP3967693 A JP 3967693A JP H06248362 A JPH06248362 A JP H06248362A
Authority
JP
Japan
Prior art keywords
temperature
furnace
upper limit
value
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3967693A
Other languages
Japanese (ja)
Inventor
Naoharu Yoshitani
谷 直 治 芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3967693A priority Critical patent/JPH06248362A/en
Publication of JPH06248362A publication Critical patent/JPH06248362A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

PURPOSE:To control so as to satisfy the upper limit regulation of temp. fixed as the aim, in which the temp. at each part in a material secures the necessary quality, and also so as not to obstruct the productivity of a heating furnace, in the material temp. control in a continuous type heating furnace. CONSTITUTION:In the material temp. control in a continuous type heating furnace, by using the temp. at each part, in the material and the temp. difference between the above temp. and the upper limit temp. at every moment, such the upper limit value in the setting furnace temp. that the upper limit regulation of the material temp. is satisfied and also, the productivity of the heating furnace is not unnecessarily obstructed, is obtd. at each control period and varied at every moment. Further, in the case of being the fuel flow rate, as the operating quantity, by using a predicting model for furnace temp., the upper limit value in the setting furnace temp. is transformed into the upper limit value in the fuel flow rate and varied at every moment as the same way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、連続式加熱炉の材料温
度制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material temperature control method for a continuous heating furnace.

【0002】[0002]

【従来の技術】図5に、制御対象とする連続式加熱炉の
長手方向(材料の進行方向)断面と、長手方向の各種温
度分布の一例を示す。図において、加熱炉は炉尻帯から
均熱帯までの5帯に区切られていて、横軸は長手方向距
離であり、材料温度と抽出目標温度のグラフは、各位置
に存在する材料に関する値をつないだ曲線である。図の
ようなプラントを対象とした材料温度制御において、被
加熱材料の材料内平均温度の昇温の目標パターンを表わ
す目標昇温曲線を設け、材料内平均温度が該目標昇温曲
線に沿うように、燃料流量または炉内温度(炉温)を操
作量として制御する方式は、材料の昇温過程に関する品
質上の制約条件(熟熱時間など)が存在する場合に、制
約条件を考慮して目標昇温曲線を定めることにより、制
約条件を満たす制御を容易に行なうことができ、また、
昇温曲線が所定の評価関数に関して最適となるように目
標昇温曲線を定めることにより、最適制御を実現するこ
ともできるため、材料温度制御の有力な方式として、近
年いくつか提案されている。たとえば特開昭61−19
9020号公報に記述されている方式は、材料ごとの最
適昇温曲線を前もって何らかの方法で定め、炉内の各材
料に関してΔt時間後の温度が目標温度、すなわち該曲
線上の値となるように、燃料流量設定値を操作量として
制御する方式である。
2. Description of the Related Art FIG. 5 shows an example of a longitudinal cross section (a material advancing direction) of a continuous heating furnace to be controlled and various temperature distributions in the longitudinal direction. In the figure, the heating furnace is divided into 5 zones from the furnace bottom zone to the soaking zone, the horizontal axis is the longitudinal distance, and the graph of the material temperature and the extraction target temperature shows the values related to the material existing at each position. It is a connected curve. In the material temperature control for the plant as shown in the figure, a target temperature rising curve that represents the target pattern of temperature rise of the material average temperature of the material to be heated is provided, and the average material temperature is set to follow the target temperature rising curve. In addition, the method of controlling the fuel flow rate or the furnace temperature (furnace temperature) as the manipulated variable takes into consideration the constraint condition when the quality constraint condition (ripening time etc.) related to the material heating process exists. By setting the target temperature rise curve, it is possible to easily perform the control satisfying the constraint condition.
Optimum control can also be realized by setting a target temperature rise curve so that the temperature rise curve is optimal with respect to a predetermined evaluation function. Therefore, several promising methods for material temperature control have been proposed in recent years. For example, Japanese Patent Laid-Open No. 61-19
In the method described in Japanese Patent No. 9020, the optimum temperature rising curve for each material is determined in advance by some method so that the temperature after Δt time for each material in the furnace becomes a target temperature, that is, a value on the curve. The fuel flow rate set value is controlled as an operation amount.

【0003】また特開平2−156017号公報におい
ては、炉内の材料の昇温曲線が評価関数に関して最適と
なるように、目標昇温曲線をオンラインで所定の周期で
定め、また材料への伝熱を表わす解析モデルを用いて材
料内各部の温度を時々刻々推定計算するとともに、材料
内平均温度が所定時間(N3時間)後に目標昇温曲線上
の値に一致するように、燃料流量設定値を操作量として
制御する方式が記述されている。最適化対象とするパラ
メータは、炉内のいくつかの地点、あるいは区間におけ
る目標昇温速度であり、この値は同一の材料グル−プ内
では同じ値とする。ここで材料グル−プとは、炉内の位
置が連続する複数の材料に関して、各帯在帯時間,装入
温度,抽出目標温度などが似ている部分を1まとまりと
したものである。
Further, in Japanese Patent Application Laid-Open No. 2-156017, a target temperature rising curve is determined online at a predetermined cycle so that the temperature rising curve of the material in the furnace is optimum with respect to the evaluation function, and the temperature rising curve is transmitted to the material. The temperature of each part in the material is estimated and calculated from moment to moment using an analysis model that expresses heat, and the fuel flow rate is set so that the average temperature in the material matches the value on the target temperature rise curve after a predetermined time (N 3 hours). A method of controlling a value as an operation amount is described. The parameter to be optimized is a target heating rate at some points or sections in the furnace, and this value is the same in the same material group. Here, the material group refers to a plurality of materials whose positions in the furnace are continuous, in which portions having similar zonal time, charging temperature, extraction target temperature, etc. are grouped together.

【0004】各材料の目標昇温曲線は、上記目標昇温速
度の他、材料ごとの装入温度,抽出目標温度、および、
品質確保のための熟熱時間などにより定められる。
The target temperature rising curve of each material includes the charging temperature for each material, the extraction target temperature, and
Determined by the heat-up time for quality assurance.

【0005】上記のようなグル−プ分けは、各帯在帯時
間,装入温度,抽出目標温度などの種々異なる材料の炉
内での混在へ対処するとともに、最適化対象パラメータ
の数をできるだけ減らして、オンラインでの最適化処理
を効率化するために行なわれる。グル−プ分けを細かく
すれば、最適化処理はよりきめ細かくなるが、処理に要
する時間は増大する。該公報における制御を説明する機
能ブロック図を図6に示す。
The above-mentioned group division copes with the mixture of various materials such as each zone time, charging temperature and extraction target temperature in the furnace, and the number of parameters to be optimized is minimized. This is done in order to reduce and streamline the online optimization process. If the group division is made finer, the optimization processing becomes finer, but the time required for the processing increases. FIG. 6 shows a functional block diagram for explaining the control in this publication.

【0006】[0006]

【発明が解決しようとする課題】上に述べた従来技術
(特開昭61−199020号公報,特開平2−156
017号公報)においては、材料の平均温度の昇温曲線
を定めるため、平均温度に関しては、所定の温度上限規
制または温度下限規制を満たすように制御することがで
きるが、昇温途中における材料内各部の温度(表面およ
び内部を含めた各部温度)の上限に関する制約条件につ
いては、ほとんど考慮されていない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The above-mentioned conventional techniques (Japanese Patent Laid-Open No. 61-199020 and Japanese Patent Laid-Open No. 2-156).
No. 017), the temperature rise curve of the average temperature of the material is determined. Therefore, the average temperature can be controlled so as to satisfy the predetermined temperature upper limit regulation or temperature lower limit regulation. Almost no consideration is given to the constraint condition regarding the upper limit of the temperature of each part (the temperature of each part including the surface and the inside).

【0007】したがって従来技術において、このような
上限温度に関する制約条件を満たすためには、設定炉温
の上限値を、材料温度の上限値に等しくせざるをえな
い。このため、材料温度がその上限値よりかなり低い場
合でも、炉温が材料温度上限値以下に抑えられ、加熱炉
の生産性の低下を招く。材料温度制御のための調整対象
(操作量)が設定炉温ではなく燃料流量設定値である場
合は、たとえば上記特開平2−156017号公報に記
載のような、燃料流量変化と炉温変化との動的関係を表
わす炉温予測モデルを用いて、設定炉温上限値から燃料
流量設定値の上限値を求め、制御に用いればよいが、こ
の場合も上と同様に、加熱炉の生産性低下の問題があ
る。
Therefore, in the prior art, in order to satisfy such a constraint condition regarding the upper limit temperature, the upper limit value of the set furnace temperature must be equal to the upper limit value of the material temperature. Therefore, even if the material temperature is considerably lower than the upper limit value, the furnace temperature is suppressed to the material temperature upper limit value or less, and the productivity of the heating furnace is lowered. When the adjustment target (manipulation amount) for controlling the material temperature is not the set furnace temperature but the fuel flow rate set value, for example, the fuel flow rate change and the furnace temperature change as described in JP-A-2-156017. The upper limit of the fuel flow rate set value can be obtained from the set upper limit of the furnace temperature using the furnace temperature prediction model that represents the dynamic relationship of There is a problem of deterioration.

【0008】以上述べたように、従来の材料温度制御方
法においては、昇温途中における材料内最高温部の温度
や最低温部の温度などに関する制約条件については、何
も考慮されていない。
As described above, in the conventional material temperature control method, no consideration is given to the constraint conditions regarding the temperature of the highest temperature part and the lowest temperature part in the material during the temperature rise.

【0009】[0009]

【課題を解決する手段】本願の第1番の発明は、連続式
加熱炉の材料温度制御において、操作量が各燃焼帯(燃
料投入が可能な帯)の設定炉温であって、また制御周期
ごとに、プラント実績(各帯炉温、燃料流量などの観測
値)、および被加熱材料に関するデータ(材料の厚み、
幅、長さ、炉内の位置、材質、装入温度実績値など)か
ら各材料の材料内各部(表面および内部のすべてを含
む)の温度を推定計算する場合において、制御周期ごと
にまた各燃焼帯(燃料投入が可能な帯)別に、当該帯お
よびその近傍に位置する各被加熱材料jの中で、材料内
各部に対する上限温度TSUjの定められている材料に関
して、現時刻tにおける材料内最高温部温度TSMj(t)と
その時間的変化量とを用いて、TSMj(t)の所定時間Lだ
け将来の値TSMj(t+L)と、TSMj(t+L)の上限温度TSUj
からの差TSU-Mj(t+L)(=TSUj−TSMj(t+L))とを予
測し、しかるのちに各材料に関して、温度差TSU-Mj(t+
L)の最小値TSU-Mj1(t+L)を求め、該最小値TSU-Mj1(t+
L)に基づいて、炉の長手方向の炉温分布を考慮しなが
ら、現時刻tにおける当該帯の設定炉温の上限値を求
め、TSU-Mj1(t+L)の増加/減少に応じて、該上限値を
時々刻々増加/減少させることを特徴とする。
According to a first aspect of the present invention, in the material temperature control of a continuous heating furnace, the manipulated variable is a set furnace temperature of each combustion zone (zone in which fuel can be injected), and the control is performed. Plant performance (observed values of each zone temperature, fuel flow rate, etc.) and data on the material to be heated (material thickness,
Width, length, position in the furnace, material, actual charging temperature, etc.) When estimating and calculating the temperature of each part of the material (including the surface and inside) from each material, For each combustion zone (zone in which fuel can be injected), among the materials j to be heated located in the zone and in the vicinity thereof, regarding the material having the upper limit temperature T SUj for each part in the material, the material at the current time t internal maximum temperature portion temperature T SMj (t) and by using the temporal change amount, the predetermined time L only future values T SMj of T SMj (t) (t + L), T SMj (t + L) Upper limit temperature T SUj
The difference from T SU-Mj (t + L ) (= T SUj -T SMj (t + L)) and predicts, for each material after accordingly, the temperature difference T SU-Mj (t +
L) minimum value T SU-Mj1 (t + L) is calculated , and the minimum value T SU-Mj1 (t +
Based on L), the upper limit value of the set furnace temperature of the zone at the current time t is calculated while taking into consideration the furnace temperature distribution in the longitudinal direction of the furnace, and T SU-Mj1 (t + L) is increased / decreased. The upper limit value is increased / decreased every moment.

【0010】本願の第2番目の発明は、連続式加熱炉の
材料温度制御において、操作量が各燃焼帯(燃料投入が
可能な帯)の燃料流量設定値であって、また制御周期ご
とに、プラント実績(各帯炉温、燃料流量などの観測
値)、および被加熱材料に関するデータ(材料の厚み、
幅、長さ、炉内の位置、材質、装入温度実績値など)か
ら各材料の材料内各部の温度(表面および内部のすべて
を含む)を推定計算する場合において、現在以降の将来
の操作量(燃料流量等)の変化による各帯炉温の変化を
表わす炉温予測モデルを設け、制御周期ごとにまた各燃
焼帯(燃料投入が可能な帯)別に、当該帯およびその近
傍に位置する各被加熱材料jの中で、材料内各部に対す
る上限温度TSUjの定められている材料に関して、現時
刻tにおける材料内最高温部温度TSMj(t)とその時間的
変化量とを用いて、TSMj(t)の所定時間Lだけ将来の値
SMj(t+L)と、TSMj(t+L)の上限温度TSUjからの差T
SU-Mj(t+L)(=TS Uj−TSMj(t+L))とを予測し、しか
るのちに各材料に関して、温度差TSU-Mj(t+L)の最小値
SU-Mj1(t+L)を求め、該最小値TSU-Mj1(t+L)に基づい
て、炉の長手方向の炉温分布を考慮しながら、現時刻t
における当該帯の設定炉温の上限値を求め、TSU-Mj1(t
+L)の増加/減少に応じて、該上限値を増加/減少さ
せ、つぎに将来炉温が該上限値以下となるように、上記
炉温予測モデルを用いて、燃料流量の設定上限値を時々
刻々変化させることを特徴とする。
The second invention of the present application is that, in the material temperature control of the continuous heating furnace, the manipulated variable is the fuel flow rate set value in each combustion zone (zone in which fuel can be injected), and also in each control cycle. , Plant performance (observed values of each zone furnace temperature, fuel flow rate, etc.), and data on the material to be heated (material thickness,
In case of estimating and calculating the temperature (including the surface and inside) of each part of each material from the width, length, position in the furnace, material, actual charging temperature value, etc., future operation after the present A furnace temperature prediction model that represents changes in each zone furnace temperature due to changes in the amount (fuel flow rate, etc.) is provided, and it is located in the zone and its vicinity for each control cycle and for each combustion zone (zone in which fuel can be injected). Among the materials j to be heated, the maximum temperature T SMj (t) in the material at the current time t and its temporal change amount are used for the material having the upper limit temperature T SUj for each part in the material. , T SMj (t) of a future value T SMj (t + L) for a predetermined time L, and a difference T from the upper limit temperature T SUj of T SMj (t + L).
SU-Mj (t + L) (= T S Uj −T SMj (t + L)) is predicted, and then the minimum value T SU of the temperature difference T SU-Mj (t + L) is calculated for each material. -Mj1 (t + L) is calculated, and based on the minimum value T SU- Mj1 (t + L), the current time t is considered while considering the furnace temperature distribution in the longitudinal direction of the furnace.
Then, the upper limit of the set furnace temperature in the zone is calculated , and T SU-Mj1 (t
+ L) increase / decrease the upper limit value according to the increase / decrease, and then use the above-mentioned furnace temperature prediction model so that the future furnace temperature becomes equal to or lower than the upper limit value. It is characterized by changing every moment.

【0011】[0011]

【作用】本発明を用いれば、材料の最高温部温度の将来
値を予測しながら、炉温の上限値を時々刻々適切なタイ
ミングで変化させることができ、これにより、被加熱材
料各部分の温度は、定められた上限値以内につねに抑え
られ、必要な材質が確保されるとともに、炉温の上限値
が不必要に低く抑えられることはなく、加熱炉の生産性
は阻害されない。
According to the present invention, the upper limit value of the furnace temperature can be momentarily changed at an appropriate timing while predicting the future value of the maximum temperature of the material. The temperature is always kept within a predetermined upper limit value, necessary materials are secured, the upper limit value of the furnace temperature is not unnecessarily kept low, and the productivity of the heating furnace is not hindered.

【0012】[0012]

【実施例】図1は、本発明の原理を説明するフローチャ
ートであり、材料温度上限規制を満たすための、操作量
(設定炉温、または燃料流量)の上限値を、制御周期ご
とに計算する方法を表わしている。まず以下の説明にお
いて、iは帯の番号(抽出側よりi=1、2、・・
・)、jは材料の番号(装入順に番号を付ける;j=
1、2、・・・)、tは現在時刻(離散時間制御におけ
る制御周期を単位とし、t=1、2、・・・)をそれぞ
れ表わすものとする。また炉内の被加熱材料の材料内各
部の温度は、特開平2−156017号公報の(5)式に
記載のような、材料表面および内部の伝熱を表わす公知
のモデル式により、制御周期ごとに計算されるものとす
る。
FIG. 1 is a flow chart for explaining the principle of the present invention, in which an upper limit value of an operation amount (set furnace temperature or fuel flow rate) for satisfying a material temperature upper limit regulation is calculated for each control cycle. Represents a method. First, in the following description, i is a band number (i = 1, 2, ...
・) And j are material numbers (numbered in the order of loading; j =
, 1), and t represent current times (t = 1, 2, ..., With the control cycle in discrete time control as a unit). Further, the temperature of each part of the material to be heated in the furnace is controlled by a known model formula representing heat transfer on the surface of the material and inside, as described in formula (5) of JP-A-2-156017. Shall be calculated for each.

【0013】図1の処理の目的は、各燃焼帯別に、材料
内各部の温度に関してその上限値が満たされるように、
材料温度制御における操作量の上限値を求めることであ
る。このとき各帯で考慮対象とする材料は、図2に示す
ように、当該帯に加えて、その両側の隣接帯を所定距離
だけ含んだ範囲に存在する材料とする。各帯の抽出口や
装入口近くの炉温には、隣接帯の操作量も大きく影響す
るため、このように範囲を定めた。図1の最初の処理で
は、帯iにおいて考慮対象とする被加熱材料の中で、上
限温度が定められている各材料jに関して、材料内最高
温部温度TSMj(t)[°C]の所定時間Lだけ将来の値T
SMj(t+L)[°C]を、下式により予測する。
The purpose of the process of FIG. 1 is to ensure that the upper limit of the temperature of each part in the material is satisfied for each combustion zone.
This is to obtain the upper limit value of the manipulated variable in the material temperature control. At this time, as a material to be considered in each band, as shown in FIG. 2, in addition to the band, a material existing in a range including adjacent bands on both sides thereof by a predetermined distance is used. The furnace temperature near the extraction port and charging port of each zone is greatly influenced by the operation amount of the adjacent zone, so the range was set in this way. In the first process of FIG. 1, among the materials to be heated to be considered in the zone i, the maximum internal temperature T SMj (t) [° C] of each material j whose upper limit temperature is determined is Future value T for a predetermined time L
SMj (t + L) [° C] is predicted by the following formula.

【0014】[0014]

【数1】 [Equation 1]

【0015】ただし、 L:正整数(L=1、2、・・・)、制御周期単位 aM:正定数 [無次元];0<aM<1 であり、 通常、0.9などの、1に近い値に定める。However, L is a positive integer (L = 1, 2, ...), control cycle unit a M : positive constant [dimensionless]; 0 <a M <1, and usually 1 such as 0.9 Set to a value close to.

【0016】つぎに各材料jに関して、TSMj(t+L)とそ
の材料に対する上限温度TSUj[°C]との差TSU-Mj(t+
L)(=TSUj−TSMj(t+L))[°C]が最も小さい材料j
1を見いだす。材料j1を以後、第i帯の温度上限規制
材料と呼ぶ。
Next, for each material j, the difference T SU-Mj (t +) between T SMj (t + L) and the upper limit temperature T SUj [° C] for that material.
L) (= T SUj −T SMj (t + L)) [° C] is the smallest material j
Find one. The material j1 is hereinafter referred to as an i-th band temperature upper limit regulating material.

【0017】つぎに材料j1の最高温部温度予測値T
SMj1(t+L)[°C]の値を用いて、時刻(t+L)における、材
料j1の将来位置での炉温の上限値TFU,j1(t+L)[°C]
を、下式により求める。
Next, the predicted maximum temperature value T of the material j1
Using the value of SMj1 (t + L) [° C], the upper limit value T FU , j1 (t + L) [° C] of the furnace temperature at the future position of the material j1 at the time (t + L)
Is calculated by the following formula.

【0018】 TFU,j1(t+L)=TSUj1+aTFi・TSU-Mj1(t+L) [°C] ・・・(2) ここで、 TSU-Mj1(t+L)=TSUj1−TSMj1(t+L) [°C] ・・・(3) ただし、 TSU-Mj1(t+L):材料j1の最高温部温度の、上限値か
らの温度差予測値[°C] aTFi:炉温上限変化係数(帯別の正の定数)[無次元] TSU-Mj1(t+L)[°C]の正負の符号に応じて値を変化さ
せ、符号が負の場合は正の場合より値を小さくする。
T FU , j1 (t + L) = T SUj1 + a TFi · T SU- Mj1 (t + L) [° C] (2) Here, T SU-Mj1 (t + L) = T SUj1 −T SMj1 (t + L) [° C] (3) where T SU-Mj1 (t + L): Predicted temperature difference from the upper limit of the maximum temperature of the material j1 [ ° C] a TFi : Upper temperature change coefficient of furnace temperature (positive constant for each zone) [Dimensionless] T SU-Mj1 (t + L) [° C] If it is negative, the value will be smaller than if it is positive.

【0019】(温度差予測値TSU-Mj1(t+L)[°C]の値
の符号変化による、炉温上限値の変動、すなわち炉温変
動の防止のため。)図3は、将来炉温の上限値TFU,
j1(t+L)[°C]の算出過程における、各変数間の関係を
表わす。上の(2)式において炉温の上限値をLだけ将来
の値として求める理由は、操作量(設定炉温または燃料
流量設定値)変化が実績炉温の変化として現れるまでの
間の、時間遅れを考慮して、早めに操作量削減などのア
クションをとるためである。もしLが不適当に小さい値
のときは、操作量と実績炉温間のこの時間遅れにより、
炉温が一時的に上限値を超える可能性が生じる。Lの値
は、この時間遅れに等しいか少し大きめの値とすれば良
い。
(To prevent the fluctuation of the furnace temperature upper limit value, that is, the fluctuation of the furnace temperature due to the sign change of the predicted temperature difference value T SU-Mj1 (t + L) [° C].) FIG. Upper limit of furnace temperature T FU ,
In the calculation process of j1 (t + L) [° C], it represents the relationship between the variables. The reason why the upper limit of the furnace temperature is calculated as a future value by L in the above equation (2) is that the time until the change in the manipulated variable (set furnace temperature or fuel flow rate set value) appears as a change in the actual furnace temperature. This is to take an action such as reducing the operation amount early in consideration of the delay. If L is an inappropriately small value, this time delay between the manipulated variable and the actual furnace temperature causes
The furnace temperature may temporarily exceed the upper limit. The value of L may be equal to or slightly larger than this time delay.

【0020】(2)式の処理により、材料j1の最高温部
温度の上限温度からの温度差予測値TSU-Mj1(t+L)[°
C]が、大きな正の値の場合は、炉温上限値TFU,j1(t+
L)[°C]の値は材料温度の上限値TSUj1[°C]より大幅
に高い値となり、加熱炉の生産性を阻害しない。一方、
SU-Mj1(t+L)[°C]が減少して0に近づくにつれて、
炉温上限値TFU,j1(t+L)[°C]の値はTSUj1[°C]に近
づくことにより、材料温度上限規制が満たされる。
By the processing of the equation (2), the predicted temperature difference value T SU-Mj1 (t + L) [° from the upper limit temperature of the maximum temperature of the material j1 is obtained.
C] is a large positive value, the furnace temperature upper limit value T FU , j1 (t +
The value of L) [° C] is significantly higher than the upper limit value T SUj1 [° C] of the material temperature and does not hinder the productivity of the heating furnace. on the other hand,
As T SU-Mj1 (t + L) [° C] decreases and approaches 0,
When the value of the furnace temperature upper limit value T FU , j1 (t + L) [° C] approaches T SUj1 [° C], the material temperature upper limit regulation is satisfied.

【0021】つぎに第i帯設定炉温の上限値TFUi(t)
[°C]を求める。ここで加熱炉内の実績炉温に関して
は、図5に示すように、炉の長手方向(材料の進行方
向)に温度分布が存在する。このとき各帯の設定炉温と
は、通常、帯の中央付近の所定位置の炉温(以後、帯の
代表炉温と呼ぶ)に対する設定値を意味する。したがっ
て、上述の上限値TFUi(t)[°C]は、第i帯代表炉温の
上限値であり、次式で計算される。
Next, the upper limit value of the i-th zone set furnace temperature T FUi (t)
Calculate [° C]. Here, regarding the actual furnace temperature in the heating furnace, as shown in FIG. 5, there is a temperature distribution in the longitudinal direction of the furnace (the traveling direction of the material). At this time, the set furnace temperature of each zone usually means a set value for the furnace temperature at a predetermined position near the center of the zone (hereinafter, referred to as a representative furnace temperature of the zone). Therefore, the above-mentioned upper limit value T FUi (t) [° C] is the upper limit value of the i-th zone representative furnace temperature and is calculated by the following equation.

【0022】 TFUi(t)=TFUj1(t+L)+TFi(t)−TFj1(t/t+L) [°C] ・・・(4) ここで、 TFi(・):第i帯代表炉温(実績値または予測値) [°
C] TFj1(t/t+L):時刻(t+L)での材料j1の予想位置にお
ける炉温の、現時刻tにおける実績値 [°C] 材料温度制御において、設定炉温を操作量とする場合
は、(4)式で計算された炉温上限値TFUi(t)[°C]を超
えないように、時刻tにおける第i帯の設定炉温T
FSi(t)[°C]を定める。このとき燃料流量設定値は、材
料温度制御系のマイナーループである炉温制御系におけ
る操作量であり、炉温が設定値に等しくなるように、た
とえば普遍的で公知のPID(比例+積分+微分)制御
則により定められる。一方、特開平2−156017号
公報に記載の方法のように、燃料流量設定値を操作量と
する場合は、次式のような、公知の炉温予測モデルを用
いる。
[0022] T FUi (t) = T FU , j1 (t + L) + T Fi (t) -T F, j1 (t / t + L) [° C] ··· (4) where, T Fi (・): I-th zone representative reactor temperature (actual value or predicted value) [°
C] T F , j1 (t / t + L): Actual value of the furnace temperature at the predicted position of material j1 at time (t + L) at the current time t [° C] In the material temperature control, the set furnace temperature is set. When the manipulated variable is set as the manipulated variable , the set furnace temperature T of the i-th zone at the time t is set so as not to exceed the furnace temperature upper limit value T FUi (t) [° C] calculated by the equation (4).
Specify FSi (t) [° C]. At this time, the fuel flow rate set value is a manipulated variable in the furnace temperature control system, which is a minor loop of the material temperature control system. For example, a universal and well-known PID (proportional + integral + Derivative) Control law. On the other hand, when the fuel flow rate set value is used as the manipulated variable as in the method described in Japanese Patent Laid-Open No. 2-156017, a known furnace temperature prediction model such as the following equation is used.

【0023】[0023]

【数5】 [Equation 5]

【0024】ここで、 ΔTFi(τ-1)=TFi(τ)−TFi(τ-1) [°C](代表炉温変化量) ・・・(6a) ΔFi(τ-k)=Fi(τ-k)−Fi(τ-k-1) [Nm3/h](燃料流量変化量) ・・・(6b) ただし、τ:時刻(制御周期単位;τ=1、2、・・
・) TFi(・):第i帯代表炉温[実績値(τ≦t)または予
測値(τ>t)] [°C] Fi(・):第i帯燃料流量[実績値(τ≦t)または予測
値(τ>t)] [Nm3/h] aFi:[無次元]、cFk,i[°C・h/Nm3]:モデル係数 (実操業データより、最小2乗法などを用いて実験的に
値を定める) mF:0または正の整数、 制御周期単位 注)[Nm3/h]:1 hour 当たりの流量の、0°C換算時
の体積[m3]。
Here, ΔT Fi (τ-1) = T Fi (τ) −T Fi (τ-1) [° C] (representative furnace temperature change amount) (6a) ΔF i (τ-k) ) = F i (τ-k) −F i (τ-k-1) [Nm 3 / h] (fuel flow rate change amount) (6b) where τ: time (control cycle unit; τ = 1 2, ...
·) T Fi (·): i-th band representative furnace temperature Actual value (tau ≦ t) or predictive value (τ> t)] [° C] F i (·): i-th band fuel flow [Actual ( τ ≦ t) or predicted value (τ> t)] [Nm 3 / h] a Fi : [dimensionless], c Fk , i [° C · h / Nm 3 ]: model coefficient (from actual operation data, minimum Determine the value experimentally by using the square method, etc.) m F : 0 or a positive integer, control cycle unit Note) [Nm 3 / h]: Volume of flow rate per hour when converted to 0 ° C [m 3 ].

【0025】なお(5)式は、特開平2−156017号
公報に記載のモデル式である。(2)式により算出された
炉温上限値TFU,j1(t+L)[°C]が満たされるような、第
i帯燃料流量設定値の、現在値からの変化量上限値ΔF
Ui(t) [Nm3/h]を与える式は、(5)式より導かれ、下の
ように与えられる。
Equation (5) is a model equation described in Japanese Patent Laid-Open No. 2-156017. Upper limit value ΔF of variation in the i-th band fuel flow rate set value from the current value such that the furnace temperature upper limit value T FU , j1 (t + L) [° C] calculated by the equation (2) is satisfied
The equation that gives Ui (t) [Nm 3 / h] is derived from equation (5) and given as follows.

【0026】[0026]

【数7】 [Equation 7]

【0027】注)(5)式から(7)式を導出するには、(5)
式のτに、t+1、t+2、・・・、t+L を代入して得られる
L個 の式から、TFi(t+1)、TFi(t+2)、・・・、TFi
(t+L-1)の(L−1)個の変数を消去すればよい。これ
により導出された式は、(7)式において、TFU,j1(・),
Fj1(・)をいずれもTFi(・)に、またΔFUi(・)をΔF
i(・)に、形式的に置き換えた式である。
Note) To derive equation (7) from equation (5),
Obtained by substituting t + 1, t + 2, ..., t + L for τ in the equation
From L equations, T Fi (t + 1), T Fi (t + 2), ..., T Fi
It is sufficient to delete (L-1) variables of (t + L-1). The formula derived by this is the formula (7) in which T FU , j1 (.),
Both T F and j1 (・) are T Fi (・), and ΔF Ui (・) is ΔF
It is an expression that is formally replaced by i (•).

【0028】以上の処理により、現時刻tにおける第i
帯燃料流量設定値の上限値FUi(t)[Nm3/h]は、次式によ
り求められる。 FUi(t)=Fi(t)+ΔFUi(t) [Nm3/h] ・・・(8) 第i帯燃料流量設定値は、上限値FUi(t)[Nm3/h]を超え
ないように定める。このように操作量を燃料流量設定値
として、炉温変化モデルを用いて設定値を求める場合
は、操作量が設定炉温の場合より計算量は多いが、操作
量変更から炉温変化までの時間遅れは一般に小さく、よ
り速い制御が可能である。
Through the above processing, the i-th time at the current time t
The upper limit value F Ui (t) [Nm 3 / h] of the band fuel flow rate set value is obtained by the following equation. F Ui (t) = F i (t) + ΔF Ui (t) [Nm 3 / h] (8) The i-th zone fuel flow rate set value is the upper limit value F Ui (t) [Nm 3 / h] Not be exceeded. In this way, when the set value is obtained using the furnace temperature change model with the manipulated variable as the fuel flow rate set value, the calculated amount is larger than when the manipulated variable is the set furnace temperature, but The time delay is generally small and faster control is possible.

【0029】以上、本発明の材料温度上限規制方法によ
り計算された、材料温度制御における操作量の上限値
は、たとえば図6に示すような材料温度制御システムに
おいて用いられる。
The upper limit value of the manipulated variable in the material temperature control calculated by the material temperature upper limit regulating method of the present invention is used in the material temperature control system as shown in FIG. 6, for example.

【0030】次に、本発明の実施例として、材料温度の
上限値が1250[°C]、抽出目標温度が1230[°C]に定め
られている材料j1が、加熱炉に装入され、同時に材料
j1は、その前後の数本の材料よりも抽出目標温度が高
く、材料温度制御においてネック材料(上下面の単位面
積当たり必要な入熱量が最も大きい材料)であり、また
加熱炉には高負荷操業(燃料流量、炉温をできるだけ高
くした、高生産性操業)が要請されている場合について
説明する。このとき材料温度制御においては、材料j1
に関して、温度の上限値を守りながら、できるだけ早く
材料内平均温度を抽出目標温度まで昇温させることが必
要である。ここで、(1)〜(2)式におけるパラメータは以
下のように設定された。
Next, as an embodiment of the present invention, the material j1 having the upper limit of the material temperature of 1250 [° C] and the extraction target temperature of 1230 [° C] is charged into the heating furnace, At the same time, the material j1 has a higher extraction target temperature than the several materials before and after it, is a neck material in the material temperature control (the material that has the largest heat input required per unit area of the upper and lower surfaces), and has no heating furnace. A case where a high load operation (high productivity operation in which the fuel flow rate and the furnace temperature are as high as possible) is requested will be described. At this time, in the material temperature control, the material j1
Regarding the above, it is necessary to raise the average temperature in the material to the extraction target temperature as soon as possible while keeping the upper limit of the temperature. Here, the parameters in the equations (1) and (2) were set as follows.

【0031】制御周期:2[min]、 L=2(=4 [mi
n])、 aM=0.9、 aTFi =2.0 (TU-Mj1(t+L)>0 のとき) 0.8 (TU-Mj1(t+L)≦0 のとき) また、炉の設備上の制約条件から定められる炉温上限値
は、1340[°C]と定められている。制御上は、この値
と、本発明の処理により算出される炉温上限値との小さ
い方が、制御における実際の炉温上限値として用いられ
る。
Control cycle: 2 [min], L = 2 (= 4 [mi
n]), a M = 0.9, a TFi = 2.0 (when T U- Mj1 (t + L)> 0) 0.8 (when T U-Mj1 (t + L) ≦ 0) The upper limit of the furnace temperature, which is defined by the constraint condition of 1), is defined as 1340 [° C]. In terms of control, the smaller of this value and the furnace temperature upper limit value calculated by the process of the present invention is used as the actual furnace temperature upper limit value in control.

【0032】図4は、材料j1装入時刻を0としたとき
の各時刻t[min]における、材料j1の材料内平均温度
SAj1(t)[°C]、材料内最高温部温度(表面温度)T
SMj1(t)[°C]、材料j1の位置における炉温TF,j1(t)
[°C]、同位置における炉温の上限値TFU,j1(t)[°C]
の値を、tを横軸として表わしたグラフであり、材料温
度上限規制を含んだ材料温度制御の結果を表わす。グラ
フの実線は、本発明を用いた場合を示し、破線は、従来
技術の1つとして、炉温上限値を単に材料上限値に等し
くした場合を示す。ここで材料j1は、炉内をほぼ一定
の速度で、抽出側まで搬送された。
FIG. 4 shows the average material temperature T SAj1 (t) [° C] of the material j1 at each time t [min] when the charging time of the material j1 is 0, and the maximum internal temperature of the material ( Surface temperature) T
SMj1 (t) [° C], furnace temperature T F , j1 (t) at the position of material j1
[° C], upper limit of furnace temperature at the same position T FU , j1 (t) [° C]
Is a graph in which t is the horizontal axis, and shows the result of the material temperature control including the material temperature upper limit regulation. The solid line in the graph shows the case where the present invention is used, and the broken line shows the case where the furnace temperature upper limit value is simply made equal to the material upper limit value as one of the conventional techniques. Here, the material j1 was conveyed to the extraction side in the furnace at a substantially constant speed.

【0033】まず本発明における各温度の挙動を以下に
説明する。図からわかるようにj1の位置の炉温は、材
料j1が炉の装入口近くに存在するときは低いが、その
後急速に上昇し、時刻t1=30[min]において、j1に
対する上限温度の1250[°C]を超えている。ただしこの
ときは、j1の最高温部温度はまだ上限温度より150[°
C]以上低いため、材料温度上限規制のための炉温の上
限値は1500[°C]以上と、非常に高い。
First, the behavior of each temperature in the present invention will be described below. As can be seen from the figure, the furnace temperature at the position of j1 is low when the material j1 is present near the inlet of the furnace, but then rises rapidly, and at time t 1 = 30 [min], the upper limit temperature of j1 It exceeds 1250 [° C]. However, at this time, the maximum temperature of j1 is still 150 [°
Since it is lower than C], the upper limit of the furnace temperature for material temperature upper limit is 1500 [° C] or higher, which is very high.

【0034】しかしながらその後、j1の最高温部温度
がその上限温度に近づくとともに、炉温の上限値は急速
に減少し、時刻t2=60[min]以降は、材料j1位置の
炉温を抑えるように働いている。時刻t3=80[min]に
おいてj1の最高温部温度がその上限温度にほぼ一致す
るとともに、材料j1位置の炉温、およびその上限値も
j1の上限温度にほぼ等しくなっている。その後は、j
1の最高温部温度はほぼ一定で推移するとともに、j1
の平均温度はさらに上昇を続け、時刻t4=120[min]
において抽出目標温度に到達している。
However, thereafter, as the maximum temperature of j1 approaches the upper limit temperature, the upper limit value of the furnace temperature rapidly decreases, and after time t 2 = 60 [min], the furnace temperature at the material j1 position is suppressed. Is working like. At time t 3 = 80 [min], the maximum temperature of j1 substantially coincides with the upper limit temperature thereof, and the furnace temperature at the material j1 position and the upper limit thereof also become substantially equal to the upper limit temperature of j1. After that, j
The maximum temperature of 1 is almost constant and j1
Average temperature continues to rise at time t 4 = 120 [min]
Has reached the extraction target temperature.

【0035】一方従来技術の場合は、材料j1位置の炉
温の上限値はつねに、j1の最高温部温度に等しく設定
されるため、j1位置の炉温も、時刻t1以降はj1の
最高温部温度にほぼ等しい。このため従来技術において
は本発明に比べて、時刻t1からt3の間は炉温が不必要
に低く抑えられ、その結果材料の昇温は遅れ、時刻t4
=120[min]においても材料j1の材料内平均温度が
抽出目標温度に到達していない。すなわち従来技術にお
いては、材料温度上限規制を守ろうとすると、加熱炉の
生産性の低下を招く。
On the other hand, in the case of the prior art, the upper limit value of the furnace temperature at the material j1 position is always set equal to the maximum hot part temperature of j1. Therefore, the furnace temperature at the j1 position is also the maximum of j1 after time t 1. It is almost equal to the hot part temperature. For this reason, in the conventional technique, the furnace temperature is unnecessarily suppressed to a low temperature between time t 1 and time t 3 as compared with the present invention, and as a result, the temperature rise of the material is delayed, and time t 4
= 120 [min], the average material temperature of the material j1 has not reached the extraction target temperature. That is, in the prior art, if the material temperature upper limit regulation is attempted, the productivity of the heating furnace is reduced.

【0036】[0036]

【発明の効果】以上述べたように本発明によれば、材料
の最高温部温度の将来値を予測しながら、炉温の上限値
を時々刻々適切なタイミングで変化させることにより、
被加熱材料各部分の温度は、定められた上限値以内につ
ねに抑えられ、必要な材質が確保されるとともに、炉温
の上限値を不必要に低く抑えることはなく、加熱炉の生
産性は阻害されない。
As described above, according to the present invention, while predicting the future value of the maximum temperature of the material, the upper limit of the furnace temperature is changed from moment to moment at an appropriate timing.
The temperature of each part of the material to be heated is always kept within the specified upper limit, the necessary material is secured, and the upper limit of the furnace temperature is not kept unnecessarily low, and the productivity of the heating furnace is Not hindered.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理を表わすフローチャートであ
る。
FIG. 1 is a flowchart showing the principle of the present invention.

【図2】 本発明の一実施例での、各帯操作量上限値計
算における、計算対象材料の範囲を示すブロック図であ
る。
FIG. 2 is a block diagram showing a range of calculation target materials in calculation of the upper limit values of respective band operation amounts in the embodiment of the present invention.

【図3】 本発明の一実施例での、材料将来位置での炉
温上限値算出過程における、各変数間の関係を示すグラ
フである。
FIG. 3 is a graph showing the relationship between each variable in the process of calculating the furnace temperature upper limit value at the future position of the material in the embodiment of the present invention.

【図4】 本発明の一実施例における、材料温度と炉温
の時間的推移を示すグラフである。
FIG. 4 is a graph showing temporal changes in material temperature and furnace temperature in one example of the present invention.

【図5】 連続式加熱炉の長手方向断面と、長手方向温
度分布の関係を示すブロック図およびグラフである。
FIG. 5 is a block diagram and a graph showing a relationship between a longitudinal cross section of a continuous heating furnace and a longitudinal temperature distribution.

【図6】 従来例および本発明の材料温度制御方法を適
用する、連続式加熱炉の温度制御システムの機能を示す
ブロック図である。
FIG. 6 is a block diagram showing a function of a temperature control system of a continuous heating furnace to which a material temperature control method of a conventional example and the present invention is applied.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 制御周期ごとに連続式加熱炉の各帯炉温
ならびに被加熱材料の寸法,材質および装入温度実績値
等に基づき連続式加熱炉内被加熱材料それぞれの温度を
推定計算し、算出した値に基づいて連続式加熱炉の各燃
焼帯の炉温を調整する連続式加熱炉の材料温度制御にお
いて、 制御周期ごとにまた各燃焼帯別に、当該帯およびその近
傍に位置する各被加熱材料の中で、材料内各部に対する
上限温度TSUjの定められている材料jに関して、現時
刻tにおける材料内最高温部温度TSMj(t)とその時間的
変化量とを用いて、TSMj(t)の所定時間Lだけ将来の値
SMj(t+L)と、上限温度TSUjからのTSMj(t+L)の差T
SU-Mj(t+L)とを予測し、しかるのちに各材料に関して、
温度差TSU-Mj(t+L)の最小値TSU-Mj1(t+L)を求め、該
最小値TSU-Mj1(t+L)に基づいて、炉の長手方向の炉温
分布を考慮しながら、現時刻tにおける当該帯の炉温上
限値を算出し、各燃焼帯の炉温を該算出した炉温上限値
以下に調整することを特徴とする、連続式加熱炉の材料
温度制御方法。
1. The temperature of each material to be heated in the continuous heating furnace is estimated and calculated for each control cycle based on each zone furnace temperature of the continuous heating furnace and the dimension, material and actual charging temperature value of the material to be heated. , In the material temperature control of the continuous heating furnace that adjusts the furnace temperature of each combustion zone of the continuous heating furnace based on the calculated value, for each control cycle and for each combustion zone, Among the materials to be heated, with respect to the material j for which the upper limit temperature T SUj for each part in the material is defined, the maximum temperature in the material T SMj (t) at the current time t and its temporal change amount are used to calculate, the predetermined time L only future values T SMj of T SMj (t) (t + L), the difference between the T SMj from the upper limit temperature T SUj (t + L) T
Predict SU-Mj (t + L), and then for each material,
The minimum value T SU-Mj seeking (t + L) of the temperature difference T SU-Mj (t + L ), on the basis of the outermost minimum value T SU-Mj1 (t + L ), the longitudinal direction of the furnace temperature distribution of the furnace In consideration of the above, the furnace temperature upper limit value of the zone at the current time t is calculated, and the furnace temperature of each combustion zone is adjusted to be equal to or lower than the calculated furnace temperature upper limit value. Temperature control method.
【請求項2】 制御周期ごとに連続式加熱炉の各帯炉温
ならびに被加熱材料の寸法,材質および装入温度実績値
等に基づき連続式加熱炉内被加熱材料それぞれの温度を
推定計算し、算出した値に基づいて連続式加熱炉の各燃
焼帯の炉温を調整する連続式加熱炉の材料温度制御にお
いて、 現在以降の将来の燃料流量の変化による各帯炉温の変化
を表わす炉温予測モデルを設け、制御周期ごとにまた各
燃焼帯別に、当該帯およびその近傍に位置する各被加熱
材料の中で、材料内各部に対する上限温度TSUjの定め
られている材料jに関して、現時刻tにおける材料内最
高温部温度TSMj(t)とその時間的変化量とを用いて、T
SMj(t)の所定時間Lだけ将来の値TSMj(t+L)と、上限温
度TSUjからのTSMj(t+L)の差TSU-Mj(t+L)とを予測
し、しかるのちに各材料に関して、温度差TSU-Mj(t+L)
の最小値TSU-Mj1(t+L)を求め、該最小値TSU-Mj1(t+L)
に基づいて、炉の長手方向の炉温分布を考慮しながら、
現時刻tにおける当該帯の炉温の上限値を求め、将来炉
温が該上限値以下となるように、上記炉温予測モデルを
用いて、燃料流量の上限値を算出し、各燃焼帯の燃料流
量を該算出した上限値以下に調整することを特徴とす
る、連続式加熱炉の材料温度制御方法。
2. The temperature of each material to be heated in the continuous heating furnace is estimated and calculated for each control cycle based on the temperature of each zone of the continuous heating furnace and the dimension, material and charging temperature actual value of the material to be heated. In the material temperature control of the continuous heating furnace that adjusts the furnace temperature of each combustion zone of the continuous heating furnace based on the calculated value, the furnace that shows the change in each zone furnace temperature due to the future change in the fuel flow rate after the present A temperature prediction model is provided, and for each control cycle and for each combustion zone, among the materials to be heated located in the zone and in the vicinity thereof, regarding the material j for which the upper limit temperature T SUj for each part in the material is defined, Using the maximum temperature T SMj (t) in the material at time t and its temporal variation, T
Predict a future value T SMj (t + L) of SMj (t) for a predetermined time L and a difference T SU-Mj (t + L) of T SMj (t + L) from the upper limit temperature T SUj , Then, for each material, the temperature difference T SU-Mj (t + L)
Of the minimum value T SU-Mj1 (t + L), and the minimum value T SU -Mj1 (t + L)
Based on, considering the furnace temperature distribution in the longitudinal direction of the furnace,
An upper limit value of the furnace temperature of the zone at the present time t is obtained, and the upper limit value of the fuel flow rate is calculated using the furnace temperature prediction model so that the future furnace temperature becomes equal to or lower than the upper limit value, and the upper limit value of each combustion zone is calculated. A method for controlling a material temperature of a continuous heating furnace, comprising adjusting a fuel flow rate to be equal to or less than the calculated upper limit value.
JP3967693A 1993-03-01 1993-03-01 Method for controlling temperature of material in continuous type heating furnace Withdrawn JPH06248362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3967693A JPH06248362A (en) 1993-03-01 1993-03-01 Method for controlling temperature of material in continuous type heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3967693A JPH06248362A (en) 1993-03-01 1993-03-01 Method for controlling temperature of material in continuous type heating furnace

Publications (1)

Publication Number Publication Date
JPH06248362A true JPH06248362A (en) 1994-09-06

Family

ID=12559707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3967693A Withdrawn JPH06248362A (en) 1993-03-01 1993-03-01 Method for controlling temperature of material in continuous type heating furnace

Country Status (1)

Country Link
JP (1) JPH06248362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275631A (en) * 2009-04-22 2010-12-09 Nippon Steel Corp Heat treatment method for thick steel plate in direct fired roller-hearth type continuous heat treatment furnace and radiant-tube roller-hearth type continuous heat treatment furnace
JP2012026011A (en) * 2010-07-26 2012-02-09 Nippon Steel Corp Method for determining furnace temperature of continuous heat treating furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275631A (en) * 2009-04-22 2010-12-09 Nippon Steel Corp Heat treatment method for thick steel plate in direct fired roller-hearth type continuous heat treatment furnace and radiant-tube roller-hearth type continuous heat treatment furnace
JP2012026011A (en) * 2010-07-26 2012-02-09 Nippon Steel Corp Method for determining furnace temperature of continuous heat treating furnace

Similar Documents

Publication Publication Date Title
US4255133A (en) Method for controlling furnace temperature of multi-zone heating furnace
JP4362282B2 (en) Heat treatment apparatus and temperature control method used therefor
JPH06248362A (en) Method for controlling temperature of material in continuous type heating furnace
JPH02166235A (en) Method for controlling sheet temperature in metallic sheet heating furnace
JP2809925B2 (en) Sheet temperature control method for continuous annealing furnace
JPS6051535B2 (en) Optimal control device for billet heating furnace
JPS5913575B2 (en) Control method for heating furnace for steel ingots
JPH0248196B2 (en) KOOKUSURONOHIOTOSHIJIKANSEIGYOHOHO
JPH10206038A (en) Furnace heating control method using fuzzy logic
JP2581832B2 (en) Temperature control method for continuous heating furnace
JP3297741B2 (en) Furnace temperature control method for continuous heating furnace
JPH0791590B2 (en) Velocity changing method in plate temperature control of continuous annealing furnace
TWI817819B (en) Method and computer program product for controlling hot blast stove
JPH0472022A (en) Method and device for controlling strip temperature in continuous annealing furnace
JP3796808B2 (en) Combustion control method and apparatus for continuous heating furnace
JPH059590A (en) Strip temperature control method for continuous heat annealing furnace
JP3982042B2 (en) Combustion control method for continuous heating furnace
JPH08311567A (en) Device for controlling temperature in heating furnace
JPH05255762A (en) Method for controlling furnace temperature of continuous heating furnace
JPH0510414B2 (en)
JPH06248330A (en) Method for controlling combustion in heating furnace
JPH05230526A (en) Temperature control method for continuous heating furnace
JPH05186836A (en) Method for controlling strip temperature in continuous heat treatment furnace for metallic strip
JPH07138658A (en) Device for controlling dew point in continuous heat treatment furnace
JPH05255759A (en) Method for controlling strip temperature in radiant tube type continuous heat treatment furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509