JPH09316545A - Method for controlling strip temperature in continuous annealing furnace - Google Patents

Method for controlling strip temperature in continuous annealing furnace

Info

Publication number
JPH09316545A
JPH09316545A JP15756296A JP15756296A JPH09316545A JP H09316545 A JPH09316545 A JP H09316545A JP 15756296 A JP15756296 A JP 15756296A JP 15756296 A JP15756296 A JP 15756296A JP H09316545 A JPH09316545 A JP H09316545A
Authority
JP
Japan
Prior art keywords
plate temperature
heating furnace
strip
outlet
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15756296A
Other languages
Japanese (ja)
Inventor
Yoshihiko Himuro
善彦 桧室
Hiroshi Ueda
啓史 上田
Toshihiro Miyakoshi
寿拓 宮腰
Haruhiko Eguchi
晴彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15756296A priority Critical patent/JPH09316545A/en
Publication of JPH09316545A publication Critical patent/JPH09316545A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a strip temp. control method of a continuous annealing furnace, by which the strips having different strip thickness, strip width, target strip temp. at the outlet of the heating furnace or priority of the strip temp., are joined and continuously inserted into the heating furnace to execute the annealing treatment. SOLUTION: At the time of changing a prescribed control cycle and velocity V at the center line, the strip temp. TS at the outlet of the heating furnace is continuously predicted from the present over to the future. Fuel flow rate optimizing a prescribed evaluating function with the deviation between a target strip temp. TSR at the outlet of the heating furnace and a predicted strip temp. at the outlet of the heating furnace and a variating quantity of the fuel flow rate in the heating furnace, is calculated to control the strip temp. TS at the outlet of the heating furnace. Then, in the case the priority PRT between the strip temps at the front and the rear parts differs, in order to execute the control seriously taking the strip temp. at the priority side, the strip temp. evaluating range N2 evaluating the deviation between the target strip temp. TSR at the outlet of the heating furnace and the predicted strip temp. at the outlet of the heating furnace over the future, is varied according to the priority PRT of the strip temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、板厚、板幅、加熱
炉出口目標板温あるいは板温優先度の異なるストリップ
を接合し、加熱炉に連続的に挿通して焼鈍処理を行う連
続焼鈍炉の板温制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to continuous annealing in which strips having different sheet thickness, sheet width, heating furnace outlet target sheet temperature or sheet temperature priority are joined and continuously inserted into a heating furnace for annealing treatment. The present invention relates to a plate temperature control method for a furnace.

【0002】[0002]

【従来の技術】連続的に送給されるストリップを加熱炉
に連続的に挿通して焼鈍処理を行う連続焼鈍炉において
は、加熱炉出口でのストリップの板温を管理することが
品質上極めて重要な課題となっており、接合部前後で板
厚や加熱炉出口目標板温が変化する場合には、前記加熱
炉出口目標板温からの外れが前材か後材のいずれか一方
に偏ることなく、共に小さくなるように制御することが
基本とされ、この点については、従来においても、各種
形態の板温制御が行われている。
2. Description of the Related Art In a continuous annealing furnace in which continuously fed strips are continuously inserted into a heating furnace for annealing, it is extremely difficult to control the strip temperature of the strip at the outlet of the heating furnace. This is an important issue, and when the plate thickness and the target furnace temperature at the heating furnace outlet change before and after the joint, the deviation from the target plate temperature at the heating furnace outlet is biased to either the front or rear material. It is basically controlled to reduce both of them, and in this respect, various forms of plate temperature control have been performed in the past as well.

【0003】しかしながら、前材と後材とで材質やグレ
ードに差異がある場合、同じ板温外れであっても、例え
ば前材側の板温外れは、品質上の問題は少ないが、後材
側の板温外れは大きな問題となるといったケースがあ
り、前記板温制御方法だけでは対応が困難であった。
However, when there is a difference in material and grade between the front material and the rear material, even if the same material temperature deviation occurs, for example, the material temperature deviation on the front material side has few quality problems, but the rear material There is a case in which the plate temperature deviation on the side becomes a serious problem, and it is difficult to deal with the plate temperature control method alone.

【0004】そこで、特開平2−163325号公報、
特開平3−277723号公報、特開平4−32332
5号公報においては、板温優先度などの諸条件に応じ
て、操作量である速度と炉温の設定値を適当なタイミン
グで変化させる板温制御方法が開示されている。
Therefore, Japanese Patent Laid-Open No. 2-163325 discloses
JP-A-3-277723 and JP-A-4-32332
Japanese Patent No. 5 discloses a plate temperature control method in which the set value of the speed and the furnace temperature, which are manipulated variables, are changed at appropriate timings according to various conditions such as the plate temperature priority.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記した公開
特許公報に記載されている板温制御方法でも、未だ、以
下の解決すべき課題を有していた。即ち、上記した板温
制御方法は、いずれも、後材の板厚、板幅、目標板温な
どのコイル情報と、前材での中央ライン速度、炉温実績
値などの操業情報によって、まず、後材の中央ライン速
度が、予め用意しておいたテーブル値から選択される。
次に、この選択された後材の中央ライン速度を前提と
し、後材の炉温設定値も前もって決められる。
However, even the plate temperature control method described in the above-mentioned Japanese Patent Laid-Open Publication still has the following problems to be solved. That is, the above-mentioned plate temperature control method is, first, by the coil information such as the plate thickness of the rear material, the plate width, the target plate temperature, and the operation information such as the center line speed in the front material and the actual furnace temperature value. The center line speed of the rear material is selected from the table values prepared in advance.
Next, given the selected center line speed of the rear material, the furnace temperature setting value of the rear material is also determined in advance.

【0006】そして、前材優先や後材優先などの操業上
の諸条件に応じて、前記した後材の中央ライン速度と炉
温設定値に変更するタイミングが計算されて設定変更を
行うため、プリセット計算に大きく依存した制御方法と
なっている。
[0006] Then, according to various operating conditions such as prior material priority and after material priority, the timing for changing the center line speed of the after material and the furnace temperature set value is calculated and the setting is changed. The control method relies heavily on preset calculations.

【0007】しかしながら、このようなプリセット計算
に基づく制御方法では、操作量である中央ライン速度や
炉温が、テーブル値やプリセットモデルによって定めて
おいた値に従って設定されているにすぎず、接合部が加
熱炉出口を通過して一定期間を経過するまでの間(プリ
セット期間)、フィードバック制御を行うことができな
い。即ち、前記操作量が一旦プリセット計算によって設
定されたら、その間にテーブル値が不適切であったり、
プリセットモデル自体の誤差あるいは板厚、速度等の外
乱による制御誤差を生じてもその修正はできず、板温は
プリセット期間の終了まで制御誤差を生じたままで推移
するだけである。従って、例えば、なんらかの原因で板
温が変化した場合であっても、操作量が変更できずに、
その結果、ストリップにヒートバックルなどの欠陥が発
生し、連続焼鈍炉の操業トラブルを引き起こす可能性が
あった。
However, in such a control method based on the preset calculation, the central line speed and the furnace temperature, which are the manipulated variables, are only set according to the table values and the values defined by the preset model, and the joint portion Feedback control cannot be performed until a certain period of time has passed after passing through the heating furnace outlet (preset period). That is, once the operation amount is set by the preset calculation, the table value is inappropriate during that period,
Even if an error in the preset model itself or a control error due to a disturbance such as plate thickness or speed occurs, the correction cannot be corrected, and the plate temperature only changes with the control error generated until the end of the preset period. Therefore, for example, even if the plate temperature changes for some reason, the operation amount cannot be changed,
As a result, defects such as heat buckles occur in the strip, which may cause operational troubles in the continuous annealing furnace.

【0008】次に、前記した従来の板温制御方法に共通
しているもう一つの課題として、中央ライン速度を操作
量として採用していることがあげられ、これは、現実的
に問題が多い。なぜなら、中央ライン速度は、ライン入
側や出側のストリップ通板状況や、その他さまざまな事
象により左右されるためである。即ち、中央ライン速度
の設定は、入側から出側までのライン操業状況が非常に
安定しているときは有効であるが、実際には、操業状況
の変化などによって、中央ライン速度が別の要因で変動
することが多く、板温制御の操作端として中央ライン速
度の設定は適切であるとは言えない。
Another problem common to the above-mentioned conventional plate temperature control methods is that the central line speed is adopted as the manipulated variable, which is a serious problem in reality. . This is because the central line speed depends on the strip threading conditions on the line entry side and the line exit side and various other events. That is, the setting of the central line speed is effective when the line operating condition from the entrance side to the exit side is very stable, but in reality, the central line speed is different depending on changes in the operating condition. Since it often varies depending on the factor, it cannot be said that the setting of the central line speed is appropriate as the operation end of the plate temperature control.

【0009】本発明は以上に述べてきた従来技術におけ
る課題を解決するためになされたものであり、所定の制
御周期あるいは中央ライン速度変更時に、加熱炉の燃料
流量を操作して加熱炉出口板温を制御し、板厚、板幅、
加熱炉出口目標板温の異なるストリップの接合部におい
ては、プリセット的な手法による制御誤差を発生させる
ことなくこれを抑制し、しかも、接合部の前後で板温の
優先度に差異がある場合であっても、的確な板温制御を
実施することのできる連続焼鈍炉の板温制御方法を提供
することを目的とする。
The present invention has been made to solve the above-mentioned problems in the prior art, and the fuel flow rate of the heating furnace is manipulated at a predetermined control period or when the central line speed is changed to change the heating furnace outlet plate. Controlling the temperature, plate thickness, plate width,
At the joints of strips with different heating furnace outlet target plate temperatures, this can be suppressed without causing a control error due to a preset method, and there is a difference in the priority of the plate temperature before and after the joints. Even if it exists, it aims at providing the plate temperature control method of the continuous annealing furnace which can implement exact plate temperature control.

【0010】[0010]

【課題を解決するための手段】前記目的に沿う請求項1
記載の連続焼鈍炉の板温制御方法は、板厚、板幅、加熱
炉出口目標板温、板温優先度の少なくとも一つが異なる
ストリップを接合し、加熱炉に連続的に挿通して焼鈍処
理を行う連続焼鈍炉において、所定の制御周期及び中央
ライン速度変更時に、現在から将来にわたる加熱炉出口
板温を連続的に予測し、前記加熱炉出口目標板温と加熱
炉出口予測板温との偏差及び加熱炉燃料流量の変動量に
よる所定の評価関数を最適化する燃料流量を算出して、
前記加熱炉出口板温を制御する連続焼鈍炉の板温制御方
法であって、前記ストリップの接合部前後で前記板温優
先度が異なる場合には、優先側の板温を重視した制御を
行うために、前記加熱炉出口目標板温と前記加熱炉出口
予測板温との偏差を将来にわたって評価する板温評価範
囲を前記板温優先度に応じて変更する。
According to the present invention, there is provided a semiconductor device comprising:
The plate temperature control method of the continuous annealing furnace described, plate thickness, plate width, heating furnace outlet target plate temperature, at least one of the plate temperature priority is joined strips different, annealing is continuously inserted into the heating furnace. In the continuous annealing furnace to perform, when the predetermined control cycle and the central line speed is changed, the heating furnace outlet plate temperature from the present to the future is continuously predicted, and the heating furnace outlet target plate temperature and the heating furnace outlet predicted plate temperature are By calculating the fuel flow rate that optimizes a predetermined evaluation function based on the deviation and the fluctuation amount of the heating furnace fuel flow rate,
A method for controlling the plate temperature of a continuous annealing furnace for controlling the plate temperature of the heating furnace outlet, wherein when the plate temperature priorities are different before and after the joining portion of the strip, a control that emphasizes the plate temperature on the priority side is performed. Therefore, the plate temperature evaluation range for evaluating the deviation between the heating furnace outlet target plate temperature and the heating furnace outlet predicted plate temperature in the future is changed according to the plate temperature priority.

【0011】請求項1記載の連続焼鈍炉の板温制御方法
においては、ストリップの接合部を常にトラッキング
し、まず、加熱炉出口におけるストリップの板厚、板
幅、加熱炉出口目標板温、板温優先度の将来にわたる予
見値を決定する。そして、ストリップの接合部前後の板
温優先度については、これを比較して、前材優先か、後
材優先か、あるいは前後材の板温優先度が等しいかを判
断しておく。
In the plate temperature control method for a continuous annealing furnace according to claim 1, the strip joint portion is always tracked, and first, the strip plate thickness and plate width at the heating furnace outlet, the heating furnace outlet target plate temperature, and the plate. Determine future prospective values for warm priority. Then, with respect to the plate temperature priorities before and after the joining portion of the strip, it is determined whether or not the front material priorities, the rear material priorities, or the front and rear materials have the same plate temperature priorities by comparing these.

【0012】次に、現在から将来にわたる加熱炉出口板
温を連続的に予測するが、かかる加熱炉出口板温の予測
には、公知の板温予測モデル(例えば、特開昭61−1
90026号公報に記載されているもの)を利用すれば
よい。具体的には、前記決定したストリップの板厚、板
幅の各予見値と、加熱炉の炉温、燃料流量、加熱炉出口
における板厚、板幅、中央ライン速度の各実績値とを、
所定の制御周期及び中央ライン速度変化時にサンプリン
グして前記板温予測モデルに入力しておく。これらによ
って、所定の制御周期及び中央ライン速度変更時には、
常に現在から将来にわたる加熱炉出口予測板温を容易に
算出することができる。
Next, the heating furnace outlet plate temperature from the present to the future is continuously predicted. For such prediction of the heating furnace outlet plate temperature, a known plate temperature prediction model (for example, Japanese Patent Laid-Open No. 61-1) is used.
(Described in Japanese Patent No. 90026) may be used. Specifically, the plate thickness of the determined strip, each predictive value of the plate width, the furnace temperature of the heating furnace, the fuel flow rate, the plate thickness at the heating furnace outlet, the plate width, each actual value of the central line speed,
Sampling is performed at a predetermined control cycle and change in the center line speed, and the sampled temperature is input to the plate temperature prediction model. With these, when changing the predetermined control cycle and central line speed,
It is always possible to easily calculate the predictive plate temperature at the furnace outlet from the present to the future.

【0013】また、前記板温予測モデル中のパラメータ
は公知の推定方法である固定トレース法や忘却係数付き
逐次型最小二乗法を利用して算出すればよく、パラメー
タ推定器(例えば、特開昭61−190026号公報に
記載されているもの)を付与して所定の周期で起動して
おくことにより操業や設備状態の経時的変化に対しても
良好な精度を維持することができる。
Further, the parameters in the plate temperature prediction model may be calculated by utilizing a known estimation method such as a fixed trace method or a recursive least squares method with a forgetting factor, and a parameter estimator (for example, Japanese Patent Laid-Open Publication No. No. 61-190026) is added and activated at a predetermined cycle, so that good accuracy can be maintained even with respect to changes over time in operation and equipment conditions.

【0014】以上のようにして加熱炉出口予測板温を算
出した後は、所定の制御周期又は中央ライン速度変更時
に燃料流量を操作して前記加熱炉出口板温を制御するた
め、特開平4−72022号公報に記載の公知の板温制
御方法を利用する。かかる公知の板温制御方法は、加熱
炉出口目標板温と加熱炉出口予測板温との偏差及び加熱
炉燃料流量の変動量による所定の評価関数を有し、この
評価関数を最適化する燃料流量を逐次算出する優れた制
御方法であるが、本発明では、さらに、ストリップの接
合部前後での板温優先度に応じた的確な板温制御を実現
するため、評価関数における加熱炉出口目標板温と加熱
炉出口予測板温との偏差を評価する時間の範囲(以下、
「板温評価範囲」という。)を板温優先度に応じて変化
させることとした。
After the heating furnace outlet predicted plate temperature is calculated as described above, the heating furnace outlet plate temperature is controlled by operating the fuel flow rate at a predetermined control cycle or when the center line speed is changed. The well-known plate temperature control method described in JP-A-72022 is used. The known plate temperature control method has a predetermined evaluation function based on the deviation between the heating furnace outlet target plate temperature and the heating furnace outlet predicted plate temperature and the amount of fluctuation of the heating furnace fuel flow rate, and a fuel for optimizing this evaluation function. Although it is an excellent control method for sequentially calculating the flow rate, in the present invention, further, in order to realize the accurate plate temperature control according to the plate temperature priority before and after the joining portion of the strip, the heating furnace outlet target in the evaluation function Range of time to evaluate the deviation between the plate temperature and the predicted plate temperature at the furnace exit (hereinafter,
It is called "plate temperature evaluation range". ) Was changed according to the plate temperature priority.

【0015】具体的に述べると、まず、前材と後材とで
板温優先度に差異がないストリップの接合部で、加熱炉
出口目標板温からの外れが、前材か後材のいずれか一方
に偏ることなく、共に小さくなるような板温評価範囲に
調節しておき、これを基準値として定める。
More specifically, first, at the joining portion of the strips where there is no difference in sheet temperature priority between the front material and the rear material, the deviation from the target furnace temperature at the heating furnace outlet is either the front material or the rear material. The plate temperature evaluation range is adjusted so as to become smaller without being biased to one side or the other, and this is set as a reference value.

【0016】そして、前材を優先するべきストリップの
接合部では、後材となる将来の板温よりも、前材となる
直近の板温を重視した板温制御を実現するため、板温評
価範囲を基準値より小さくしておく。このことにより、
ストリップの接合部では、前材側の板温外れを可及的に
小さくすることができる。
At the joint portion of the strip in which the front material is prioritized, in order to realize the plate temperature control that emphasizes the latest plate temperature as the front material, rather than the future plate temperature as the rear material, the plate temperature evaluation is performed. Keep the range smaller than the standard value. By this,
At the joint portion of the strip, the plate temperature deviation on the front material side can be made as small as possible.

【0017】また、後材を優先すべきストリップの接合
部では、前材となる直近の板温よりも、後材となる将来
の板温を重視した板温制御を実現するため、前記板温評
価範囲を前記基準値より大きくしておく。このことによ
り、ストリップの接合部では、後材側の板温外れを可及
的に小さくすることができる。
Further, at the joint portion of the strip in which the rear material is prioritized, in order to realize the plate temperature control which attaches importance to the future plate temperature as the rear material rather than the latest plate temperature as the front material, The evaluation range is set larger than the reference value. As a result, the strip temperature deviation on the rear material side can be made as small as possible at the joint portion of the strip.

【0018】[0018]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, referring to the attached drawings, an embodiment in which the present invention is embodied will be described to provide an understanding of the present invention.

【0019】図1は、本発明の一実施の形態に係る連続
焼鈍炉の板温制御方法に好適に使用できる連続焼鈍炉の
板温制御装置Aの全体構成を示すブロック図、図2は動
作内容を示すタイムチャートである。
FIG. 1 is a block diagram showing the overall construction of a plate temperature control device A for a continuous annealing furnace which can be suitably used in a plate temperature control method for a continuous annealing furnace according to an embodiment of the present invention. FIG. It is a time chart which shows the contents.

【0020】図1に示す信号線のうち、実線はデータの
流れを示し、点線は検出パルス又は起動信号を示す。な
お、本発明に係る連続焼鈍炉の板温制御方法は、実際に
はプロセスコンピュータを用いて制御されるものであ
り、図1はその内部を機能的に分かりやすく示すもので
ある。
Of the signal lines shown in FIG. 1, the solid line shows the data flow, and the dotted line shows the detection pulse or the start signal. The plate temperature control method for a continuous annealing furnace according to the present invention is actually controlled by using a process computer, and FIG. 1 shows the inside in a functionally understandable manner.

【0021】図1に示すように、本実施の形態では、ス
トリップ100が加熱炉10によって加熱される。加熱
炉10は、ストリップ100に直接的に火炎を噴射して
加熱する直火炉や、ラジアントチューブによって間接的
に加熱する間接炉などがあるが、本発明に係る連続焼鈍
炉の板温制御方法は、これらの加熱炉のうち、いずれに
おいても好適に適用できる。
As shown in FIG. 1, in the present embodiment, the strip 100 is heated by the heating furnace 10. The heating furnace 10 includes a direct-fired furnace that directly injects a flame onto the strip 100 to heat it, an indirect furnace that indirectly heats with a radiant tube, and the like. However, the plate temperature control method of the continuous annealing furnace according to the present invention is Any of these heating furnaces can be suitably applied.

【0022】図1において、まず、加熱炉10周りの制
御について説明すると、加熱炉10の前方にはストリッ
プ100の接合部を検出する溶接点検出器16が配設さ
れている。この溶接点検出器16は、連続焼鈍炉に通板
されてくるストリップ100の接合部を検出し、その検
出信号P1を後述するストリップトラッキング手段の一
例であるストリップトラッキング装置15に送るもので
ある。
Referring to FIG. 1, first, the control around the heating furnace 10 will be described. A welding point detector 16 for detecting the joint portion of the strip 100 is arranged in front of the heating furnace 10. The welding point detector 16 detects a joint portion of the strip 100 which is passed through the continuous annealing furnace, and sends the detection signal P1 to a strip tracking device 15 which is an example of strip tracking means described later.

【0023】加熱炉10は、その炉内温度を検出する炉
温検出器21を具備しており、炉温検出器21で検出し
た炉温観測値TFは、後述するパラメータ推定手段の一
例であるパラメータ推定器17及び加熱炉出口板温予測
制御器19に送られる。
The heating furnace 10 is equipped with a furnace temperature detector 21 for detecting the temperature inside the furnace, and the furnace temperature observed value TF detected by the furnace temperature detector 21 is an example of parameter estimating means described later. It is sent to the parameter estimator 17 and the heating furnace outlet plate temperature prediction controller 19.

【0024】加熱炉10は、また、加熱炉10へ供給さ
れる燃料流量を検出する燃料流量検出器12を具備して
おり、燃料流量検出器12によって検出された燃料流量
観測値FLは、燃料流量制御手段の一例である燃料流量
制御器13、及び、加熱炉出口板温予測制御器19に送
られる。
The heating furnace 10 is also equipped with a fuel flow rate detector 12 for detecting the flow rate of fuel supplied to the heating furnace 10. The fuel flow rate observation value FL detected by the fuel flow rate detector 12 is It is sent to the fuel flow rate controller 13, which is an example of the flow rate control means, and the heating furnace outlet plate temperature prediction controller 19.

【0025】加熱炉出口11には、この出口でのストリ
ップ100の板温を検出する加熱炉出口板温検出器22
が配置されており、この加熱炉出口板温検出器22によ
って検出された板温観測値、即ち、加熱炉出口板温TS
は、加熱炉出口板温予測制御器19、及び、パラメータ
推定器17へ送られる。
The heating furnace outlet 11 has a heating furnace outlet plate temperature detector 22 for detecting the plate temperature of the strip 100 at this outlet.
Is arranged, and the plate temperature observation value detected by the heating furnace outlet plate temperature detector 22, that is, the heating furnace outlet plate temperature TS
Is sent to the heating furnace outlet plate temperature prediction controller 19 and the parameter estimator 17.

【0026】また、加熱炉出口11の近傍には、ストリ
ップ100の通板速度(中央ライン速度)Vを検出する
ための速度検出器14が配設されており、検出された中
央ライン速度Vは、ストリップトラッキング装置15
と、パラメータ推定器17と、加熱炉出口板温予測制御
器19とに送られる。
A speed detector 14 for detecting the strip passing speed (center line speed) V of the strip 100 is provided near the heating furnace outlet 11, and the detected center line speed V is , Strip tracking device 15
To the parameter estimator 17 and the heating furnace outlet plate temperature prediction controller 19.

【0027】さらに、図1に示すように、ストリップ仕
様決定手段の一例であるストリップ仕様設定器20は、
加熱炉出口板温予測制御器19と、パラメータ推定器1
7、及び、後述する板温優先判定手段の一例である板温
優先度判定装置18とに接続されており、板温優先度判
定装置18は、加熱炉出口板温予測制御器19にも接続
されている。
Further, as shown in FIG. 1, a strip specification setting device 20 which is an example of strip specification determining means,
Heating furnace outlet plate temperature prediction controller 19 and parameter estimator 1
7 and a plate temperature priority determination device 18, which is an example of a plate temperature priority determination means described later, and the plate temperature priority determination device 18 is also connected to a heating furnace outlet plate temperature prediction controller 19. Has been done.

【0028】上記した構成を有する連続焼鈍炉の板温制
御装置Aの各構成部の機能についてさらに説明する。本
発明の制御対象は、加熱炉出口11におけるストリップ
100の板温である。即ち、加熱炉出口11での板温を
目標値に一致させるための加熱炉10の燃料流量を操作
するものである。
The function of each component of the plate temperature controller A of the continuous annealing furnace having the above-mentioned structure will be further described. The controlled object of the present invention is the plate temperature of the strip 100 at the heating furnace outlet 11. That is, the fuel flow rate of the heating furnace 10 for adjusting the plate temperature at the heating furnace outlet 11 to the target value is manipulated.

【0029】前記燃料流量制御器13は、加熱炉10へ
供給される燃料を調節するものであり、その制御には、
例えば、PID制御(比例積分微分制御)のように一般
的に使用されている制御方式を好適に用いることができ
る。
The fuel flow rate controller 13 regulates the fuel supplied to the heating furnace 10.
For example, a generally used control method such as PID control (proportional integral derivative control) can be preferably used.

【0030】本発明の要点は、接合部前後のストリップ
100の板温優先度を考慮したうえで、所定の制御周期
及び中央ライン速度Vの変化時において、加熱炉出口板
温TSを加熱炉出口目標板温TSRに的確に一致させる
ため、この燃料流量制御器13への設定値をどのように
定めていくかということである。
The main point of the present invention is that, taking into consideration the plate temperature priorities of the strips 100 before and after the joining portion, the heating furnace outlet plate temperature TS is set to the heating furnace outlet at a predetermined control period and when the central line speed V changes. This is how to set the set value for the fuel flow rate controller 13 in order to exactly match the target plate temperature TSR.

【0031】ストリップトラッキング装置15は、溶接
点検出器16からの検出信号P1、速度検出器14によ
り検出した中央ライン速度V、及び、溶接点検出器16
の設置場所から加熱炉出口11までの距離(ライン長
さ)に基づいて、加熱炉出口11から次の接合部までの
ストリップ長さZ(接合部位置)を常に求めて、板温優
先度判定装置18、及び、加熱炉出口板温予測制御器1
9に出力する。また、ストリップトラッキング装置15
は、接合部の加熱炉出口11通過のタイミングに、起動
信号P2をストリップ仕様設定器20に出力する。
The strip tracking device 15 detects the detection signal P1 from the welding point detector 16, the center line speed V detected by the speed detector 14, and the welding point detector 16.
Based on the distance (line length) from the installation location of the furnace to the heating furnace outlet 11, the strip length Z (joint position) from the heating furnace outlet 11 to the next joint is always obtained to determine the plate temperature priority. Device 18 and heating furnace outlet plate temperature prediction controller 1
Output to 9. Also, the strip tracking device 15
Outputs a start signal P2 to the strip specification setter 20 at the timing when the joint passes through the heating furnace outlet 11.

【0032】ストリップ仕様設定器20は、図1に示す
ように、ストリップトラッキング装置15からの起動信
号P2によって起動され、ストリップ仕様(板厚TH
1、TH2;板幅WD1、WD2;加熱炉出口目標板温
TSR1、TSR2、板温優先度PRT1、PRT2)
を出力する。
As shown in FIG. 1, the strip specification setting device 20 is activated by the activation signal P2 from the strip tracking device 15, and the strip specification (plate thickness TH
1, TH2; plate width WD1, WD2; heating furnace outlet target plate temperature TSR1, TSR2, plate temperature priority PRT1, PRT2)
Is output.

【0033】ここで、図1に示すストリップ仕様中の添
字(数字)1は、加熱炉出口11を通過中のストリップ
100に関する値であり、添字(数字)2は後続(将
来)のストリップ100に関する値である。
Here, the subscript (number) 1 in the strip specifications shown in FIG. 1 is a value relating to the strip 100 passing through the heating furnace outlet 11, and the subscript (number) 2 is relating to the subsequent (future) strip 100. It is a value.

【0034】板温優先度判定装置18は、接合部前後の
ストリップ100の板温優先度を比較し、加熱炉出口目
標板温TSRと加熱炉出口予測板温の偏差を将来にわた
って評価する時間の範囲(板温評価範囲N2)を変更す
るものである。即ち、この板温優先度判定装置18は、
ストリップ仕様設定器20からの情報(板温優先度PR
T1、PRT2)をもとに、前材優先、後材優先、ある
いは前後材で板温優先度が等しいなどの条件を判定し、
それに応じた板温評価範囲N2を、ストリップトラッキ
ング装置15によって通知される接合部位置Zの情報を
参照して、所定のタイミングで加熱炉出口板温予測制御
器19に出力する。そして、接合部が加熱炉出口11を
通過した後は、加熱炉10に存在するコイルが一つ(同
一コイル)になるため、板温優先度判定装置18が再度
起動され、板温評価範囲N2が所定の基準値(前後材で
板温優先度が等しい場合の板温評価範囲N2)に戻され
る。
The plate temperature priority determination device 18 compares the plate temperature priorities of the strips 100 before and after the joint, and evaluates the deviation between the heating furnace outlet target plate temperature TSR and the heating furnace outlet predicted plate temperature in the future. The range (plate temperature evaluation range N2) is changed. That is, the plate temperature priority determination device 18 is
Information from the strip specification setter 20 (plate temperature priority PR
Based on (T1, PRT2), conditions such as prior material prioritization, posterior material prioritization, or equal front and rear material temperature priority are determined,
The corresponding plate temperature evaluation range N2 is output to the heating furnace outlet plate temperature prediction controller 19 at a predetermined timing by referring to the information on the joint position Z notified by the strip tracking device 15. After the joint has passed through the heating furnace outlet 11, the number of coils existing in the heating furnace 10 is the same (the same coil), so the plate temperature priority determination device 18 is activated again, and the plate temperature evaluation range N2 is reached. Is returned to a predetermined reference value (a plate temperature evaluation range N2 when the front and rear materials have the same plate temperature priority).

【0035】次に、加熱炉出口板温予測制御器19は、
加熱炉出口板温TSを予測しながら制御するものであ
り、ストリップ100の中央ライン速度V、加熱炉10
の炉温検出器21から炉温観測値、即ち、加熱炉炉温T
F、燃料流量検出器12からの燃料流量観測値FL、加
熱炉出口板温検出器22からの板温観測値、即ち、加熱
炉出口板温TSや加熱炉出口11におけるストリップ1
00の板厚、板幅の各実績値及び将来にわたる各予見値
と、さらに、前述のストリップ仕様設定器20によって
通知される将来にわたる加熱炉出口目標板温TSRと、
板温優先度判定装置18からの板温評価範囲N2とを入
力して、燃料流量設定値FLSを計算する。そして、燃
料流量観測値FLは公知の燃料流量検出器により検出さ
れ、燃料流量制御器13と加熱炉出口板温予測制御器1
9へ出力される。
Next, the heating furnace outlet plate temperature prediction controller 19
The heating furnace outlet plate temperature TS is controlled while being predicted, and the central line speed V of the strip 100 and the heating furnace 10 are controlled.
From the furnace temperature detector 21 of the furnace temperature observed value, that is, the heating furnace temperature T
F, fuel flow rate observation value FL from fuel flow rate detector 12, plate temperature observation value from heating furnace outlet plate temperature detector 22, that is, strip 1 at heating furnace outlet plate temperature TS or heating furnace outlet 11
No. 00 plate thickness, each plate width actual value and each future prediction value, and further future heating furnace outlet target plate temperature TSR notified by the strip specification setter 20 described above,
The plate temperature evaluation range N2 from the plate temperature priority determination device 18 is input, and the fuel flow rate set value FLS is calculated. The fuel flow rate observation value FL is detected by a known fuel flow rate detector, and the fuel flow rate controller 13 and the heating furnace outlet plate temperature prediction controller 1 are detected.
9 is output.

【0036】ここで、加熱炉出口板温予測制御器19
は、加熱炉出口板温TS、炉温観測値TF、燃料流量観
測値FL、及び、ストリップ100の板厚、板幅、中央
ライン速度Vとの動的関係を示す公知の板温予測モデル
(例えば、特開昭61−190026号公報に記載され
ているモデル)を有する。
Here, the heating furnace outlet plate temperature prediction controller 19
Is a known plate temperature prediction model showing a dynamic relationship between the heating furnace outlet plate temperature TS, the furnace temperature observation value TF, the fuel flow rate observation value FL, and the strip thickness, strip width, and central line speed V of the strip 100 ( For example, it has a model described in Japanese Patent Laid-Open No. 61-190026).

【0037】また、パラメータ推定器17は、例えば、
特開昭61−190026号公報に記載されているパラ
メータ推定器を用いることができ、所定の周期で起動さ
れ、前記した「板温予測モデル」中のパラメータをこれ
までの実績をもとに推定する。
Further, the parameter estimator 17 is, for example,
The parameter estimator described in Japanese Patent Laid-Open No. 61-190026 can be used, is activated at a predetermined cycle, and estimates the parameters in the "plate temperature prediction model" described above based on past results. To do.

【0038】次に、上記した構成を有する連続焼鈍炉の
板温制御装置Aを用いた連続焼鈍炉の板温制御方法につ
いて説明する。本発明では、ストリップ100の接合部
が常にトラッキングされ、まず、加熱炉出口11におけ
るストリップ100の板厚、板幅、加熱炉出口板温T
S、板温優先度PRTの将来にわたる各予見値が決定さ
れる。そして、接合部前後の板温優先度PRTについて
は、これを比較し、前材優先、後材優先、あるいは前後
材で板温優先度が等しいなどの条件に応じた板温評価範
囲N2を予め決定しておく。
Next, a plate temperature control method for the continuous annealing furnace using the plate temperature control device A for the continuous annealing furnace having the above-mentioned structure will be described. In the present invention, the joint portion of the strip 100 is always tracked, and first, the plate thickness, the plate width, and the heating furnace outlet plate temperature T of the strip 100 at the heating furnace outlet 11 are first described.
Each future predictive value of S and the plate temperature priority PRT is determined. Then, with respect to the plate temperature priorities PRT before and after the joining portion, these are compared, and the plate temperature evaluation range N2 according to conditions such as prior material priority, posterior material priority, or equal plate temperature priorities of front and rear materials is preliminarily set. Make a decision.

【0039】ここで、板温評価範囲N2とは、加熱炉出
口目標板温TSRと加熱炉出口予測板温との偏差を将来
にわたって連続的に評価する時間範囲のことであり、ス
トリップ100の接合部前後で、加熱炉出口目標板温T
SRからの外れが、前材か後材のいずれか一方に偏るこ
となく、共に小さくなるような板温評価範囲N2を基準
値として定めておき、これを前材と後材で板温優先度に
差異がない場合に用いる。そして、前材を優先するべき
接合部においては、後材となる将来の板温よりも、前材
となる直近の板温を重視した板温制御を実現するため、
前記板温評価範囲N2を基準値よりも小さくし、後材を
優先すべき接合部では、前材となる直近の板温よりも、
後材となる将来の板温を重視した板温制御を実現するた
め、前記板温評価範囲N2を前記基準値より大きくす
る。
Here, the plate temperature evaluation range N2 is a time range in which the deviation between the heating furnace outlet target plate temperature TSR and the heating furnace outlet predicted plate temperature is continuously evaluated in the future, and the joining of the strips 100 is performed. Furnace temperature target plate temperature T
A plate temperature evaluation range N2 is set as a reference value so that the deviation from SR is not biased to either the front material or the rear material and becomes smaller, and this is set for the front material and the rear material. Used when there is no difference in. Then, in the joint portion where the front material should be prioritized, in order to realize the plate temperature control that emphasizes the latest plate temperature as the front material, rather than the future plate temperature as the rear material,
The plate temperature evaluation range N2 is set to be smaller than the reference value, and at the joint where the rear material should be prioritized,
The plate temperature evaluation range N2 is set to be larger than the reference value in order to realize the plate temperature control that places importance on the plate temperature in the future as a succeeding material.

【0040】次に、現在から将来にわたる加熱炉出口板
温TSを連続的に予想するが、本実施の形態では、公知
の板温予測モデル(例えば、特開昭60−190026
号公報に記載されているモデル)を利用して、加熱炉出
口板温TSを予測することができる。
Next, the heating furnace outlet plate temperature TS from the present to the future is continuously predicted. In the present embodiment, a known plate temperature prediction model (for example, Japanese Patent Laid-Open No. 60-190026).
It is possible to predict the heating furnace outlet plate temperature TS by using the model described in the publication).

【0041】以下に示すこの板温予測モデルの式(1)
は、過去から(t−1)時刻までの加熱炉出口板温TS
と、加熱炉10の炉温、燃料流量の実績値と、過去から
t時刻までの板厚、板幅、速度の値(実績又は予見値)
とを用いて、t時刻における加熱炉出口板温TSを予測
するものである。
Equation (1) of the plate temperature prediction model shown below
Is the heating furnace outlet plate temperature TS from the past to the time (t-1)
And the actual values of the furnace temperature and the fuel flow rate of the heating furnace 10 and the values of the plate thickness, the plate width, and the speed from the past to time t (actual or predicted value)
And are used to predict the heating furnace outlet plate temperature TS at time t.

【0042】[0042]

【数1】 [Equation 1]

【0043】そして、加熱炉出口板温予測制御器19
は、加熱炉出口板温を制御するため、所定の制御周期及
び中央ライン速度Vの変化時に直ちに起動され、操作量
である加熱炉10の燃料流量を時々刻々と算出する。こ
の燃料流量は、例えば、以下の式(2)で表される評価
関数Jの最小値を与える値として、その変更量を求める
ことができる。
Then, the heating furnace outlet plate temperature prediction controller 19
In order to control the heating furnace outlet plate temperature, is started immediately at a predetermined control cycle and when the central line speed V changes, and the fuel flow rate of the heating furnace 10, which is the manipulated variable, is calculated moment by moment. For this fuel flow rate, for example, the amount of change can be obtained as a value that gives the minimum value of the evaluation function J expressed by the following equation (2).

【0044】[0044]

【数2】 [Equation 2]

【0045】ここで、この評価関数Jにおける板温評価
範囲N2は、先に板温優先度判定装置18によって与え
られたものである。また、この評価関数Jの最小値を与
えるΔuの計算方法は、例えば、現代制御理論の一手法
である一般化予測制御理論(Generalized Predictive C
ontrol Theory)により与えられるが、この計算方法は種
々の文献に述べられており、また、本発明の直接関与す
るところではないので、その説明は省略する。
Here, the plate temperature evaluation range N2 in this evaluation function J has been previously given by the plate temperature priority determination device 18. Further, the calculation method of Δu that gives the minimum value of the evaluation function J is, for example, a generalized predictive control theory (Generalized Predictive C) which is one method of modern control theory.
Ontrol Theory), this calculation method is described in various documents, and since it does not directly relate to the present invention, its description is omitted.

【0046】このように、本実施の形態に係る連続焼鈍
炉の板温制御方法では、接合部前後のストリップ100
の板温優先度を比較し、前材優先、後材優先、あるいは
前後材で板温優先度が等しいなどの条件に応じた板温評
価範囲N2を定め、所定の制御周期及び中央ライン速度
Vの変化時に、加熱炉出口板温TSを連続的に予測しな
がらフィードバック制御しているため、中央ライン速度
Vの変化などの外乱が発生したときにも、直ちにこの制
御の修正計算を行うことができ、プリセット的手法にも
とづく制御誤差の発生が回避できると共に、接合部前後
で板温優先度が異なる場合であっても、板温優先度に応
じた従来にない的確な板温制御を実現することができ
る。
As described above, in the plate temperature control method for the continuous annealing furnace according to the present embodiment, the strip 100 before and after the joining portion is
The sheet temperature evaluation ranges N2 are determined according to conditions such as the sheet temperature priorities of the front and rear materials, or the front and rear materials having the same sheet temperature priority. Since the feedback control is performed while continuously predicting the heating furnace outlet plate temperature TS at the time of the change of, the correction calculation of this control can be immediately performed even when the disturbance such as the change of the central line speed V occurs. It is possible to avoid the occurrence of a control error based on a preset method, and realize an unprecedented accurate plate temperature control according to the plate temperature priority even when the plate temperature priorities are different before and after the joint. be able to.

【0047】[0047]

【実施例】上記した本発明の一実施の形態に係る連続焼
鈍炉の板温制御方法について、その動作内容を示したタ
イムチャートを図2に示す。なお、ここでは、連続焼鈍
炉の加熱炉10を直火炉としている。
EXAMPLE FIG. 2 is a time chart showing the operation contents of the plate temperature control method for the continuous annealing furnace according to the embodiment of the present invention described above. Here, the heating furnace 10 of the continuous annealing furnace is a direct furnace.

【0048】本動作内容は、図2(a)に示すように、
ストリップI(板厚:0.875mm、加熱炉出口目標
板温TSR:700℃、板温優先度:普通)、ストリッ
プII(板厚:0.725mm、加熱炉出口目標板温TS
R:710℃、板温優先度:高)、ストリップ III(板
厚:0.820mm、加熱炉出口目標板温TSR:71
0℃、板温優先度:普通)、ストリップ IV (板厚:
0.685mm、加熱炉出口目標板温TSR:710
℃、板温優先度:普通)を、次々に接合して、連続焼鈍
炉へ連続的に挿通するときの板温制御方法に係る。
The contents of this operation are as shown in FIG.
Strip I (plate thickness: 0.875 mm, heating furnace outlet target plate temperature TSR: 700 ° C, plate temperature priority: normal), strip II (plate thickness: 0.725 mm, heating furnace outlet target plate temperature TS
R: 710 ° C., plate temperature priority: high, strip III (plate thickness: 0.820 mm, heating furnace outlet target plate temperature TSR: 71
0 ℃, Plate temperature priority: Normal, Strip IV (plate thickness:
0.685 mm, heating furnace outlet target plate temperature TSR: 710
C., plate temperature priority: normal), and a plate temperature control method when the plates are successively inserted into a continuous annealing furnace.

【0049】かかる連続焼鈍炉の板温制御においては、
各ストリップの板温優先度の差異を考慮した的確な板温
制御を実現する必要があり、ストリップIとストリップ
IIの接合部では、後材(ストリップII)を優先し、スト
リップIIとストリップ IIIの接合部では、前材(ストリ
ップII)を優先し、そして、ストリップ IIIとストリッ
プ IV の接合部では、前材か後材のいずれか一方のみを
優先することのない板温制御を実施する必要がある。
In controlling the plate temperature of such a continuous annealing furnace,
It is necessary to realize accurate plate temperature control considering the difference in plate temperature priority of each strip.
At the II joint, the back material (strip II) takes precedence, at the strip II and strip III joint, the front material (strip II) takes precedence, and at the strip III and strip IV joint, the front material It is necessary to carry out plate temperature control without giving priority to only one of the following materials.

【0050】本発明の一実施の形態に係る連続焼鈍炉の
板温制御方法では、前述したように、接合部前後のスト
リップ100の板温優先度を比較し、前材優先、後材優
先、あるいは前後材で板温優先度が等しい(優先なし)
などの条件に応じた板温評価範囲N2を定め、所定の制
御周期及び中央ライン速度Vの変化時に、加熱炉出口板
温TSを連続的に予測しながらフィードバック制御して
いる。
In the continuous annealing furnace plate temperature control method according to one embodiment of the present invention, as described above, the plate temperature priorities of the strips 100 before and after the joining portion are compared, and the front material priority, the rear material priority, Or the front and back materials have the same plate temperature priority (no priority)
The plate temperature evaluation range N2 is determined according to such conditions, and feedback control is performed while continuously predicting the heating furnace outlet plate temperature TS when the predetermined control cycle and the central line speed V change.

【0051】従って、まず、ストリップIとストリップ
IIの接合部では、後材側(ストリップII)の板温優先度
が高いことから、板温評価範囲N2が所定の基準値より
も大きくなり、図2(c)に示すように、早めに加熱炉
10の燃料流量が低下して、前材側のストリップIの末
端部分における加熱炉出口板温TSが低めになるもの
の、図2(d)に示すように、板厚が薄くなって、板温
がステップ的に上昇した後材側のストリップIIにおい
ては、先端部分から加熱炉出口板温TSと加熱炉出口目
標板温TSRが可及的に一致している。
Therefore, first, strip I and strip
At the joining portion of II, since the plate temperature priority of the rear material side (strip II) is high, the plate temperature evaluation range N2 becomes larger than a predetermined reference value, and as shown in FIG. Although the fuel flow rate of the heating furnace 10 is reduced and the heating furnace outlet plate temperature TS at the end portion of the strip I on the front material side is lowered, as shown in FIG. In the strip II on the material side after the plate temperature rises stepwise, the heating furnace outlet plate temperature TS and the heating furnace outlet target plate temperature TSR are as close to each other as possible from the tip portion.

【0052】次に、ストリップIIとストリップ IIIの接
合部では、前材側(ストリップII)の板温優先度が高い
ため、板温評価範囲N2が所定の基準値よりも小さくな
り、図2(c)に示すように、加熱炉10内をストリッ
プIIが通過している間は加熱炉10の燃料流量が変化せ
ず、図2(d)に示すように、前材側のストリップIIに
おいては、末端部分においても全く板温外れを生じてい
ない。
Next, at the joint portion of the strips II and III, since the plate temperature priority on the front material side (strip II) is high, the plate temperature evaluation range N2 becomes smaller than a predetermined reference value, and the temperature shown in FIG. As shown in FIG. 2C, the fuel flow rate of the heating furnace 10 does not change while the strip II is passing through the heating furnace 10. As shown in FIG. In the end part, no plate temperature deviation occurred.

【0053】さらに、ストリップ IIIとストリップ IV
との接合部では、前後材の板温優先度が等しいため、板
温評価範囲N2が所定の基準値となり、図2(c)に示
すように、やや早めに加熱炉10の燃料流量が低下し
て、前材側のストリップ IIIの末端部分における加熱炉
出口板温TSがやや低めになるものの、図2(d)に示
すように、板厚が薄くなって、板温がステップ的に上昇
した後材側のストリップIV における先端部分と合わせ
てみると、前材側ストリップ IIIの末端部分と後材側ス
トリップ IV の先端部分で互いに板温偏差を分け合うよ
うな形で最適な制御が実現されている。
Further, strip III and strip IV
In the joint portion with and, since the plate temperature priorities of the front and rear materials are the same, the plate temperature evaluation range N2 becomes a predetermined reference value, and the fuel flow rate of the heating furnace 10 decreases a little early as shown in FIG. 2 (c). Then, although the heating furnace outlet plate temperature TS at the end portion of the strip III on the front material side becomes slightly lower, as shown in FIG. 2D, the plate thickness becomes thin and the plate temperature rises stepwise. When combined with the leading edge of the strip IV on the rear material side, optimal control is realized in such a manner that the end portion of the front material strip III and the leading edge of the rear material strip IV share the plate temperature deviation. ing.

【0054】以上、本発明を、一実施の形態を参照して
説明してきたが、本発明は何ら上記した実施の形態に記
載の構成に限定されるものではなく、特許請求の範囲に
記載されている事項の範囲内で考えられるその他の実施
の形態や変容例も含むものである。
Although the present invention has been described with reference to one embodiment, the present invention is not limited to the structure described in the above embodiment, but is described in the scope of claims. It also includes other embodiments and modifications within the scope of the matters described.

【0055】[0055]

【発明の効果】請求項1記載の連続焼鈍炉の板温制御方
法においては、所定の制御周期又は中央ライン速度変更
時に、現在から将来にわたる加熱炉出口での目標板温と
予測板温が自然かつ連続的に制御計算に取り込まれ、将
来の板温を予測しながらフィードバック制御を実施して
いるので、中央ライン速度Vの変化などが発生した場合
にもただちに制御の修正計算を行うことができ、プリセ
ット的手法にもとづく制御誤差の発生なども回避するこ
とができる。しかも、前記加熱炉出口目標板温と加熱炉
出口予測板温との偏差を将来にわたって評価する板温評
価範囲を前記板温優先度に応じて変更させているので、
接合部の前後で板温優先度が異なる場合であっても、従
来にない極めて的確な板温制御を実施することができ
る。
In the plate temperature control method for the continuous annealing furnace according to the first aspect of the present invention, the target plate temperature and the predicted plate temperature at the exit of the heating furnace from the present to the future are natural when the predetermined control cycle or the central line speed is changed. Moreover, since it is continuously incorporated into the control calculation and the feedback control is performed while predicting the future plate temperature, the correction calculation of the control can be immediately performed even when the change of the central line speed V occurs. It is also possible to avoid occurrence of a control error based on the preset method. Moreover, since the plate temperature evaluation range for evaluating the deviation between the heating furnace outlet target plate temperature and the heating furnace outlet predicted plate temperature in the future is changed according to the plate temperature priority,
Even if the plate temperature priorities are different before and after the joint, it is possible to carry out extremely accurate plate temperature control that has not been available in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係る連続焼鈍炉の板温
制御方法に好適に使用できる連続焼鈍炉の板温制御装置
の全体構成を示すブロック図である。
FIG. 1 is a block diagram showing an overall configuration of a plate temperature control device for a continuous annealing furnace that can be preferably used in a plate temperature control method for a continuous annealing furnace according to an embodiment of the present invention.

【図2】同実施例における制御の動作内容を示すタイム
チャートである。
FIG. 2 is a time chart showing operation contents of control in the embodiment.

【符号の説明】[Explanation of symbols]

A 連続焼鈍炉の板温制御装置 TF 炉温観測
値 FL 燃料流量観測値 TS 加熱炉出
口板温 V 通板速度(中央ライン速度) TSR 加熱炉
出口目標板温 P1 検出信号 Z 加熱炉出口から次の接合部位置までのストリップ長
さ P2 起動信号 PRT 板温優
先度 FLS 燃料流量設定値 N2 板温評価
範囲 10 加熱炉 11 加熱炉出
口 12 燃料流量検出器 13 燃料流量
制御器 14 速度検出器 15 ストリップトラッキング装置(ストリップトラッ
キング手段) 16 溶接点検出器 17 パラメータ推定器(パラメータ推定手段) 18 板温優先度判定装置 19 加熱炉出
口板温予測制御器 20 ストリップ仕様設定器 21 炉温検出
器 22 加熱炉出口板温検出器 100 ストリ
ップ
A Plate temperature control device for continuous annealing furnace TF Observed temperature of furnace FL Observed value of fuel flow rate TS Heating furnace outlet plate temperature V Passing speed (center line speed) TSR Heating furnace outlet target plate temperature P1 Detection signal Z From heating furnace outlet Strip length to joint position P2 Start signal PRT Plate temperature priority FLS Fuel flow rate set value N2 Plate temperature evaluation range 10 Heating furnace 11 Heating furnace outlet 12 Fuel flow rate detector 13 Fuel flow rate controller 14 Speed detector 15 Strip Tracking device (strip tracking means) 16 Welding point detector 17 Parameter estimator (parameter estimation means) 18 Plate temperature priority determination device 19 Heating furnace outlet plate temperature prediction controller 20 Strip specification setting device 21 Furnace temperature detector 22 Heating furnace Outlet plate temperature detector 100 strip

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江口 晴彦 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Haruhiko Eguchi 1-1 Hibahata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Corporation Yawata Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 板厚、板幅、加熱炉出口目標板温、板温
優先度の少なくとも一つが異なるストリップを接合し、
加熱炉に連続的に挿通して焼鈍処理を行う連続焼鈍炉に
おいて、所定の制御周期及び中央ライン速度変更時に、
現在から将来にわたる加熱炉出口板温を連続的に予測
し、前記加熱炉出口目標板温と加熱炉出口予測板温との
偏差及び加熱炉燃料流量の変動量による所定の評価関数
を最適化する燃料流量を算出して、前記加熱炉出口板温
を制御する連続焼鈍炉の板温制御方法であって、 前記ストリップの接合部前後で前記板温優先度が異なる
場合には、優先側の板温を重視した制御を行うために、
前記加熱炉出口目標板温と前記加熱炉出口予測板温との
偏差を将来にわたって評価する板温評価範囲を前記板温
優先度に応じて変更することを特徴とする連続焼鈍炉の
板温制御方法。
1. A strip having different at least one of plate thickness, plate width, heating furnace outlet target plate temperature, and plate temperature priority is joined,
In a continuous annealing furnace that performs an annealing treatment by continuously inserting it into a heating furnace, when changing a predetermined control cycle and central line speed,
Continuously predict the heating furnace outlet plate temperature from the present to the future, and optimize a predetermined evaluation function based on the deviation between the heating furnace outlet target plate temperature and the heating furnace outlet predicted plate temperature and the fluctuation amount of the heating furnace fuel flow rate. A method of controlling the plate temperature of a continuous annealing furnace, which calculates a fuel flow rate and controls the plate temperature at the outlet of the heating furnace, wherein when the plate temperature priorities are different before and after the joining portion of the strip, the plate on the priority side In order to perform control with an emphasis on temperature,
Plate temperature control of a continuous annealing furnace, characterized in that the plate temperature evaluation range for evaluating the deviation between the heating furnace outlet target plate temperature and the heating furnace outlet predicted plate temperature in the future is changed according to the plate temperature priority. Method.
JP15756296A 1996-05-28 1996-05-28 Method for controlling strip temperature in continuous annealing furnace Withdrawn JPH09316545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15756296A JPH09316545A (en) 1996-05-28 1996-05-28 Method for controlling strip temperature in continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15756296A JPH09316545A (en) 1996-05-28 1996-05-28 Method for controlling strip temperature in continuous annealing furnace

Publications (1)

Publication Number Publication Date
JPH09316545A true JPH09316545A (en) 1997-12-09

Family

ID=15652400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15756296A Withdrawn JPH09316545A (en) 1996-05-28 1996-05-28 Method for controlling strip temperature in continuous annealing furnace

Country Status (1)

Country Link
JP (1) JPH09316545A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255443A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Method and apparatus for controlling plate temperature in heating furnace
WO2012055222A1 (en) * 2010-10-27 2012-05-03 宝山钢铁股份有限公司 Method and device for controlling furnace temperature of burning heating furnace
CN115198085A (en) * 2022-07-13 2022-10-18 北京京诚凤凰工业炉工程技术有限公司 Electric radiant tube heating three-phase pulse control device and heat treatment furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255443A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Method and apparatus for controlling plate temperature in heating furnace
WO2012055222A1 (en) * 2010-10-27 2012-05-03 宝山钢铁股份有限公司 Method and device for controlling furnace temperature of burning heating furnace
JP2014500939A (en) * 2010-10-27 2014-01-16 宝山鋼鉄股▲分▼有限公司 Method and apparatus for controlling furnace temperature of combustion heating furnace
KR101443281B1 (en) * 2010-10-27 2014-09-23 바오샨 아이론 앤 스틸 유한공사 Method and device for controlling furnace temperature of burning heating furnace
US9383745B2 (en) 2010-10-27 2016-07-05 Baoshan Iron & Steel Co., Ltd. Method and device for controlling furnace temperature of burning heating furnace
CN115198085A (en) * 2022-07-13 2022-10-18 北京京诚凤凰工业炉工程技术有限公司 Electric radiant tube heating three-phase pulse control device and heat treatment furnace
CN115198085B (en) * 2022-07-13 2024-01-30 北京京诚凤凰工业炉工程技术有限公司 Three-phase pulse control device for heating electric radiant tube and heat treatment furnace

Similar Documents

Publication Publication Date Title
US7310981B2 (en) Method for regulating the temperature of strip metal
JPH09316545A (en) Method for controlling strip temperature in continuous annealing furnace
JP2000094022A (en) Plate leaping speed controller
EP0531963B1 (en) Method of controlling heat input to an alloying furnace for manufacturing hot galvanized and alloyed band steel
JP2809925B2 (en) Sheet temperature control method for continuous annealing furnace
JPH09227954A (en) Method for controlling strip temperature in continuous annealing furnace and device therefor
JP2013087319A (en) Method and apparatus for controlling direct-fired continuous heating furnace
TWI749347B (en) Rolling shape control apparatus
JPS6334210B2 (en)
JPH032331A (en) Apparatus for controlling strip temperature in continuous annealing furnace
JPH02258933A (en) Sheet temperature control method in continuous annealing furnace
JPH10206038A (en) Furnace heating control method using fuzzy logic
JPH1030127A (en) Method for controlling strip temperature in continuous annealing furnace
JP2593027B2 (en) Plating weight control method
JPH0791590B2 (en) Velocity changing method in plate temperature control of continuous annealing furnace
JPH0472022A (en) Method and device for controlling strip temperature in continuous annealing furnace
JPH07138658A (en) Device for controlling dew point in continuous heat treatment furnace
JP3085858B2 (en) Rolling mill control device
JPH0569020A (en) Method for controlling temperature in thick plate rolling
JP2545653B2 (en) Heat input control method for alloying furnace of hot-dip galvanized steel strip
JPS6027405B2 (en) temperature control device
JPS5827343B2 (en) Automatic control method for plating coating amount
JP2000164330A (en) Control method and control device for induction heating device
JPH08246064A (en) Method for setting temperature in continuous furnace
JP3046467B2 (en) Heating furnace heating control method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030805