JPH0472022A - Method and device for controlling strip temperature in continuous annealing furnace - Google Patents
Method and device for controlling strip temperature in continuous annealing furnaceInfo
- Publication number
- JPH0472022A JPH0472022A JP18464590A JP18464590A JPH0472022A JP H0472022 A JPH0472022 A JP H0472022A JP 18464590 A JP18464590 A JP 18464590A JP 18464590 A JP18464590 A JP 18464590A JP H0472022 A JPH0472022 A JP H0472022A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- furnace
- strip
- plate temperature
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000000137 annealing Methods 0.000 title claims abstract description 25
- 239000000446 fuel Substances 0.000 claims abstract description 68
- 238000010438 heat treatment Methods 0.000 claims abstract description 57
- 238000011156 evaluation Methods 0.000 claims abstract description 17
- 230000008859 change Effects 0.000 claims description 33
- 229910000831 Steel Inorganic materials 0.000 abstract description 10
- 239000010959 steel Substances 0.000 abstract description 10
- 238000009749 continuous casting Methods 0.000 abstract 1
- 238000004364 calculation method Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000005070 sampling Methods 0.000 description 9
- 238000013459 approach Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 101000795631 Homo sapiens Pre-rRNA-processing protein TSR2 homolog Proteins 0.000 description 1
- 102100031557 Pre-rRNA-processing protein TSR2 homolog Human genes 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Control Of Heat Treatment Processes (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、板厚、板幅あるいは加熱炉出口温度基準の異
なるストリップを加熱炉に連続的に通板して連続焼鈍を
行う連続焼鈍炉の板温制御方法および装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a continuous annealing furnace in which strips having different thicknesses, widths, or heating furnace outlet temperatures are continuously passed through a heating furnace for continuous annealing. The present invention relates to a plate temperature control method and device.
尚、−船釣に連続焼鈍炉には冷間圧延された鋼板を加熱
するための加熱炉、加熱炉がら出た鋼板を所定温度に保
持する均熱炉、次いで鋼板を冷却する冷却炉等の各炉が
鋼板の輸送路に沿って並設され1つの連続した焼鈍処理
ラインを構成するが、本発明で制御の対象としている板
温は上記加熱炉出口での板温であり、従って、本文にお
いて板温あるいは炉温と表現しであるのは正確には加熱
炉出口での板温あるいは加熱炉の炉内温度を意味するも
のである。In addition, - Continuous annealing furnaces for boat fishing include a heating furnace for heating cold-rolled steel sheets, a soaking furnace for maintaining the steel sheets coming out of the heating furnace at a predetermined temperature, and a cooling furnace for cooling the steel sheets. The furnaces are arranged in parallel along the transport path of the steel sheet and constitute one continuous annealing treatment line, but the sheet temperature that is the object of control in the present invention is the sheet temperature at the outlet of the heating furnace, and therefore, the main text In the above, the term "plate temperature" or "furnace temperature" refers to the plate temperature at the outlet of the heating furnace or the temperature inside the heating furnace.
[従来の技術]
連続焼鈍炉の板温制御方法や装置に関する従来の技術で
は、セット暫時に適当なタイミングで操作量(燃料流量
、設定炉温、中央ライン速度など)を変更するプリセッ
ト的なもの(特開昭61−113728.62−146
225など)や、時々刻々板温を推定あるいは予測して
操作量(燃料流量、設定炉温、中央ライン速度など)を
変更するサンプリング制御的なもの(特開昭61−19
0026.63−307223など)、あるいは加熱炉
を構成する加熱帯(ゾーン)の燃料負荷配分や操作量設
定タイミングを工夫して加熱7炉出口板温を制御するゾ
ーン負荷調整的なもの(特開昭62−222030.6
1−30629など)がある。[Conventional technology] Conventional technology related to plate temperature control methods and devices for continuous annealing furnaces is a preset method in which manipulated variables (fuel flow rate, set furnace temperature, center line speed, etc.) are changed at an appropriate timing during the set period. (Unexamined Japanese Patent Publication No. 61-113728.62-146
225, etc.), and sampling control that estimates or predicts the plate temperature every moment and changes the manipulated variables (fuel flow rate, set furnace temperature, center line speed, etc.) (Japanese Patent Laid-Open No. 61-19
0026.63-307223, etc.), or a zone load adjustment method that controls the plate temperature at the outlet of the heating 7 furnace by devising the fuel load distribution and operation variable setting timing of the heating zone (zone) that constitutes the heating furnace (Japanese Patent Application Laid-Open No. Showa 62-222030.6
1-30629 etc.).
[発明が解決しようとする課題] 前節であげた従来技術の課題について以下に述べる。[Problem to be solved by the invention] The problems with the conventional technology mentioned in the previous section will be described below.
まず、プリセット的な制御方法では操作量はプリセット
計算によって求めた値に従って設定されるに過ぎずセッ
ト替終了まではフィードバック制御を行うことはできな
い。すなわち操作量が一旦プリセット計算により設定さ
れたら、その間にプリセットモデル自体の誤差あるいは
板厚、速度などの外乱による制御誤差を生じてもその修
正はできず、板温はセット替終了まで制御誤差を生じた
ままで推移するだけである。従って、例えば何らかの原
因で板温が変化した場合であっても操作量が変更できず
その結果ストリップにヒートバックルなどの欠陥が発生
し、連続焼鈍炉の操業トラブルを引き起こすこともあっ
た。First, in the preset control method, the manipulated variable is only set according to the value obtained by preset calculation, and feedback control cannot be performed until the set change is completed. In other words, once the manipulated variable is set by preset calculation, even if a control error occurs due to an error in the preset model itself or disturbances such as plate thickness or speed, it cannot be corrected, and the plate temperature will not be corrected until the set change is completed. It simply continues as it occurs. Therefore, even if, for example, the plate temperature changes for some reason, the operation amount cannot be changed, resulting in defects such as heat buckles in the strip, which may cause operational troubles in the continuous annealing furnace.
次にサンプリング制御的な制御方法では上記に述べたプ
リセット的な制御方法の課題は解決されるが、所定のサ
ンプリング周期で時々刻々操作量を求める計算において
将来の板温予測値は1つの点のみであるので、目標板温
軌道の計算が複雑となる霞点がある。Next, the sampling control method solves the problem of the preset control method mentioned above, but in the calculation to obtain the manipulated variable from moment to moment in a predetermined sampling period, the future plate temperature prediction value is only calculated at one point. Therefore, there is a haze point where calculation of the target plate temperature trajectory becomes complicated.
加えてプリセット的な制御・方法およびサンプリング制
御的な制御方法の両者に共通している課題として中央ラ
イン速度を操作量として採用している例が多いことがあ
げられ、これは現実的には問題が多い。なぜなら、加熱
炉の能力のみにより中央ライン速度設定値を決定してい
るが、実際には中央ライン速度は加熱炉などの炉の能力
のみならずライン入側や出側のストリップ通板状況やそ
の他線々な事象により左右されるため、速度変更による
板温推移の予測は実際の板温とは一致しなくなり、制御
精度が低下するためである。すなわち。In addition, a common problem with both preset control methods and sampling control methods is that there are many cases in which the center line speed is used as the manipulated variable, which is a problem in reality. There are many. This is because the center line speed setting value is determined only by the heating furnace capacity, but in reality the center line speed is determined not only by the capacity of the heating furnace but also by the strip threading conditions at the line entrance and exit. This is because predictions of plate temperature changes due to speed changes will no longer match the actual plate temperature, resulting in a decrease in control accuracy, as it is influenced by linear events. Namely.
入側から出側までのライン操業状況が非常に安定してい
る時は中央ライン速度設定は有効であるが、実際には操
業状況の変化によりライン速度は別の要因で変動するこ
とが多いため、板温制御の操作端として速度設定は適切
であるとは言えない。Center line speed setting is effective when the line operating conditions from the inlet side to the outlet side are very stable, but in reality, line speeds often fluctuate due to other factors due to changes in operating conditions. , speed setting cannot be said to be appropriate as an operating end for plate temperature control.
最後に、プリセット的な制御方法、サンプリング制御的
な制御方法、ゾーン負荷調整的な制御方法すへでに共通
ずる課題について述べると、まず第1に加熱炉を構成す
るゾーンの燃料流量の負荷バランスや個々のゾーンの特
性/能力などによりあるゾーンの炉温か高くなり、ヒー
ター(−射的にはラジアントチューブ)の寿命低下や最
悪の場合溶損などの設備破壊を招く虞があることである
。Finally, I would like to talk about the problems that are common to preset control methods, sampling control control methods, and zone load adjustment control methods.First of all, the fuel flow rate load balance of the zones that make up the heating furnace The furnace temperature in a certain zone may become high depending on the characteristics/capabilities of the individual zones, etc., which may shorten the life of the heater (radiant tube in radiation terms) or, in the worst case, cause equipment damage such as melting.
但し、制御の操作量としてゾーン毎の炉温を設定する場
合はこの限りではないが、平均炉温や燃料流量を設定す
る方式においては重大な課題といえる。従来この課題に
ついてはゾーン毎の燃料流量の負荷配分に工夫を加えて
解決を図っていたり、炉温か上限に近づくと燃料流量を
低下させるなどの工夫を行っている例が多いが、炉温は
板温と同様にむだ時間や時定数などの遅れを持つ特性で
あり、これまでの炉温の動的な特性を考慮していない対
策では充分とは言えない。第2には例えば特開昭61−
190026で代表されるように、制御モデル式のパラ
メータの逐次同定や適応修正を行うことにより制御精度
向上を図る制御方法があるが、従来方法はストリップの
加熱炉出口温度基準レベル(ヒートサイクル)やストリ
ップの一種区分を考慮していないため、プロダクトミッ
クス(一種などによるストリップの生産量比率)によっ
ては、通板量の多いヒートサイクルや一種にモデル式の
パラメータが偏るため、通板量の少ないヒートサイクル
や一種に対しては充分なパラメータ推定精度が得られず
、制御精度が悪化するということである。However, this is not the case when the furnace temperature for each zone is set as the manipulated variable for control, but it can be said to be a serious problem in a method that sets the average furnace temperature or fuel flow rate. Conventionally, this problem has often been solved by adding some ingenuity to the fuel flow load distribution for each zone, or reducing the fuel flow rate when the furnace temperature approaches the upper limit. Like plate temperature, this characteristic has delays such as dead time and time constant, and conventional measures that do not take into account the dynamic characteristics of furnace temperature cannot be said to be sufficient. Second, for example, JP-A-61-
190026, there is a control method that aims to improve control accuracy by sequentially identifying and adaptively modifying the parameters of the control model equation, but conventional methods are based on the temperature reference level (heat cycle) at the outlet of the strip heating furnace. Because the type of strip classification is not taken into account, depending on the product mix (ratio of strip production by type), the parameters of the model equation may be biased toward heat cycles with a large amount of sheet passing, and heat cycles with a small amount of sheet passing. This means that sufficient parameter estimation accuracy cannot be obtained for cycles or types, and control accuracy deteriorates.
本発明は以上に述べてきた従来の課題を解決すべく考案
されたものであり、セット替あるいは中央ライン速度の
変更時かつ/またはコイル内一定周期にて燃料流量を操
作して加熱炉の板温を制御すると共にゾーン毎の炉温の
上限外れを防止し、かつ通板量の少ないヒートサイクル
や一種に対しても制御精度が良好な加熱炉の板温制御方
法および装置を提案するものである。The present invention has been devised to solve the conventional problems described above, and it is possible to control the heating furnace plate by controlling the fuel flow rate when changing the set or changing the center line speed and/or at a constant cycle in the coil. This paper proposes a method and device for controlling the plate temperature of a heating furnace, which controls the temperature and prevents the furnace temperature from exceeding the upper limit for each zone, and which has good control accuracy even in heat cycles with a small number of plate threads or a type of heat cycle. be.
[課題を解決するための手段]
本発明の要旨は
1、板厚、板幅あるいは加熱炉出口温度基準の異なるス
トリップを加熱炉に連続的に通板して連続焼鈍を行う連
続焼鈍炉においてこれら板厚、板幅、加熱炉出口温度基
準(板温基準)の変更(セット替)あるいは中央ライン
速度の変更時かつ/またはコイル内一定周期にて操作量
として加熱炉の燃料流量を変更して加熱炉出口ストリッ
プ温度(板温)を制御する板温制御方法であって、現在
から将来にわたる板温を連続的に予測しかつ/または現
在から将来にわたる炉温を連続的に予測し、目標板温と
予測板温との偏差かっ/または目標炉温と予測炉温との
偏差および加熱炉の燃料流量の変動量による所定の評価
関数を最適化する燃料流量を算出し、板温を制御するこ
とを特徴とする連続焼鈍炉板温制御方法。[Means for Solving the Problems] The gist of the present invention is 1. In a continuous annealing furnace in which strips having different plate thicknesses, plate widths, or heating furnace exit temperature standards are continuously passed through a heating furnace to perform continuous annealing, When changing the plate thickness, plate width, heating furnace outlet temperature standard (plate temperature standard) (replacing the set), or changing the center line speed, and/or changing the fuel flow rate of the heating furnace as a manipulated variable at a constant cycle in the coil. A plate temperature control method for controlling the furnace outlet strip temperature (plate temperature), which continuously predicts the plate temperature from the present to the future and/or continuously predicts the furnace temperature from the present to the future, and The plate temperature is controlled by calculating the fuel flow rate that optimizes a predetermined evaluation function based on the deviation between the temperature and the predicted plate temperature and/or the deviation between the target furnace temperature and the predicted furnace temperature and the amount of variation in the fuel flow rate of the heating furnace. A continuous annealing furnace plate temperature control method characterized by:
2、燃料流量の設定値を求める際に所定の評価関数の目
標板温と予測板温との偏差の重みと目標炉温と予測炉温
との偏差の重みを実績の炉温の値により連続的に変更す
ることにより、板温かっ/または炉温を制御することを
特徴とする特許請求の範囲第1項に記載の連続焼鈍炉板
温制御方法。2. When determining the set value of the fuel flow rate, the weight of the deviation between the target plate temperature and the predicted plate temperature of the predetermined evaluation function and the weight of the deviation between the target furnace temperature and the predicted furnace temperature are continuously determined based on the value of the actual furnace temperature. The continuous annealing furnace plate temperature control method according to claim 1, characterized in that the plate temperature and/or the furnace temperature is controlled by changing the plate temperature.
3、ストリップの加熱炉出口温度基準レベル(ヒートサ
イクル)かっ/またはストリップの一種により、推定の
重みを変更して制御モデル中のパラメータを推定するこ
とを特徴とする特許請求の範囲第1項に記載の連続焼鈍
炉板温制御方法。3. Parameters in the control model are estimated by changing estimation weights depending on the heating furnace outlet temperature reference level (heat cycle) of the strip and/or a type of strip. The continuous annealing furnace plate temperature control method described.
4、板厚、板幅あるいは加熱炉出口温度基準の異なるス
トリップを加熱炉に連続的に通板して連続焼鈍を行う連
続焼鈍炉においてこれら板厚、板幅、加熱炉出口温度基
準(板温基準)の変更(セット替)あるいは中央ライン
速度の変更時かつ/またはコイル内一定周期にて現在か
ら将来にわたる板温を連続的に予測しかつ/または現在
から将来にわたる炉温を連続的に予測し、目標板温と予
測板温との偏差かつ/または目標炉温と予測炉温との偏
差および加熱炉の燃料流量の変動量による所定の評価関
数を最適化する燃料流量を算出し、加熱炉出口ストリッ
プ温度(板温)を制御する板温制御装置であって、スト
リップのセット賛意を検出するセット替検出器、ストリ
ップの通板速度を検出する速度検出器、加熱炉の温度を
検出する炉温検出器、並びに炉80におるストリップの
温度を検出する板温検出器を具備した検出器群と、
上記セット替検出器および速度検出器からの出力信号に
応じてストリップのセット替位置を絶えず追跡して現在
および将来の板厚、板幅、炉出口板温基準を決定するス
トリップトラッキング手段と。4. In a continuous annealing furnace where strips with different plate thicknesses, plate widths, or heating furnace outlet temperature standards are continuously passed through the heating furnace for continuous annealing, these plate thicknesses, plate widths, and heating furnace outlet temperature standards (plate temperature Continuously predicts the plate temperature from the present to the future when changing the standard (standard) or changing the center line speed and/or at a constant cycle within the coil, and/or continuously predicts the furnace temperature from the present to the future. The heating A plate temperature control device that controls the furnace exit strip temperature (plate temperature), which includes a set change detector that detects whether the strip is set, a speed detector that detects the strip passing speed, and a temperature of the heating furnace. A detector group comprising a furnace temperature detector and a plate temperature detector for detecting the temperature of the strip in the furnace 80, and a set change position of the strip according to output signals from the set change detector and speed detector. Strip tracking means to constantly track and determine current and future thickness, width and furnace exit temperature standards.
所定の通板スケジュールに基づいてストリップの仕様(
板厚、板幅、炉出口板温基準)を予め指定するストリッ
プ仕様設定手段と。Strip specifications (
strip specification setting means for specifying the strip thickness, strip width, and furnace exit strip temperature standards) in advance;
目標板温と予測板温との偏差かつ/または目標炉温と予
測炉温との偏差および燃料流量の変動量による評価関数
を最適化する燃料流量を算出して板温を制御する板温制
御手段と、
該板温制御手段からの出力信号に基づき燃料流量を制御
する燃料流量制御手段と、
板温および炉温の予測モデルのパラメータ推定手段、
を有する連続焼鈍炉板温制御装置、にある。Plate temperature control that controls the plate temperature by calculating the fuel flow rate that optimizes the evaluation function based on the deviation between the target plate temperature and the predicted plate temperature and/or the deviation between the target and predicted furnace temperature and the variation amount of the fuel flow rate. A continuous annealing furnace plate temperature control device comprising: a means for controlling a fuel flow rate based on an output signal from the plate temperature control means; and a means for estimating parameters of a prediction model for plate temperature and furnace temperature. .
即ち、本発明では前述した課題を解決するために、まず
、板温を炉温、燃料流量、板厚、板幅、中央ライン速度
(以下中央速度と略す)から予測する公知の板温予測モ
デルを利用し、またゾーン毎の炉温(以下ゾーン炉温と
略す)を燃料流量、板厚、板幅、中央速度から予測する
ゾーン炉温予測モデルを設ける。本モデルにより、現在
から将来にわたる板温およびゾーン炉温を連続的に予測
することができる。そしてストリップのセット替位置は
常にトラッキングされると共に板温、ゾーン炉温、燃料
流量、板厚、板幅、中央速度の各実績値は所定の周期に
サンプリングされ、上記板温予測モデルおよびゾーン炉
温予測モデルに入力される。また、中央速度の値は常に
これを監視しある値以上の変化が発生した場合はただち
に板温、ゾーン炉温、燃料流量、板厚、板幅、中央速度
の各実績値を取込み板温予測モデルおよびゾーン炉温予
測モデルに入力される。このようにして所定の周期およ
び中央速度変化時にはただちに上記実績データを取り込
むことにより、常に現在から将来にわたる板温およびゾ
ーン炉温を連続的に予測することができる。That is, in order to solve the above-mentioned problems, the present invention first uses a known plate temperature prediction model that predicts plate temperature from furnace temperature, fuel flow rate, plate thickness, plate width, and center line speed (hereinafter abbreviated as center speed). We also provide a zone furnace temperature prediction model that predicts the furnace temperature for each zone (hereinafter referred to as zone furnace temperature) from the fuel flow rate, plate thickness, plate width, and center speed. This model allows continuous prediction of plate temperature and zone furnace temperature from the present to the future. The strip set change position is constantly tracked, and the actual values of strip temperature, zone furnace temperature, fuel flow rate, strip thickness, strip width, and center speed are sampled at predetermined intervals. input into the temperature prediction model. In addition, the value of the center speed is constantly monitored, and if a change exceeding a certain value occurs, the actual values of the sheet temperature, zone furnace temperature, fuel flow rate, sheet thickness, sheet width, and center speed are immediately taken in to predict the sheet temperature. model and zone furnace temperature prediction model. In this way, by immediately taking in the above-mentioned performance data at predetermined intervals and when the central speed changes, it is possible to constantly predict the plate temperature and zone furnace temperature from the present to the future.
次に目標板温と上記予測板温との偏差かつ/または目標
炉温と上記予測ゾーン炉温との偏差および加熱炉の燃料
流量の変動量を現在から将来にわたり連続的に評価する
評価関数を設定し、該評価関数を最適化する燃料流量を
算出し設定することにより板温を制御する。Next, an evaluation function is created that continuously evaluates the deviation between the target plate temperature and the predicted plate temperature and/or the deviation between the target furnace temperature and the predicted zone furnace temperature and the amount of fluctuation in the fuel flow rate of the heating furnace from now to the future. The plate temperature is controlled by calculating and setting a fuel flow rate that optimizes the evaluation function.
本発明によれば現在から将来にわたる目標板温と予測板
温かつ/または目標炉温と予測ゾーン炉温か自然に連続
的に制御計算に取り込まれ、かつ中央速度の変化が発生
した場合はただちに制御の修正計算を行うため、例えば
特開昭61−190026でみられるように将来の板温
予測値が1つの点のみでありかつ中央速度を操作量と規
定するために生ずる目標板温の計算の複雑さ(中央速度
変更タイミングの最適化、それに伴う目標板温軌道の時
々刻々の計算)は回避できる。本発明におけるセット替
近傍での目標板温の決定方法について第2図を使って述
べると、図中実線に示すように通常はセット替先行スト
リップの炉出口板温基準から後行ストリップの炉出口板
温基準へ単純にステップ的に変更すれば良いが、図中破
線に示すように前後のストリップの炉出口板温基準の差
が大きく板温の上下限外れや燃料流量の過大な変動が懸
念されるような場合は例えばストリップの材質の安全サ
イドを狙う意味から低温材から高温材へ移行する場合は
低温材の後端近傍から所定の変化率に従って徐々に高温
材の板温基準へ変更すれば良く逆に高温材から低温材へ
移行する場合は低温材の先端から所定の変化率に従って
徐々に低温材の板温基準へ変更すれば良い。また、先行
/後行ストリップの炉出口板温基準が同じであっても板
厚が大きく変化する場合は例えば図中点線に示すように
セット替点近傍で実績板温が変化するのに合せて安全サ
イドの目標板温の微調整を加えれば無用な燃料流量の変
動を防止することができる。このように1本発明によれ
ば比較的簡単に目標板温を設定することができ、かつ中
央速度の変化や板厚の変化などの条件変化に対しても良
好な制御を実現できる。According to the present invention, the target plate temperature and the predicted plate temperature and/or the target furnace temperature and the predicted zone furnace temperature from the present to the future are naturally and continuously incorporated into the control calculation, and when a change in the center speed occurs, the control is immediately performed. For example, as seen in Japanese Patent Laid-Open No. 61-190026, the calculation of the target plate temperature that occurs when the future plate temperature prediction value is only one point and the center speed is defined as the manipulated variable. Complexity (optimization of center speed change timing and associated moment-by-moment calculation of target plate temperature trajectory) can be avoided. The method for determining the target plate temperature near the set change in the present invention will be described using Fig. 2. As shown by the solid line in the figure, normally the plate temperature at the furnace outlet of the preceding strip is changed from the plate temperature at the furnace outlet of the trailing strip. It is sufficient to simply change the plate temperature standard in a stepwise manner, but as shown by the broken line in the figure, there is a large difference between the furnace exit plate temperature standards for the front and rear strips, and there are concerns that the plate temperature may be outside the upper and lower limits and the fuel flow rate may fluctuate excessively. For example, when transitioning from low-temperature material to high-temperature material in order to aim for the safety of the strip material, the plate temperature standard should be gradually changed to the high-temperature material starting near the rear end of the low-temperature material according to a predetermined rate of change. On the other hand, when transitioning from high-temperature material to low-temperature material, it is sufficient to gradually change the plate temperature standard to the low-temperature material according to a predetermined rate of change from the tip of the low-temperature material. In addition, even if the furnace outlet plate temperature standards for the leading and trailing strips are the same, if the plate thickness changes significantly, for example, as shown by the dotted line in the figure, the actual plate temperature changes near the set change point. By making fine adjustments to the target plate temperature on the safe side, unnecessary fluctuations in fuel flow rate can be prevented. As described above, according to the present invention, the target plate temperature can be set relatively easily, and good control can be realized even with changes in conditions such as changes in the center speed and changes in the plate thickness.
尚、評価関数の中で目標板温と予測板温との偏差と燃料
流量の変動量のみを考慮すれば(目標炉温と予測ゾーン
炉温との偏差の重みをゼロとする)、単純な板温制御と
なり、評価関数の中で目標炉温と予測ゾーン炉温との偏
差と燃料流量の変動量のみを考慮すれば(目標板温と予
測板温との偏差の重みをゼロとする)、単純な炉温制御
となるので、本発明によればこれら単純な板温制御や単
純な炉温制御も包含し、加えて燃料流量の変動制約を考
慮する必要のない加熱炉においては、燃料流量の変動量
の重みをゼロとすれば非常に応答性の良い板温制御や炉
温制御を実現することができる。In addition, if only the deviation between the target plate temperature and the predicted plate temperature and the amount of variation in fuel flow rate are considered in the evaluation function (the weight of the deviation between the target furnace temperature and the predicted zone furnace temperature is set to zero), a simple For plate temperature control, if only the deviation between the target furnace temperature and the predicted zone furnace temperature and the amount of variation in fuel flow rate are considered in the evaluation function (the weight of the deviation between the target plate temperature and the predicted plate temperature is set to zero) Since the furnace temperature control is simple, the present invention includes these simple plate temperature control and simple furnace temperature control. By setting the weight of the flow rate fluctuation to zero, it is possible to achieve very responsive plate temperature control and furnace temperature control.
また、第3図に示すように評価関数の中で目標炉温をゾ
ーン炉温の上限値より少し小さく設定し、かつ、目標板
温と予測板温との偏差の重みを実績のゾーン炉温か上限
に近づくにつれて次第に小さくし、逆に目標炉温と予測
ゾーン炉温との偏差の重みをゾーン炉温か上限に近づく
につれて次第に大きくすることにより実績のゾーン炉温
か上限を外れることを防止することができる。すなわち
、ゾーン炉温か上限に近づくにつれて次第に板温制御か
らゾーン炉温(上昇防止)制御に滑らかに移行するもの
である。尚、ゾーン炉温の予測について付記すれば、該
ゾーン炉温は個々のゾーン全てについて予測してもよい
し1個別の炉の特性に応してネックとなるゾーンについ
て予測してもよいし、あるいは各ゾーンの炉温の重み付
き平均(ネックとなるゾーンの重みを大きくとる)値に
ついて予測しても同様な制御が実行できる。この意味に
おいてこれからは簡単なため単に炉温と呼称する。In addition, as shown in Figure 3, the target furnace temperature in the evaluation function is set slightly smaller than the upper limit of the zone furnace temperature, and the weight of the deviation between the target plate temperature and the predicted plate temperature is set to the actual zone furnace temperature. By gradually decreasing the weight of the deviation between the target furnace temperature and the predicted zone furnace temperature as it approaches the upper limit, and conversely increasing the weight of the deviation between the target furnace temperature and the predicted zone furnace temperature as it approaches the upper limit of the zone furnace temperature, it is possible to prevent the actual zone furnace temperature from exceeding the upper limit. can. That is, as the zone furnace temperature approaches the upper limit, plate temperature control gradually transitions smoothly to zone furnace temperature (rise prevention) control. Additionally, regarding the prediction of zone furnace temperature, the zone furnace temperature may be predicted for all individual zones, or may be predicted for a zone that will be a bottleneck depending on the characteristics of each individual furnace, Alternatively, similar control can be performed by predicting the weighted average value of the furnace temperature in each zone (giving a larger weight to the zone that is the bottleneck). In this sense, it will be simply referred to as furnace temperature from now on for simplicity.
最後に板温予測モデルおよび炉温予測モデル内のパラメ
ータの適応修正を行うにあたっては、公知のパラメータ
推定方法例えば固定トレース法や指数的重み付き最小二
乗法あるいは忘却係数付き逐次型最小二乗法などを利用
すればよいが、板温予測モデルの場合は通板量の多いヒ
ートサイクルや一種にモデル式のパラメータが偏り1通
板量の少ないヒートサイクルや一種に対しては充分なノ
くラメータ推定精度が得られないことがあるので、これ
を防ぐためには通板量の少ないヒートサイクルや一種の
推定重みを大きくし逆に通板量の多いヒートサイクルや
一種の推定重みを小さくすれば良い。具体的な推定重み
の決定の仕方は例えば生産量に反比例する様に決定すれ
ば良い。Finally, when performing adaptive correction of the parameters in the plate temperature prediction model and furnace temperature prediction model, known parameter estimation methods such as the fixed trace method, exponentially weighted least squares method, or sequential least squares method with forgetting coefficient are used. However, in the case of a sheet temperature prediction model, the parameter estimation accuracy is sufficient for heat cycles with a large number of sheets to be passed through, or for heat cycles with a small amount of sheets to be passed, or for one type of heat cycle where the parameters of the model formula are biased toward one type. In order to prevent this, the heat cycle or type of estimation weight with a small amount of sheet passing should be increased, and conversely, the heat cycle or type of estimation weight with a large amount of sheet passing should be made small. A specific method for determining the estimated weight may be, for example, determined in inverse proportion to the production amount.
更にまた本発明によれば上述の如き制御方法を実施する
装置も提供される。本発明に係る制御装置は、ストリッ
プのセットリソを検出するセット替検出器、ストリップ
の通板速度を検出する速度検出器、加熱炉の温度を検出
する炉温検出器、並びに炉出口におけるストリップの温
度を検出する板温検出器を具備した検出器群と、上記セ
ット替検出器および速度検出器からの出力信号に応して
ストリップのセット替位置を絶えず追跡して現在および
将来の板厚、板幅、炉出口板温基準を決定するストリッ
プトラッキング手段と、所定の通板スケジュールに基づ
いてストリップの仕様(板厚、板幅、炉出口板温基準)
を予め指定するストリップ仕様設定手段と、この予見値
に基づき上記板温および炉温の予測モデルを用いて将来
の板温および炉温を連続的に予測し、所定の周期および
中央速度変化時にはただちに目標板温と予測板温との偏
差かつ/または目標炉温と予測炉温との偏差および燃料
流量の変動量を連続的に評価する評価関数を最適化する
燃料流量を算出して板温を制御する板温制御手段と、該
板温制御手段からの出力信号に基づき燃料流量を制御す
る燃料流量制御手段と、板温および炉温の予測モデルの
パラメータ推定手段を有する。Furthermore, the present invention also provides an apparatus for implementing the control method as described above. The control device according to the present invention includes a set change detector that detects the set litho of the strip, a speed detector that detects the strip passing speed, a furnace temperature detector that detects the temperature of the heating furnace, and a temperature of the strip at the furnace outlet. A group of detectors equipped with a plate temperature detector that detects the current and future plate thicknesses and strips are constantly tracked in response to output signals from the set change detector and speed detector. A strip tracking means that determines the width and furnace exit plate temperature standard, and strip specifications (thickness, plate width, furnace exit plate temperature standard) based on a predetermined strip running schedule.
A strip specification setting means that specifies the strip temperature in advance and the above-mentioned plate temperature and furnace temperature prediction model based on this predicted value are used to continuously predict the future plate temperature and furnace temperature, and immediately when the predetermined period and center speed change. Calculate the fuel flow rate to optimize the evaluation function that continuously evaluates the deviation between the target plate temperature and the predicted plate temperature and/or the deviation between the target furnace temperature and the predicted furnace temperature and the amount of variation in the fuel flow rate. It has a plate temperature control means for controlling, a fuel flow rate control means for controlling a fuel flow rate based on an output signal from the plate temperature control means, and a parameter estimating means for a predictive model of plate temperature and furnace temperature.
[実施例]
以下、図面を参照して本発明の好ましい実施例につき説
明する。[Embodiments] Preferred embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明に係る板温制御系の全体構成の一実施例
を示すブロック図であり、初にこれを参照して本発明の
詳細な説明する。FIG. 1 is a block diagram showing an embodiment of the overall configuration of a plate temperature control system according to the present invention, and the present invention will be described in detail with reference to this first.
同図に示す信号線のうち実線はデータの流れ、点線は検
出パルスまたは起動信号を示す。尚、本発明は実際はプ
ロセスコンピュータを用いて制御されるものであり第1
図はその内部を機能的に判り昌く示すものである。冷間
圧延されたストリップ100は、加熱炉102を通過中
はハースロール104により上下方向に多数回往復し、
その間にヒーター(一般にはラジアントチューブにより
構成、以下ではラジアントチューブと呼称する)106
により加熱される。加熱炉102を出たストリップ10
0は次の均熱炉(図示せず)に送られる。Among the signal lines shown in the figure, solid lines indicate data flow, and dotted lines indicate detection pulses or activation signals. Incidentally, the present invention is actually controlled using a process computer, and the first
The figure clearly shows the internal functions. While passing through the heating furnace 102, the cold-rolled strip 100 is reciprocated vertically many times by a hearth roll 104.
In the meantime, a heater (generally composed of a radiant tube, hereinafter referred to as a radiant tube) 106
heated by. Strip 10 exiting furnace 102
0 is sent to the next soaking furnace (not shown).
本発明の制御対象は炉出口におけるストリップ100の
温度(板温)であり、炉の燃料流量を操作することによ
り板温を目標板温に追従せしめるものである。ストリッ
プ100はラジアントチューブ106からの放射熱によ
り加熱されるので、ラジアントチューブ106の熱源と
して例えばコークス炉ガス(COG)の流量FLを操作
することにより板温を制御することができる。The object to be controlled in the present invention is the temperature (plate temperature) of the strip 100 at the furnace outlet, and the plate temperature is made to follow the target plate temperature by manipulating the fuel flow rate of the furnace. Since the strip 100 is heated by radiant heat from the radiant tube 106, the plate temperature can be controlled by controlling the flow rate FL of coke oven gas (COG) as the heat source of the radiant tube 106, for example.
ラジアントチューブ106への燃料流量FLは公知の燃
料流量検出器13により検出され、燃料流量制御器10
により制御される。通板速度(=中央速度)■は公知の
速度検出器11により検出される。The fuel flow rate FL to the radiant tube 106 is detected by a known fuel flow rate detector 13, and the fuel flow rate controller 10
controlled by The plate threading speed (=center speed) (2) is detected by a known speed detector 11.
制御器10は、例えば比例積分微分(P L D)制御
のような、−船釣に使用されている制御方式が用いられ
る。The controller 10 uses a control method used in boat fishing, such as proportional-integral-derivative (PLD) control.
本発明の要点は、所定の周期および中央速度変化時に燃
料流量制御器10への設定値をどのように定めるかとい
うことにある。まずストリップトラッキング装置6は炉
の入口および出口に配設したセット替点検出器19から
の検出パルスPL、P、2、速度検出器11により検出
した通板速度■、およびストリップ長(ストリップの1
0ツトの長さ、即ち先行のセット賛意から後続のセット
賛意までの長さ)Lに基づいて、加熱炉出口がら次のセ
ット賛意までのストリップ長(セット替点位置)を常に
求めて後述のパラメータ推定器9並びに板温制御器8に
出力すると共に、セット賛意の加熱炉8口通過のタイミ
ングにストリップ仕様設定器1に起動信号P3を出力す
る。ストリップ仕様設定器1は、ストリップトラッキン
グ装置6からの信号P3により起動され、ストリップ仕
様(板厚TRI、TH2;板幅WDI、WD2;ストリ
ップ全長L;加熱炉出口板温基準=目標板温TSRI、
TSR2)を出力する。ここでストリップ仕様中の添字
1は加熱炉出口通過中のストリップに関する値であり、
添字2は後続のセット替後のストリップに関する値であ
る。次に板温追従制御器8は板温をフィードバック制御
するもので、所定の制御周期および中央速度変化時には
ただちに起動され、中央速度■、炉温検出器12からの
炉温観測値TF、燃料流量検出器13からの燃料流量観
測値FL、炉出口での板温検出器14からの板温観測値
TS、および目標板温TSRを入力して、燃料流量設定
値FLSを計算し、燃料流量制御器IOに出力する。燃
料流量制御器10は例えば流量制御弁で良い。The key point of the invention is how to determine the set point to the fuel flow controller 10 at a given period and at a median speed change. First, the strip tracking device 6 detects the detection pulses PL, P, 2 from the set change point detectors 19 disposed at the inlet and outlet of the furnace, the threading speed (2) detected by the speed detector 11, and the strip length (one point of the strip).
0 strip length (that is, the length from the preceding set point to the subsequent set point) The starting signal P3 is outputted to the parameter estimator 9 and the plate temperature controller 8, and the starting signal P3 is outputted to the strip specification setting device 1 at the timing when the set approval passes through the eight openings of the heating furnace. The strip specification setting device 1 is activated by a signal P3 from the strip tracking device 6, and sets the strip specification (thickness TRI, TH2; strip width WDI, WD2; total strip length L; heating furnace exit plate temperature reference = target plate temperature TSRI,
TSR2) is output. Here, the subscript 1 in the strip specification is a value related to the strip passing through the heating furnace outlet,
Subscript 2 is the value for the subsequent strip after set change. Next, the plate temperature follow-up controller 8 performs feedback control of the plate temperature, and is activated immediately at a predetermined control cycle and when the central speed changes. The fuel flow rate observation value FL from the detector 13, the plate temperature observation value TS from the plate temperature detector 14 at the furnace outlet, and the target plate temperature TSR are inputted, and the fuel flow rate set value FLS is calculated, and the fuel flow rate is controlled. Output to device IO. The fuel flow controller 10 may be, for example, a flow control valve.
以上述べた中で、板温追従制御器8は、炉出口板温と炉
温、燃料流量、板厚、板幅、および速度との動的な関係
を表す公知の板温予測モデル(例えば特開昭61−19
0026による)と、後述に示すような炉温と、燃料流
量、板厚、板幅、および速度との動的な関係を表す炉温
予測モデルを有している。In the above, the plate temperature tracking controller 8 uses a known plate temperature prediction model (for example, a special Kaisho 61-19
According to 0026), it has a furnace temperature prediction model that expresses the dynamic relationship between the furnace temperature, fuel flow rate, plate thickness, plate width, and speed as described below.
また公知のパラメータ推定器9(例えば特開昭61−1
90026による)は、所定の周期で起動され、上記板
温予測モデルおよび炉温予測モデル中のパラメータをこ
れまでの実績データをもとに推定する。In addition, a known parameter estimator 9 (for example, Japanese Patent Laid-Open No. 61-1
90026) is started at a predetermined period and estimates the parameters in the plate temperature prediction model and furnace temperature prediction model based on past performance data.
(炉温予測モデル)
本発明において用いられる前述の炉温予測モデルはサン
プリング周期(制御周期)を時間の単位として時間に関
して離散化したモデルであり、次式によって規定される
。(Furnace Temperature Prediction Model) The above-mentioned furnace temperature prediction model used in the present invention is a model that is discretized with respect to time using the sampling period (control period) as a unit of time, and is defined by the following equation.
y’(t+dつ=alXy’(t)+blXu(t)+
b2Xu(t−1)+−+bmXu(t−m+1)+c
lXW(t+1)+−+cdXW(t+d’)+e ・
−−・(1)(1)式で表されるモデル式は、現在の炉
温、現在から過去mサンプリング前までの燃料流量、現
在からむだ時間先までの板厚、板幅、および速度の予見
値とを用いてむだ時間先の炉温を予測するものである。y'(t+d=alXy'(t)+blXu(t)+
b2Xu(t-1)+-+bmXu(t-m+1)+c
lXW(t+1)+-+cdXW(t+d')+e ・
---(1) The model equation expressed by equation (1) is based on the current furnace temperature, the fuel flow rate from the current time until the past m sampling, the plate thickness, plate width, and speed from the current time until the dead time. The predicted value is used to predict the furnace temperature ahead of the dead time.
上式において、
u (t)= F L (t)−F L ・=
(2)W(t)=WD(t)XTH(t)XVS(t
)−WTV・ (3):y ’ (t) = T F
(t)−T F・・・(4)VS(t)=(flXV(
t)+f2XV[t−1)+−+f]、XV(t−1+
1))/(fl+f2+・ +fl L=(5)但
し、
t:サンプリング時刻
d′:燃料流量と炉温との間の制御上のむだ時間U:モ
デルにおける操作量(燃料流量)y′:モデルにおける
制御量(炉温)
y I : y +の予測値
m:uの次数
FL:燃料流量
FL:通常操業における燃料流量の平均的な値1゛F:
炉温
TF二通常操業における炉温の平均的な値TH:炉出口
板厚
Wl):炉出口板幅
■S:炉出口を通過するストリップ上の点Pの炉内速度
V:中央速度
WTV:通常操業におけるW D X T HX V
S ノ平均的な値
以上のモデルを用いて、加熱炉の板温追従制御は以下の
如き方法で行われる。In the above formula, u (t) = F L (t) - F L ・=
(2) W(t)=WD(t)XTH(t)XVS(t
)−WTV・(3):y′(t)=T F
(t)-T F...(4)VS(t)=(flXV(
t)+f2XV[t-1)+-+f], XV(t-1+
1))/(fl+f2+・+fl L=(5) where, t: Sampling time d': Control dead time between fuel flow rate and furnace temperature U: Manipulated amount in model (fuel flow rate) y': Model Controlled variable (furnace temperature) at y I: Predicted value of y + m: Order of u FL: Fuel flow rate FL: Average value of fuel flow rate in normal operation 1゛F:
Furnace temperature TF2 Average value of furnace temperature in normal operation TH: Furnace outlet plate thickness Wl): Furnace outlet plate width S: In-furnace speed V at point P on the strip passing through the furnace outlet: Median speed WTV: W D X T HX V during normal operation
Using a model with an average value of S or more, plate temperature follow-up control of the heating furnace is performed in the following manner.
(板温追従制御)
板温追従制御は所定の周期および中央速度変化時にはた
だちに起動され、操作量である燃料流量を時々刻々算出
する閉ループ制御が行われる。燃料流量は例えば次のよ
うな評価関数Jの最小値を与える値としてその変更量を
求める。(Plate temperature follow-up control) Plate temperature follow-up control is activated immediately at a predetermined period and when the central speed changes, and closed-loop control is performed in which the fuel flow rate, which is the manipulated variable, is calculated every moment. For example, the amount of change in the fuel flow rate is determined by taking the value that gives the minimum value of the evaluation function J as shown below.
j=d
j:d +
NU
+ω3Σ△u (t+ k −1)−−・(6)但し、
r:目標板温
y:予測板温
r′二目櫟炉温
y′:予測炉温
ΔU:操作量変更量
d:燃料流量と板温との間の制御上のむだ時間N2:板
温の予測時間
N2′:炉温の予測時間
NU:燃料流量の計算時間
ω1、ω2、ω3:それぞれ、目標板温と予測板温との
偏差の重み、目標炉温と予測炉温との偏差の重み、加熱
炉の燃料流量の変動量(変更量)の重みここで、N2お
よびN2’は将来の板温および炉温を連続的に予測して
目標値との偏差を評価する時間を表している。また前節
でも述べたように、ω1、ω2.ω3の重みを変化させ
ることにより、様々な意図の制御を実現できる。−射的
にはω3を相対的にω1.ω2より大きくすると燃料流
量の変動は小さくなるが目標値追従性の遅い制御となり
、逆にω3を相対的にω1、ω2より小さくすると燃料
流量の変動は大きくなるが目標値追従性の速い制御とな
る。具体的な値の決定に当っては事前のシミュレーショ
ンや個々の対象の加熱炉の特性や操業指針などにより、
初期値を決め、実炉への適用時に応答性を見ながら最適
値にチューニングすれば良い。j=d j: d + NU + ω3Σ△u (t+ k -1) -- (6) where, r: Target plate temperature y: Predicted plate temperature r' Second furnace temperature y': Predicted furnace temperature ΔU: Manipulated variable change amount d: Control dead time between fuel flow rate and plate temperature N2: Predicted plate temperature time N2': Predicted furnace temperature time NU: Calculation time of fuel flow rate ω1, ω2, ω3: Respectively, The weight of the deviation between the target plate temperature and the predicted plate temperature, the weight of the deviation between the target furnace temperature and the predicted furnace temperature, and the weight of the amount of variation (change amount) in the fuel flow rate of the heating furnace.Here, N2 and N2' are the future values. It represents the time during which the plate temperature and furnace temperature are continuously predicted and the deviation from the target value is evaluated. Also, as mentioned in the previous section, ω1, ω2. By changing the weight of ω3, control with various intentions can be realized. - Shootingly, ω3 is relatively ω1. If it is larger than ω2, the fuel flow rate fluctuation will be small, but the target value followability will be slow. Conversely, if ω3 is relatively smaller than ω1 and ω2, the fuel flow rate fluctuation will be large, but the target value followability will be fast. Become. When determining specific values, we will use preliminary simulations, the characteristics of each heating furnace, operating guidelines, etc.
All you have to do is decide on the initial value and tune it to the optimal value while checking the response when applying it to an actual reactor.
尚、本評価関数Jの最小値を与えるΔUの計算方法は、
例えば現代制御理論の1手法であるGeneraliz
ed Predictive Control The
ory(−膜化予測制御理論)により与えられるが、本
計算方法は種々の文献に述べられており、また本発明の
直接関与するところではないので省略する。The method for calculating ΔU that gives the minimum value of this evaluation function J is as follows:
For example, Generaliz, a method of modern control theory,
ed Predictive Control The
ory (-film formation predictive control theory), this calculation method is described in various documents and is not directly related to the present invention, so it will be omitted here.
(パラメータ推定方法)
前にも述入たようにパラメータ推定方法としては公知の
パラメータ推定方法例えば固定トレース法や指数的重み
付き最小二乗法あるいは忘却係数付き逐次型最小二乗法
などを利用すればよいが、板温予測モデルの場合は通板
量の多いヒートサイクルや一種にモデル式のパラメータ
が偏り、通板量の少ないヒートサイクルや一種に対して
は充分なパラメータ推定精度が得られないことがあるの
で、これを防ぐために通板量の少ないヒートサイクルや
一種の推定重みを大きくし逆に通板量の多いヒートサイ
クルや一種の推定重みを小さくするものである1例えば
忘却係数付き逐次型最小二乗法を利用する場合の一方法
について述べれば、以下のようなモデル推定誤差の評価
関数の重みωiをヒートサイクルや一種により変更すれ
ば良い。(Parameter Estimation Method) As mentioned previously, known parameter estimation methods such as the fixed trace method, exponentially weighted least squares method, or sequential least squares method with forgetting coefficient may be used. However, in the case of sheet temperature prediction models, the parameters of the model equation are biased toward heat cycles or types with a large amount of sheet passing, and sufficient parameter estimation accuracy may not be obtained for heat cycles or types with a small amount of sheet throughput. Therefore, in order to prevent this, a heat cycle with a small amount of sheet passing or a type of estimation weight is increased, and a heat cycle with a large amount of sheet passing or a type of estimation weight is decreased.1 For example, a sequential minimum with a forgetting factor. One way to use the square method is to change the weight ωi of the evaluation function of the model estimation error as described below using a heat cycle or some other method.
Σω1(yi−yi)2
但し、
y:実測板温
八 −
y:モアル予測板温
i:サンプリング時点
尚1木杯価関数の最小値を与えるパラメータの計算方法
は公知のものであり、また本発明の直接関与するところ
ではないので省略する。Σω1(yi-yi)2 However, y: Actual plate temperature 8 - y: Moal predicted plate temperature i: Sampling time 1 The method of calculating the parameter that gives the minimum value of the wood cup value function is a known method, and is also described in this book. Since this is not directly related to the invention, it will be omitted.
[発明の効果]
以上から明らかなように本発明によれば、ストリップの
セット替時点のみならずストリップ内においても所定の
周期および中央速度の変化時はただちに将来の板温や炉
温を連続的に予測しながらフィードバック制御を行って
いるため、板温や炉温の安定性と追従性とを満足した高
い制御性能を得ることができ、ストリップ品質の確保、
燃料流量の最小化、および操業の安定化に大きく寄与で
きるものである。[Effects of the Invention] As is clear from the above, according to the present invention, the future plate temperature and furnace temperature are immediately and continuously determined not only when the strip set is changed but also when the predetermined cycle and center speed change within the strip. Since feedback control is performed while predicting the temperature, it is possible to obtain high control performance that satisfies the stability and followability of strip temperature and furnace temperature, ensuring strip quality and
This can greatly contribute to minimizing fuel flow and stabilizing operations.
第1図は本発明に係る板温制御装置の一実施例を図解的
に示すブロック図。
第2図は本発明における目標板温の決定方法の一実施例
を示す図。
第3図は本発明におけるゾーン炉温か上限値を外れるこ
とを防止するための板温偏差重みとゾーン炉温偏差重み
および目標炉温の設定方法を示す図。
である。
1・・・ストリップ仕様設定器、 6・・・ストリップ
トラッキング手段、 8・・・板温追従制御器、 9・
・パラメータ推定器、 lO・・・燃料流量制御器、1
1・・・速度検出器、12・・・炉温検出器、 13・
・・燃料流量検出器、 14・・・板温検出器、19・
・・セット替点検出器、 100・・・ストリップ、
102・・・加熱炉、 104・・・ハースロール、
106・・・ラジアントチューブ。
141rltJFIG. 1 is a block diagram schematically showing an embodiment of the plate temperature control device according to the present invention. FIG. 2 is a diagram showing an embodiment of the method for determining the target plate temperature in the present invention. FIG. 3 is a diagram showing a method of setting plate temperature deviation weights, zone furnace temperature deviation weights, and target furnace temperature for preventing zone furnace temperature from exceeding the upper limit value in the present invention. It is. 1... Strip specification setting device, 6... Strip tracking means, 8... Plate temperature tracking controller, 9.
・Parameter estimator, lO...Fuel flow rate controller, 1
1... Speed detector, 12... Furnace temperature detector, 13.
・・Fuel flow rate detector, 14・・Plate temperature detector, 19・
...Set change point detector, 100...Strip,
102... Heating furnace, 104... Hearth roll,
106...Radiant tube. 141rltJ
Claims (1)
ストリップを加熱炉に連続的に通板して連続焼鈍を行う
連続焼鈍炉においてこれら板厚、板幅、加熱炉出口温度
基準(板温基準)の変更(セット替)あるいは中央ライ
ン速度の変更時かつ/またはコイル内一定周期にて操作
量として加熱炉の燃料流量を変更して加熱炉出口ストリ
ップ温度(板温)を制御する板温制御方法であって、現
在から将来にわたる板温を連続的に予測しかつ/または
現在から将来にわたる炉温を連続的に予測し、目標板温
と予測板温との偏差かつ/または目標炉温と予測炉温と
の偏差および加熱炉の燃料流量の変動量による所定の評
価関数を最適化する燃料流量を算出し、板温を制御する
ことを特徴とする連続焼鈍炉板温制御方法。(2)燃料
流量の設定値を求める際に所定の評価関数の目標板温と
予測板温との偏差の重みと目標炉温と予測炉温との偏差
の重みを実績の炉温の値により連続的に変更することに
より、板温かつ/または炉温を制御することを特徴とす
る特許請求の範囲第1項に記載の連続焼鈍炉板温制御方
法。 (3)ストリップの加熱炉出口温度基準レベル(ヒート
サイクル)かつ/またはストリップの一種により、推定
の重みを変更して制御モデル中のパラメータを推定する
ことを特徴とする特許請求の範囲第1項に記載の連続焼
鈍炉板温制御方法。 (4)板厚、板幅あるいは加熱炉出口温度基準の異なる
ストリップを加熱炉に連続的に通板して連続焼鈍を行う
連続焼鈍炉においてこれら板厚、板幅、加熱炉出口温度
基準(板温基準)の変更(セット替)あるいは中央ライ
ン速度の変更時かつ/またはコイル内一定周期にて現在
から将来にわたる板温を連続的に予測しかつ/または現
在から将来にわたる炉温を連続的に予測し、目標板温と
予測板温との偏差かつ/または目標炉温と予測炉温との
偏差および加熱炉の燃料流量の変動量による所定の評価
関数を最適化する燃料流量を算出し、加熱炉出口ストリ
ップ温度(板温)を制御する板温制御装置であって、 ストリップのセット替点を検出するセット替検出器、ス
トリップの通板速度を検出する速度検出器、加熱炉の温
度を検出する炉温検出器、並びに炉出口におけるストリ
ップの温度を検出する板温検出器を具備した検出器群と
、 上記セット替検出器および速度検出器からの出力信号に
応じてストリップのセット替位置を絶えず追跡して現在
および将来の板厚、板幅、炉出口板温基準を決定するス
トリップトラッキング手段と、 所定の通板スケジュールに基づいてストリップの仕様(
板厚、板幅、炉出口板温基準)を予め指定するストリッ
プ仕様設定手段と、 目標板温と予測板温との偏差かつ/または目標炉温と予
測炉温との偏差および燃料流量の変動量による評価関数
を最適化する燃料流量を算出して板温を制御する板温制
御手段と、該板温制御手段からの出力信号に基づき燃料
流量を制御する燃料流量制御手段と、板温および炉温の
予測モデルのパラメータ推定手段、 を有する連続焼鈍炉板温制御装置。[Scope of Claims] (1) In a continuous annealing furnace in which strips having different thicknesses, widths, or heating furnace outlet temperatures are continuously passed through a heating furnace for continuous annealing, these thicknesses, widths, and heating When changing the furnace outlet temperature standard (plate temperature standard) (set change) or changing the center line speed and/or changing the fuel flow rate of the heating furnace as a manipulated variable at a constant cycle in the coil, the heating furnace outlet strip temperature (plate temperature standard) This is a plate temperature control method that continuously predicts the plate temperature from the present to the future and/or continuously predicts the furnace temperature from the present to the future, and calculates the difference between the target plate temperature and the predicted plate temperature. Continuous annealing characterized in that the plate temperature is controlled by calculating a fuel flow rate that optimizes a predetermined evaluation function based on the deviation and/or the deviation between the target furnace temperature and the predicted furnace temperature and the amount of variation in the fuel flow rate of the heating furnace. Furnace plate temperature control method. (2) When determining the set value of the fuel flow rate, the weight of the deviation between the target plate temperature and the predicted plate temperature of the predetermined evaluation function and the weight of the deviation between the target furnace temperature and the predicted furnace temperature are determined based on the value of the actual furnace temperature. 2. The continuous annealing furnace plate temperature control method according to claim 1, wherein the plate temperature and/or the furnace temperature are controlled by continuously changing the plate temperature. (3) Parameters in the control model are estimated by changing estimation weights depending on a heating furnace outlet temperature reference level (heat cycle) of a strip and/or a type of strip. The continuous annealing furnace plate temperature control method described in . (4) In a continuous annealing furnace where strips with different thicknesses, widths, or heating furnace outlet temperature standards are continuously passed through the heating furnace for continuous annealing. Continuously predict the plate temperature from the present to the future when changing the temperature reference (temperature reference) (set change) or changing the center line speed and/or at a constant cycle in the coil, and/or continuously predict the furnace temperature from the present to the future. calculate a fuel flow rate that optimizes a predetermined evaluation function based on the deviation between the target plate temperature and the predicted plate temperature and/or the deviation between the target furnace temperature and the predicted furnace temperature and the amount of variation in the fuel flow rate of the heating furnace; This is a plate temperature control device that controls the strip temperature (plate temperature) at the outlet of the heating furnace, and includes a set change detector that detects the strip set change point, a speed detector that detects the strip passing speed, and a plate temperature control device that controls the temperature of the heating furnace. a detector group comprising a furnace temperature detector for detecting the temperature of the strip and a plate temperature detector for detecting the temperature of the strip at the furnace outlet; and a set change position of the strip according to output signals from the set change detector and the speed detector. strip tracking means to constantly track the strip thickness, width, and furnace outlet temperature criteria to determine current and future strip thickness, strip width, and furnace exit temperature standards;
strip specification setting means for specifying in advance the strip thickness, strip width, and furnace outlet strip temperature standards), and the deviation between the target strip temperature and the predicted strip temperature and/or the deviation between the target and predicted furnace temperature and the fluctuation of fuel flow rate. A plate temperature control means that controls the plate temperature by calculating a fuel flow rate that optimizes the evaluation function based on the quantity; a fuel flow rate control unit that controls the fuel flow rate based on an output signal from the plate temperature control means; A continuous annealing furnace plate temperature control device comprising: means for estimating parameters of a furnace temperature prediction model.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18464590A JPH0472022A (en) | 1990-07-11 | 1990-07-11 | Method and device for controlling strip temperature in continuous annealing furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18464590A JPH0472022A (en) | 1990-07-11 | 1990-07-11 | Method and device for controlling strip temperature in continuous annealing furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0472022A true JPH0472022A (en) | 1992-03-06 |
Family
ID=16156859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18464590A Pending JPH0472022A (en) | 1990-07-11 | 1990-07-11 | Method and device for controlling strip temperature in continuous annealing furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0472022A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007100163A (en) * | 2005-10-04 | 2007-04-19 | Nippon Steel Corp | Method and unit for controlling strip temperature in continuous annealing furnace |
JP2008255443A (en) * | 2007-04-06 | 2008-10-23 | Nippon Steel Corp | Method and apparatus for controlling plate temperature in heating furnace |
KR20220146409A (en) | 2020-04-30 | 2022-11-01 | 쥬가이로 고교 가부시키가이샤 | How to simulate the processing state of a band-shaped body |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5229410A (en) * | 1975-08-30 | 1977-03-05 | Nippon Kokan Kk <Nkk> | Temperature controlling method for continuous annealing and heating ap paratus |
JPS63307223A (en) * | 1987-06-05 | 1988-12-14 | Nippon Steel Corp | Method for changing speed in sheet temperature control in continuous annealing furnace |
-
1990
- 1990-07-11 JP JP18464590A patent/JPH0472022A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5229410A (en) * | 1975-08-30 | 1977-03-05 | Nippon Kokan Kk <Nkk> | Temperature controlling method for continuous annealing and heating ap paratus |
JPS63307223A (en) * | 1987-06-05 | 1988-12-14 | Nippon Steel Corp | Method for changing speed in sheet temperature control in continuous annealing furnace |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007100163A (en) * | 2005-10-04 | 2007-04-19 | Nippon Steel Corp | Method and unit for controlling strip temperature in continuous annealing furnace |
JP2008255443A (en) * | 2007-04-06 | 2008-10-23 | Nippon Steel Corp | Method and apparatus for controlling plate temperature in heating furnace |
KR20220146409A (en) | 2020-04-30 | 2022-11-01 | 쥬가이로 고교 가부시키가이샤 | How to simulate the processing state of a band-shaped body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7310981B2 (en) | Method for regulating the temperature of strip metal | |
CN101519735B (en) | Method for controlling strip-steel head and tail temperature | |
EP0715550B1 (en) | Rolling of metal strip | |
JPH0472022A (en) | Method and device for controlling strip temperature in continuous annealing furnace | |
JP2809925B2 (en) | Sheet temperature control method for continuous annealing furnace | |
JP2555116B2 (en) | Steel material cooling control method | |
JPS6334210B2 (en) | ||
US5995532A (en) | Method using fuzzy logic for controlling a furnace | |
JP2954485B2 (en) | Method of controlling winding temperature of hot-rolled steel strip | |
TWI749347B (en) | Rolling shape control apparatus | |
JPH0791590B2 (en) | Velocity changing method in plate temperature control of continuous annealing furnace | |
JPH07138658A (en) | Device for controlling dew point in continuous heat treatment furnace | |
JPH0564687B2 (en) | ||
JPH08199248A (en) | Device for controlling temperature in continuous annealing apparatus | |
JPH032331A (en) | Apparatus for controlling strip temperature in continuous annealing furnace | |
JP2528048B2 (en) | Temperature control method in plate rolling | |
JP2809918B2 (en) | Sheet temperature control method for continuous annealing furnace | |
JPH0754055A (en) | Method for controlling temperature of steel strip in continuous annealing furnace | |
JPS56136215A (en) | Method and apparatus for feedback control of water cooling for steel material in rolling line | |
JPH0510414B2 (en) | ||
JPH09316545A (en) | Method for controlling strip temperature in continuous annealing furnace | |
JPH03236422A (en) | Method for controlling sheet temperature in continuous annealing furnace | |
JP3160374B2 (en) | Heating furnace temperature control method and apparatus | |
JPH06248362A (en) | Method for controlling temperature of material in continuous type heating furnace | |
JPH09227954A (en) | Method for controlling strip temperature in continuous annealing furnace and device therefor |