TWI817819B - Method and computer program product for controlling hot blast stove - Google Patents

Method and computer program product for controlling hot blast stove Download PDF

Info

Publication number
TWI817819B
TWI817819B TW111142766A TW111142766A TWI817819B TW I817819 B TWI817819 B TW I817819B TW 111142766 A TW111142766 A TW 111142766A TW 111142766 A TW111142766 A TW 111142766A TW I817819 B TWI817819 B TW I817819B
Authority
TW
Taiwan
Prior art keywords
hot blast
blast stove
parameter
value
values
Prior art date
Application number
TW111142766A
Other languages
Chinese (zh)
Other versions
TW202419791A (en
Inventor
吳調原
孫文龍
鄭璨朧
Original Assignee
中國鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW111142766A priority Critical patent/TWI817819B/en
Application granted granted Critical
Publication of TWI817819B publication Critical patent/TWI817819B/en
Publication of TW202419791A publication Critical patent/TW202419791A/en

Links

Images

Landscapes

  • Vending Machines For Individual Products (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

A method and a computer program product for controlling a hot blast stove are provided. The method includes: inputting operating predetermined values of a hot blast stove operating parameter group in a first cycle operation and request values of a hot air request parameter group in a second cycle operation into a predictive model for computing to output a value of a predictive hot air temperature in the second cycle operation, the hot blast stove operating parameter group including an affecting efficiency parameter with which a value of a fuel efficiency parameter changes, a firstly adjective value corresponding to the value of the affecting efficiency parameter; adjusting the affecting efficiency parameter based on increasing the values of the fuel efficiency parameter to obtain secondly adjective values and inputting the secondly adjective values into the predictive model to output values of the predictive hot air temperature; choosing one as a suitable value from the firstly adjective value and the secondly adjective values; and controlling the hot blast stove to being in the second cycle operation according to the suitable value.

Description

熱風爐的控制方法及其電腦程式產品Control method of hot blast stove and its computer program product

本發明是有關於一種控制方法及電腦程式產品,且特別是指一種熱風爐的控制方法及其電腦程式產品。The present invention relates to a control method and a computer program product, and in particular, to a control method of a hot blast furnace and a computer program product thereof.

高爐熱風爐的作用是供應穩定溫度熱風至高爐。而蓄熱式的高爐熱風爐在每一循環分成燃燒期及送風期:在燃燒期時,高爐熱風爐內燃燒燃料且將熱量蓄積在蓄熱磚;在送風期時,調節入爐的冷鼓風帶走蓄熱磚的熱量且與未入爐的冷鼓風混合以維持穩定風溫並輸出。又高爐熱風爐使用的燃料佔高爐整體使用燃料的比例極高,因此提升高爐熱風爐燃料的使用效率一直是本領域研究的目標。The function of the blast furnace hot blast furnace is to supply hot blast with stable temperature to the blast furnace. The regenerative blast furnace hot blast furnace is divided into a combustion period and an air supply period in each cycle: during the combustion period, the blast furnace burns fuel and accumulates heat in the regenerative bricks; during the air supply period, the cold blast belt entering the furnace is adjusted. The heat from the regenerative bricks is removed and mixed with the cold blast that has not entered the furnace to maintain a stable air temperature and output. In addition, the fuel used by the blast furnace hot blast stove accounts for a very high proportion of the fuel used by the blast furnace as a whole. Therefore, improving the fuel usage efficiency of the blast furnace hot blast stove has always been the goal of research in this field.

本發明的目的是在於提供一種熱風爐的控制方法及其電腦程式產品,其透過調整影響熱風爐的燃料利用效率的影響效率參數,並將調整的影響效率參數之值輸入預測模型運算以輸出下一循環操作的預測熱風溫度,依據預測模型的輸出結果選擇符合下一循環操作需求的一者來控制熱風爐的下一循環操作,使熱風爐能發揮最大的節能效果。The purpose of the present invention is to provide a control method for a hot blast stove and its computer program product, which adjusts the efficiency parameters that influence the fuel utilization efficiency of the hot blast stove, and inputs the value of the adjusted efficiency parameter into a prediction model operation to output the following Based on the predicted hot air temperature for one cycle of operation, one that meets the next cycle operation requirements is selected based on the output of the prediction model to control the next cycle operation of the hot blast stove so that the hot blast stove can maximize energy saving effects.

本發明之一態樣是在提供一種熱風爐的控制方法,其包含:提供熱風爐操作參數組所對應的一組操作預設值,其中此組操作預設值為熱風爐在第一循環操作的操作結果;提供熱風爐在第二循環操作需產生熱風的熱風需求參數組所對應的一組需求值;將此組操作預設值及此組需求值輸入預測模型來進行運算,以輸出第二循環操作之預測熱風溫度之值,其中,第二循環操作係接續第一循環操作,熱風爐操作參數組相關熱風爐內的溫度及熱風輸出參數,且包括影響效率參數,熱風爐的燃料利用效率之值係隨著影響效率參數之值而變化,此組操作預設值中的第一調整值為對應影響效率參數之值,熱風需求參數組包括熱風需求溫度;以提高燃料利用效率之值來調整影響效率參數,而獲得複數個對應不同的燃料利用效率之值的第二調整值;將第二調整值輸入該預測模型運算以輸出此些第二調整值分別對應之預測熱風溫度之值;從第一調整值及第二調整值中選擇一者在其對應之預測熱風溫度之值符合熱風需求溫度且對應至最高的燃料利用效率之值作為合適值;以及依據合適值控制熱風爐,以進行第二循環操作。One aspect of the present invention is to provide a control method for a hot blast stove, which includes: providing a set of operation preset values corresponding to the hot blast stove operating parameter group, wherein the set of operation preset values is the hot blast stove operating in the first cycle. The operation results; provide a set of demand values corresponding to the hot air demand parameter group that the hot air stove needs to generate hot air in the second cycle operation; input this set of operation preset values and this set of demand values into the prediction model for calculation to output the first The value of the predicted hot air temperature for the second cycle operation. The second cycle operation is a continuation of the first cycle operation. The hot blast stove operating parameter group is related to the temperature in the hot blast stove and the hot air output parameters, and includes parameters that affect efficiency and the fuel utilization of the hot blast stove. The value of efficiency changes with the value of the parameter that affects efficiency. The first adjustment value in this set of operation preset values is the value corresponding to the parameter that affects efficiency. The hot air demand parameter group includes the hot air demand temperature; a value to improve fuel utilization efficiency. To adjust the parameters that affect efficiency, obtain a plurality of second adjustment values corresponding to different fuel utilization efficiency values; input the second adjustment values into the prediction model operation to output the predicted hot air temperature values corresponding to these second adjustment values. ;Select one of the first adjustment value and the second adjustment value whose corresponding predicted hot air temperature value meets the hot air demand temperature and corresponds to the highest fuel utilization efficiency as the appropriate value; and control the hot air stove according to the appropriate value, to perform the second cycle operation.

依據本發明的一實施例,影響效率參數是經由模擬熱風爐的物理模型,在熱風爐運作時依據熱風爐操作參數組與燃料利用效率的相關性所獲得。According to an embodiment of the present invention, the efficiency parameters are obtained by simulating the physical model of the hot blast stove and based on the correlation between the hot blast stove operating parameter set and the fuel utilization efficiency when the hot blast stove is operating.

依據本發明的一實施例,熱風爐在每一次的循環包括燃燒期及送風期,影響效率參數為煙氣排放終點溫度,其為燃燒期末期時熱風爐排放煙氣的溫度。According to an embodiment of the present invention, each cycle of the hot blast stove includes a combustion period and an air supply period, and the parameter that affects efficiency is the flue gas emission end temperature, which is the temperature of the flue gas discharged by the hot blast stove at the end of the combustion period.

依據本發明的一實施例,每次調整煙氣排放終點溫度的值介於攝氏1度至攝氏5度之間。According to an embodiment of the present invention, the value of the flue gas emission end temperature adjusted each time is between 1 degree Celsius and 5 degrees Celsius.

依據本發明的一實施例,控制參數隨著影響效率參數變化,控制參數與熱風爐的操作穩定性相關,在預測模型運算的步驟中,預測模型還輸出在第二循環操作時對應第一調整值的控制參數之值,在將第二調整值輸入預測模型運算的步驟中,預測模型還輸出在第二循環操作時分別對應第二調整值的控制參數之值,在從第一調整值及第二調整值中選擇的步驟中,選擇的合適值對應的控制參數之值還需符合使熱風爐操作穩定的穩定範圍。According to an embodiment of the present invention, the control parameters change with the parameters that affect the efficiency, and the control parameters are related to the operational stability of the hot blast furnace. In the step of calculating the prediction model, the prediction model also outputs the first adjustment corresponding to the second cycle operation. The value of the control parameter of the value, in the step of inputting the second adjustment value into the prediction model operation, the prediction model also outputs the value of the control parameter corresponding to the second adjustment value in the second loop operation, from the first adjustment value and In the step of selecting the second adjustment value, the value of the control parameter corresponding to the selected appropriate value must also conform to the stable range that makes the operation of the hot blast furnace stable.

依據本發明的一實施例,熱風爐在每一次的循環包括燃燒期及送風期,控制參數為混冷閥終點開度,其為送風期末期時熱風爐的混冷閥之開度。According to an embodiment of the present invention, each cycle of the hot blast furnace includes a combustion period and an air supply period, and the control parameter is the end opening of the cooling mixing valve, which is the opening of the mixing cooling valve of the hot blast furnace at the end of the air supply period.

依據本發明的一實施例,穩定範圍邊界的極限值係隨著熱風爐的使用期限、損壞頻率、或損壞次數而調整。According to an embodiment of the present invention, the limit value of the stability range boundary is adjusted according to the service life, damage frequency, or number of damage of the hot blast stove.

依據本發明的一實施例,在預測模型運算的步驟中,還將第二循環操作的燃料條件輸入預測模型運算。According to an embodiment of the present invention, in the step of predicting the model calculation, the fuel conditions of the second cycle operation are also input into the prediction model calculation.

依據本發明的一實施例,預測模型是依據熱風爐操作參數組所對應的複數組歷史值、燃料條件所對應的複數個歷史值與熱風需求參數組所對應的複數組歷史值,及對應的預測熱風溫度所對應的複數個歷史值與對應的控制參數所對應的複數個歷史值,經由機器學習演算法或統計方法建立熱風爐操作參數組、燃料條件、熱風需求參數組,與預測熱風溫度、控制參數之間的對應關係。According to an embodiment of the present invention, the prediction model is based on a complex set of historical values corresponding to the hot blast stove operating parameter group, a plurality of historical values corresponding to the fuel conditions, a complex set of historical values corresponding to the hot air demand parameter set, and the corresponding Predict the plurality of historical values corresponding to the hot air temperature and the plurality of historical values corresponding to the corresponding control parameters. Use machine learning algorithms or statistical methods to establish the hot air furnace operating parameter group, fuel conditions, hot air demand parameter group, and predict the hot air temperature. , the correspondence between control parameters.

本發明之另一態樣是在提供一種用於控制熱風爐的電腦程式產品,當電腦載入此電腦程式產品並執行後,可完成如上所述之熱風爐的控制方法。Another aspect of the present invention is to provide a computer program product for controlling a hot blast stove. When the computer loads the computer program product and executes it, the control method of the hot blast stove as described above can be completed.

以下仔細討論本發明的實施例。然而,可以理解的是,實施例提供許多可應用的概念,其可實施於各式各樣的特定內容中。所討論、揭示之實施例僅供說明,並非用以限定本發明之範圍。Embodiments of the present invention are discussed in detail below. It is to be appreciated, however, that the embodiments provide many applicable concepts that can be embodied in a wide variety of specific contexts. The embodiments discussed and disclosed are for illustration only and are not intended to limit the scope of the invention.

在本文中所使用的用語僅是為了描述特定實施例,非用以限制申請專利範圍。除非另有限制,否則單數形式的「一」或「該」用語也可用來表示複數形式。The terms used herein are for the purpose of describing specific embodiments only and are not intended to limit the scope of the patent application. Unless otherwise restricted, the singular form "a" or "the" may also be used to denote the plural form.

參閱圖1和圖2,其中圖1為依據執行本發明實施例之熱風爐的控制方法的熱風爐系統100的方塊圖,圖2為熱風爐200的一示例。熱風爐系統100用以供應穩定溫度之熱風至高爐。熱風爐系統100包括熱風爐200和控制模組300。Referring to FIGS. 1 and 2 , FIG. 1 is a block diagram of a hot blast stove system 100 according to a method for controlling a hot blast stove according to an embodiment of the present invention. FIG. 2 is an example of a hot blast stove 200 . The hot blast furnace system 100 is used to supply hot blast with stable temperature to the blast furnace. The hot blast stove system 100 includes a hot blast stove 200 and a control module 300 .

熱風爐200包括燃燒室210、蓄熱室220及連通燃燒室210和蓄熱室220的爐頂230。蓄熱室220內設置多個蓄熱磚(圖未示)。熱風爐200在每一次的循環包括燃燒期及送風期。在燃燒期時(氣體的流向如實線箭頭所示),燃料在燃燒室210燃燒且產生煙氣,煙氣產生的熱量隨著煙氣而傳輸且蓄積在蓄熱磚內,之後煙氣自蓄熱室220排放至爐外。在送風期時(氣體的流向如虛線箭頭所示),自蓄熱室220調節進入爐內的冷鼓風在經過蓄熱磚帶走熱量而升溫成熱風,熱風與未進爐的冷鼓風混合以維持穩定熱風風溫輸出至高爐(圖未示),其中用來維持穩定風溫的冷鼓風之流量是經由調節混冷閥240之開度來控制。The hot blast stove 200 includes a combustion chamber 210, a regenerator 220, and a furnace top 230 that communicates with the combustion chamber 210 and the regenerator 220. A plurality of heat storage bricks (not shown) are provided in the heat storage chamber 220 . Each cycle of the hot blast stove 200 includes a combustion period and an air supply period. During the combustion period (the flow direction of the gas is shown by the solid arrow), the fuel burns in the combustion chamber 210 and generates flue gas. The heat generated by the flue gas is transmitted along with the flue gas and accumulated in the regenerator bricks. Afterwards, the flue gas exits the regenerator. 220 is discharged out of the furnace. During the air supply period (the flow direction of the gas is shown by the dotted arrow), the cold blast entering the furnace from the regenerator 220 takes away heat through the regenerator bricks and heats up into hot air. The hot air is mixed with the cold blast that has not entered the furnace. The hot air temperature is maintained at a stable temperature and output to the blast furnace (not shown). The flow rate of the cold blast used to maintain a stable air temperature is controlled by adjusting the opening of the cooling mixing valve 240.

熱風爐200的熱風爐操作參數組為熱風爐200每次循環的操作結果,其為相關熱風爐200內的溫度及熱風輸出參數,例如為送風期末期時的爐頂溫度、燃燒期末期時熱風爐排放煙氣的溫度(即煙氣排放終點溫度)、熱風溫度(即輸出至高爐的熱風之溫度)、熱風流量(即自蓄熱室220調節進入爐內升溫成熱風的流量)等。其中,在熱風爐操作參數組中包括影響效率參數,其影響熱風爐200的燃料利用效率,燃料利用效率為「熱風熱量」比「燃料之投熱熱量」的比值。在本示例中,經由模擬熱風爐200的物理模型,在熱風爐200運作時依據熱風爐操作參數組與燃料利用效率的相關性,即燃料利用效率之值係隨著影響效率參數之值而變化,從而在熱風爐操作參數組中找出影響效率參數。在本示例中,影響效率參數為煙氣排放終點溫度。如圖3所示,其為煙氣排放溫度與燃燒時間、燃料利用效率關係的模擬圖。煙氣排放溫度隨著燃燒時間的增加成為煙氣排放終點溫度,在煙氣排放終點溫度從攝氏354度調降為攝氏344度時,燃料利用效率之值提升0.6%;在煙氣排放終點溫度從攝氏354度調降為攝氏337度時,燃料利用效率之值提升1%;在煙氣排放終點溫度從攝氏354度調降為攝氏330度時,燃料利用效率之值提升1.5%;在煙氣排放終點溫度從攝氏354度調降為攝氏322度時,燃料利用效率之值提升2%。因此,調整煙氣排放終點溫度下降時,燃料利用效率隨之提升。The hot blast stove operating parameter group of the hot blast stove 200 is the operation result of each cycle of the hot blast stove 200, which is the temperature and hot air output parameters in the relevant hot blast stove 200, such as the furnace top temperature at the end of the air supply period, the hot air at the end of the combustion period. The temperature of the furnace exhaust flue gas (i.e., the end temperature of the flue gas emission), the hot air temperature (i.e., the temperature of the hot air output to the blast furnace), the hot air flow rate (i.e., the flow rate of hot air that enters the furnace and is heated from the regenerator 220 to adjust it), etc. Among them, the hot blast stove operating parameter group includes efficiency parameters, which affect the fuel utilization efficiency of the hot blast stove 200. The fuel utilization efficiency is the ratio of "heat of hot air" to "heat input of fuel." In this example, by simulating the physical model of the hot blast stove 200, when the hot blast stove 200 is operating, according to the correlation between the hot blast stove operating parameter set and the fuel utilization efficiency, that is, the value of the fuel utilization efficiency changes with the value of the efficiency parameter. , so as to find out the parameters that affect the efficiency in the hot blast furnace operating parameter group. In this example, the parameter affecting efficiency is the flue gas emission end temperature. As shown in Figure 3, it is a simulation diagram of the relationship between flue gas emission temperature, combustion time, and fuel utilization efficiency. As the combustion time increases, the flue gas emission temperature becomes the flue gas emission end temperature. When the flue gas emission end temperature decreases from 354 degrees Celsius to 344 degrees Celsius, the fuel utilization efficiency increases by 0.6%; at the flue gas emission end temperature, When the temperature drops from 354 degrees Celsius to 337 degrees Celsius, the fuel utilization efficiency increases by 1%; when the flue gas emission end temperature drops from 354 degrees Celsius to 330 degrees Celsius, the fuel utilization efficiency increases by 1.5%; When the exhaust end temperature is lowered from 354 degrees Celsius to 322 degrees Celsius, the fuel efficiency value increases by 2%. Therefore, when the adjusted flue gas emission end temperature decreases, the fuel utilization efficiency increases.

更進一步地,影響效率參數變化時,使控制熱風爐200的控制參數亦隨之變化。在本示例中,控制參數為送風期末期時熱風爐200的混冷閥240之開度(即混冷閥終點開度),混冷閥240之開度範圍為0%至100%。在煙氣排放終點溫度下降時(即燃料利用效率提升),混冷閥終點開度也隨著降低。又在送風期末期時,混冷閥終點開度一般會調降,但在混冷閥終點開度低於某個程度時,混冷閥之開度與旁通冷鼓風流量呈現高度非線性,使旁通冷鼓風流量難以掌控,造成熱風爐200操作不穩定。此外,混冷閥終點開度過低即表示送風期結束時,蓄熱磚蓄積的熱量過少,有無法滿足送風需求的風險。因此,控制參數之值還需符合使熱風爐200操作穩定的穩定範圍內,穩定範圍為控制參數之值須大於穩定範圍邊界的極限值。又穩定範圍的極限值係隨著熱風爐200的使用期限、損壞頻率、或損壞次數而調整。例如隨著熱風爐200的使用期間增長,極限值隨之調高。舉例來說,在熱風爐200使用一年時,極限值設定為5%,在熱風爐200使用十年時,極限值調高為10%。又例如隨著熱風爐200曾經損壞的損壞頻率、或損壞次數的增加,極限值隨之調高。舉例來說,在熱風爐200曾經損壞5次時,極限值設定為5%,在熱風爐200曾經損壞15次時,極限值調高為10%。Furthermore, when the parameters that affect the efficiency change, the control parameters that control the hot blast stove 200 also change accordingly. In this example, the control parameter is the opening of the cooling mixing valve 240 of the hot blast furnace 200 at the end of the air supply period (ie, the end opening of the cooling mixing valve). The opening of the cooling mixing valve 240 ranges from 0% to 100%. When the flue gas emission end temperature decreases (that is, the fuel utilization efficiency increases), the end opening of the mixed cooling valve also decreases. At the end of the air supply period, the end opening of the cooling mixing valve generally decreases. However, when the end opening of the cooling mixing valve is lower than a certain level, the opening of the cooling mixing valve and the bypass cold blast flow are highly nonlinear. , making it difficult to control the bypass cold blast flow, causing the operation of the hot blast stove 200 to be unstable. In addition, if the end opening of the mixed cooling valve is too low, it means that at the end of the air supply period, the heat stored in the heat storage bricks will be too little, and there is a risk that the air supply demand will not be met. Therefore, the value of the control parameter must also be within a stable range that makes the operation of the hot blast furnace 200 stable. The stable range is the limit value where the value of the control parameter must be greater than the boundary of the stable range. In addition, the limit value of the stable range is adjusted according to the service life, damage frequency, or number of damage of the hot blast stove 200 . For example, as the use period of the hot blast stove 200 increases, the limit value is adjusted accordingly. For example, when the hot blast stove 200 is used for one year, the limit value is set to 5%, and when the hot blast stove 200 is used for ten years, the limit value is raised to 10%. For another example, as the frequency of damage or the number of times of damage to the hot blast stove 200 increases, the limit value is increased accordingly. For example, when the hot blast stove 200 has been damaged 5 times, the limit value is set to 5%. When the hot blast stove 200 has been damaged 15 times, the limit value is increased to 10%.

配合參閱圖4,控制模組300用以控制熱風爐200的操作設定,且執行熱風爐的控制方法。控制模組300包括預測模型310。預測模型310是依據前一循環操作(即第一循環操作)的熱風爐操作參數組所對應的複數組歷史值、接續前一循環操作之後的下一循環操作(即第二循環操作)的燃料條件所對應的複數個歷史值與下一循環操作的熱風需求參數組所對應的複數組歷史值,及對應的下一循環操作的熱風溫度(即預測熱風溫度)所對應的複數個歷史值與對應的下一循環操作的控制參數所對應的複數個歷史值,經由機器學習演算法或統計方法建立前一循環操作的熱風爐操作參數組、下一循環操作的燃料條件、下一循環操作的熱風需求參數組,與下一循環操作的熱風溫度、下一循環操作的控制參數之間的對應關係。其中,燃料條件例如為燃料熱值。熱風需求參數組例如為熱風需求溫度、熱風需求流量等。Referring to FIG. 4 , the control module 300 is used to control the operation settings of the hot blast stove 200 and execute the control method of the hot blast stove. Control module 300 includes predictive model 310 . The prediction model 310 is based on a complex set of historical values corresponding to the hot blast furnace operating parameter set of the previous cycle operation (i.e., the first cycle operation), and the fuel for the next cycle operation (i.e., the second cycle operation) following the previous cycle operation. A plurality of historical values corresponding to the condition, a plurality of historical values corresponding to the hot air demand parameter group of the next cycle operation, and a plurality of historical values corresponding to the corresponding hot air temperature (i.e. predicted hot air temperature) of the next cycle operation. The plurality of historical values corresponding to the control parameters of the next cycle operation are used to establish the hot blast furnace operating parameter group of the previous cycle operation, the fuel conditions of the next cycle operation, and the operation parameters of the next cycle operation through machine learning algorithms or statistical methods. The corresponding relationship between the hot air demand parameter group, the hot air temperature of the next cycle operation, and the control parameters of the next cycle operation. The fuel condition is, for example, the calorific value of the fuel. The hot air demand parameter group is, for example, hot air demand temperature, hot air demand flow rate, etc.

因此,建立的預測模型310可依據輸入之熱風爐前一循環操作的熱風爐操作參數組、下一循環操作的燃料條件和熱風需求參數組進行運算,以輸出預測之下一循環操作的熱風溫度(即預測熱風溫度)和控制參數。Therefore, the established prediction model 310 can be calculated based on the input hot blast stove operating parameter set of the previous cycle operation of the hot blast stove, the fuel conditions of the next cycle operation, and the hot air demand parameter set to output the predicted hot air temperature of the next cycle operation. (i.e. predicting hot air temperature) and control parameters.

參閱圖1、圖4和圖5,其中圖5為依據本發明實施例之熱風爐的控制方法500的流程示意圖。執行熱風爐的控制方法500的時間點,為前一循環操作(第一循環操作)已結束,且下一循環操作(第二循環操作)還未開始的期間,藉由執行熱風爐的控制方法500找出最適合下一循環操作(第二循環操作)時之控制熱風爐200的操作設定。Referring to Figures 1, 4 and 5, Figure 5 is a schematic flowchart of a control method 500 for a hot blast stove according to an embodiment of the present invention. The time point at which the control method 500 of the hot blast stove is executed is when the previous cycle operation (the first cycle operation) has ended and the next cycle operation (the second cycle operation) has not yet started. By executing the control method of the hot blast stove 500 finds out the most suitable operation settings for controlling the hot blast furnace 200 during the next cycle operation (second cycle operation).

首先,在步驟510中,提供熱風爐操作參數組所對應的一組操作預設值,其中提供的這組操作預設值為熱風爐200在前一循環操作(第一循環操作)的操作結果。即在步驟510中,先藉由控制模組300從配置在熱風爐200內之感應器擷取熱風爐200在前一循環操作的一組操作預設值。其中,熱風爐操作參數組中的影響效率參數所對應之值為第一調整值。First, in step 510, a set of operation preset values corresponding to the hot blast stove operating parameter set is provided, where the provided set of operation preset values is the operation result of the hot blast stove 200 in the previous cycle operation (the first cycle operation). . That is, in step 510 , the control module 300 first acquires a set of operating preset values of the hot blast stove 200 in the previous cycle from the sensor disposed in the hot blast stove 200 . Among them, the value corresponding to the efficiency-affecting parameter in the hot blast furnace operating parameter group is the first adjustment value.

在步驟520中,提供熱風爐200在下一循環操作的燃料條件及需產生熱風的熱風需求參數組所分別對應的燃料條件之值及一組需求值。即在步驟520中,操作人員可預先輸入儲存或即時輸入在下一循環操作投入熱風爐200之燃料的燃料條件之值,以及在下一循環操作需供應至高爐的需求值至控制模組300。In step 520, the fuel conditions and a set of demand values respectively corresponding to the fuel conditions for the hot blast furnace 200 to operate in the next cycle and the hot air demand parameter set to generate hot air are provided. That is, in step 520, the operator can pre-input the value of the fuel condition of the fuel put into the hot blast stove 200 in the next cycle operation, and the demand value to be supplied to the blast furnace in the next cycle operation to the control module 300.

在步驟530中,藉由控制模組300將上述操作預設值、燃料條件之值及需求值輸入預測模型310來進行運算,以輸出下一循環操作的熱風溫度之值及控制參數之值。In step 530, the control module 300 inputs the above-mentioned operation preset value, fuel condition value and demand value into the prediction model 310 for calculation to output the hot air temperature value and control parameter value of the next cycle operation.

在步驟540中,藉由控制模組300以提高燃料利用效率之值來調整影響效率參數,而獲得複數個對應不同的燃料利用效率之值的第二調整值。每次調整煙氣排放終點溫度的值介於攝氏1度至攝氏5度之間。In step 540, the control module 300 adjusts the efficiency parameters to increase the value of fuel utilization efficiency, thereby obtaining a plurality of second adjustment values corresponding to different fuel utilization efficiency values. Each time the flue gas emission end temperature is adjusted, the value is between 1 degree Celsius and 5 degrees Celsius.

在步驟550中,藉由控制模組300將步驟540獲得的第二調整值及如同步驟510、步驟520所提供的其餘參數之值(即不涵蓋第一調整值的其餘參數之值)再輸入預測模型310運算,以輸出不同的第二調整值分別對應之下一循環操作的熱風溫度之值及控制參數之值。In step 550, the control module 300 re-inputs the second adjustment value obtained in step 540 and the values of the remaining parameters as provided in steps 510 and 520 (that is, the values of the remaining parameters that do not cover the first adjustment value). The prediction model 310 operates to output different second adjustment values respectively corresponding to the value of the hot air temperature and the value of the control parameter in the next cycle operation.

在步驟560中,藉由控制模組300依據步驟550的結果,判斷第一調整值及第二調整值所分別對應之下一循環操作的熱風溫度之值及控制參數之值中,是否有下一循環操作的熱風溫度之值符合需求,且控制參數之值在穩定範圍內並最趨近極限值(即為穩定範圍內的最低值)。若控制模組300判斷為是,則進行步驟570;若控制模組300判斷為否,則再回到步驟540重新調整影響效率參數。In step 560, the control module 300 determines whether there is a lower value in the hot air temperature value and the control parameter value of the next cycle operation corresponding to the first adjustment value and the second adjustment value respectively according to the result of step 550. The value of the hot air temperature in one cycle operation meets the requirements, and the value of the control parameter is within the stable range and is closest to the limit value (that is, the lowest value in the stable range). If the control module 300 determines that it is yes, then proceed to step 570; if the control module 300 determines that it is no, then return to step 540 to readjust the parameters that affect the efficiency.

在步驟570中,藉由控制模組300從第一調整值及第二調整值中選擇一者作為合適值,選擇的合適值所對應的下一循環操作的熱風溫度符合需求以及所對應的控制參數之值在穩定範圍中最趨近極限值。在本示例中,合適值所對應的控制參數之值為在穩定範圍中的最低值。In step 570, the control module 300 selects one of the first adjustment value and the second adjustment value as the appropriate value. The hot air temperature corresponding to the selected appropriate value for the next cycle operation meets the requirements and the corresponding control. The value of the parameter is closest to the limit value in the stable range. In this example, the value of the control parameter corresponding to the appropriate value is the lowest value in the stable range.

舉例來說,在步驟540中,每次調整煙氣排放終點溫度的值為攝氏2度,第一調整值為攝氏347度,多個第二調整值分別為攝氏345度、攝氏343度、攝氏341度、攝氏339度、攝氏337度、攝氏335度。在步驟550、步驟560、步驟570中,煙氣排放終點溫度在攝氏337度所對應之下一循環操作的熱風溫度之值符合需求,且控制參數之值在穩定範圍內中的最低值,而煙氣排放終點溫度在攝氏335度所對應之下一循環操作的熱風溫度之值雖符合需求,但控制參數之值卻超出穩定範圍,因此,合適值為煙氣排放終點溫度在攝氏337度。For example, in step 540, the value of the flue gas emission end temperature is adjusted to 2 degrees Celsius each time, the first adjustment value is 347 degrees Celsius, and the plurality of second adjustment values are 345 degrees Celsius, 343 degrees Celsius, and 343 degrees Celsius respectively. 341 degrees, 339 degrees Celsius, 337 degrees Celsius, 335 degrees Celsius. In steps 550, 560, and 570, the value of the hot air temperature for the next cycle operation corresponding to the flue gas emission end temperature of 337 degrees Celsius meets the requirements, and the value of the control parameter is at the lowest value in the stable range, and Although the value of the hot air temperature corresponding to the next cycle operation meets the requirements when the flue gas emission end temperature is 335 degrees Celsius, the value of the control parameter is beyond the stable range. Therefore, the appropriate value is that the flue gas emission end temperature is 337 degrees Celsius.

在步驟580中,藉由控制模組300依據熱風爐操作參數組所對應的操作預設值及合適值控制熱風爐200,以進行第二循環操作。在本示例中,控制模組300依據操作預設值中的第一調整值及合適值的差值來設定第二循環操作的操作指引,操作指引例如為燃料的使用量。In step 580 , the control module 300 controls the hot blast stove 200 according to the operation default value and appropriate value corresponding to the hot blast stove operating parameter set to perform the second cycle operation. In this example, the control module 300 sets the operation guideline for the second cycle operation based on the difference between the first adjustment value and the appropriate value in the preset operation value. The operation guideline is, for example, the amount of fuel used.

參閱圖6,其為實際驗證在多次的循環操作,煙氣排放終點溫度與燃料利用效率的實驗圖。經過實際驗證,在調降煙氣排放終點溫度攝氏10度左右時,可提升燃料利用效率約1.3%,且混冷閥終點開度範圍從調整前的20~40%降低至13~29%的範圍。混冷閥終點開度不僅在穩定範圍內、趨近極限值,且波動範圍變小,因此熱風爐200保持在操作穩定的範圍、蓄熱磚的蓄熱量足夠,並使熱風爐200能發揮最大的節能效果。Refer to Figure 6, which is an experimental diagram that actually verifies the flue gas emission end temperature and fuel utilization efficiency in multiple cycle operations. After actual verification, when the flue gas emission end temperature is reduced by about 10 degrees Celsius, the fuel utilization efficiency can be improved by about 1.3%, and the end opening range of the mixed cooling valve is reduced from 20~40% before adjustment to 13~29%. Scope. The end opening of the mixed cooling valve is not only within the stable range, approaching the limit value, but also the fluctuation range becomes smaller. Therefore, the hot blast stove 200 remains within a stable operating range, the heat storage of the regenerative bricks is sufficient, and the hot blast stove 200 can exert its maximum Energy saving effect.

要補充說明的是,上述熱風爐的控制方法500可由包含複數個程式指令的電腦程式產品實現。電腦程式產品可為在網路上傳輸的檔案,亦可儲存於非暫態電腦可讀取儲存媒體中。電腦程式產品所包含的此些程式指令被載入電子計算裝置(例如上述的控制模組300)後,電腦程式執行如上所述的熱風爐的控制方法500。其中,非暫態電腦可讀取儲存媒體可為例如唯讀記憶體(Read Only Memory;ROM)、快閃記憶體、軟碟、硬碟、光碟(Compact Disk;CD)、數位多功能光碟(Digital Versatile Disc;DVD)、隨身碟、可由網路存取的資料庫或其他類似的電子產品。It should be added that the control method 500 of the hot blast stove can be implemented by a computer program product containing a plurality of program instructions. Computer program products can be files transmitted over the Internet or stored in non-transitory computer-readable storage media. After these program instructions contained in the computer program product are loaded into the electronic computing device (such as the above-mentioned control module 300), the computer program executes the above-mentioned control method 500 of the hot blast stove. Among them, the non-transitory computer-readable storage media can be, for example, read-only memory (Read Only Memory; ROM), flash memory, floppy disk, hard disk, compact disk (Compact Disk; CD), digital versatile disc ( Digital Versatile Disc; DVD), flash drive, network-accessible database or other similar electronic products.

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。Although the disclosure has been disclosed above through embodiments, they are not intended to limit the disclosure. Anyone with ordinary knowledge in the technical field may make slight changes and modifications without departing from the spirit and scope of the disclosure. Therefore, The scope of protection of this disclosure shall be determined by the scope of the appended patent application.

100:熱風爐系統 200:熱風爐 210:燃燒室 220:蓄熱室 230:爐頂 240:混冷閥 300:控制模組 310:預測模型 510:步驟 520:步驟 530:步驟 540:步驟 550:步驟 560:步驟 570:步驟 580:步驟 100:Hot air stove system 200:Hot air stove 210: Combustion chamber 220:Regenerator 230:stove top 240: Mixed cooling valve 300:Control module 310: Predictive model 510: Steps 520: Steps 530: Steps 540:Step 550:Step 560:Step 570: Steps 580: Steps

為了更完整了解實施例及其優點,現參照結合所附圖式所做之下列描述,其中: [圖1]為依據執行本發明實施例之熱風爐的控制方法的熱風爐系統的方塊圖; [圖2]為熱風爐的示意圖; [圖3]為煙氣排放溫度與燃燒時間、燃料利用效率關係的模擬圖; [圖4]為[圖1]的預測模型進行運算的示意圖; [圖5]為依據本發明實施例之熱風爐的控制方法的流程示意圖;以及 [圖6]為實際驗證在多次的循環操作,煙氣排放終點溫度與燃料利用效率的實驗圖。 For a more complete understanding of the embodiments and their advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which: [Fig. 1] is a block diagram of a hot blast stove system based on a method for controlling a hot blast stove according to an embodiment of the present invention; [Figure 2] is a schematic diagram of a hot blast stove; [Figure 3] is a simulation diagram of the relationship between flue gas emission temperature, combustion time, and fuel utilization efficiency; [Figure 4] is a schematic diagram of the operation of the prediction model of [Figure 1]; [Fig. 5] is a schematic flow chart of a control method of a hot blast stove according to an embodiment of the present invention; and [Figure 6] is an experimental diagram that actually verifies the flue gas emission end temperature and fuel utilization efficiency in multiple cycle operations.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in order of storage institution, date and number) without Overseas storage information (please note in order of storage country, institution, date, and number) without

510:步驟 510: Steps

520:步驟 520: Steps

530:步驟 530: Steps

540:步驟 540:Step

550:步驟 550:Step

560:步驟 560:Step

570:步驟 570: Steps

580:步驟 580: Steps

Claims (10)

一種熱風爐的控制方法,包含:提供一熱風爐操作參數組所對應的一組操作預設值,其中該組操作預設值為一熱風爐在一第一循環操作的操作結果;提供該熱風爐在一第二循環操作需產生熱風的一熱風需求參數組所對應的一組需求值;將該組操作預設值及該組需求值輸入一預測模型來進行運算,以輸出該第二循環操作之一預測熱風溫度,其中,該第二循環操作係接續該第一循環操作,該熱風爐操作參數組相關該熱風爐內的一溫度及一熱風輸出參數,且包括一影響效率參數,該熱風爐的一燃料利用效率係隨著該影響效率參數而變化,該組操作預設值中的一第一調整值為對應該影響效率參數,該熱風需求參數組包括一熱風需求溫度;以提高該燃料利用效率來調整該影響效率參數,而獲得複數個對應不同的該燃料利用效率的第二調整值;將該些第二調整值輸入該預測模型運算以輸出該些第二調整值分別對應之該預測熱風溫度;從該第一調整值及該些第二調整值中選擇一者在其對應之該預測熱風溫度符合該熱風需求溫度且對應至最高的該燃料利用效率作為一合適值;以及依據該合適值控制該熱風爐,以進行該第二循環操作。 A control method for a hot blast stove, including: providing a set of operation preset values corresponding to a hot blast stove operating parameter group, wherein the set of operation preset values are the operation results of a hot blast stove in a first cycle operation; providing the hot blast stove A set of demand values corresponding to a hot air demand parameter set that the furnace needs to generate hot air in a second cycle operation; input the set of operation preset values and the set of demand values into a prediction model for calculation to output the second cycle One of the operations predicts the hot air temperature, wherein the second cycle operation is a continuation of the first cycle operation, the hot blast stove operating parameter set is related to a temperature in the hot blast stove and a hot blast output parameter, and includes an efficiency parameter, the A fuel utilization efficiency of the hot blast stove changes with the influencing efficiency parameter. A first adjustment value in the set of operating preset values corresponds to the influencing efficiency parameter. The hot blast demand parameter set includes a hot blast demand temperature; to improve The fuel utilization efficiency is used to adjust the influencing efficiency parameter, and a plurality of second adjustment values corresponding to different fuel utilization efficiency are obtained; the second adjustment values are input into the prediction model operation to output the second adjustment values respectively corresponding to The predicted hot air temperature; select one of the first adjustment value and the second adjustment value when the corresponding predicted hot air temperature meets the hot air demand temperature and corresponds to the highest fuel utilization efficiency as a suitable value; and controlling the hot blast stove according to the appropriate value to perform the second cycle operation. 如請求項1所述之熱風爐的控制方法,其中該影響效率參數是經由模擬該熱風爐的一物理模型,在該熱風爐運作時依據該熱風爐操作參數組與該燃料利用效率的相關性所獲得。 The control method of a hot blast stove as described in claim 1, wherein the efficiency parameter is simulated by a physical model of the hot blast stove, based on the correlation between the hot blast stove operating parameter set and the fuel utilization efficiency when the hot blast stove is operating. obtained. 如請求項1所述之熱風爐的控制方法,其中該熱風爐在每一次的循環包括一燃燒期及一送風期,該影響效率參數為一煙氣排放終點溫度,其為該燃燒期末期時該熱風爐排放煙氣的溫度。 The control method of the hot blast stove as described in claim 1, wherein the hot blast stove includes a combustion period and an air supply period in each cycle, and the efficiency parameter is a flue gas emission end temperature, which is at the end of the combustion period. The temperature of the flue gas discharged from the hot blast furnace. 如請求項3所述之熱風爐的控制方法,其中每次調整該煙氣排放終點溫度的值介於攝氏1度至攝氏5度之間。 The control method of the hot blast stove as described in claim 3, wherein the value of the flue gas emission end temperature adjusted each time is between 1 degree Celsius and 5 degrees Celsius. 如請求項1所述之熱風爐的控制方法,其中一控制參數隨著該影響效率參數變化,該控制參數與該熱風爐的操作穩定性相關,在該預測模型運算的步驟中,該預測模型還輸出在該第二循環操作時對應該第一調整值的該控制參數,在將該些第二調整值輸入該預測模型運算的步驟中,該預測模型還輸出在該第二循環操作時分別對應該些第二調整值的該些控制參數,在從該第一調整值及該些第二調整值中選擇的步驟中,選擇的該合適值對應的該控制參數還需符合使該熱風爐操作穩定的一穩定範圍。 The control method of the hot blast stove as described in claim 1, wherein a control parameter changes with the influencing efficiency parameter, and the control parameter is related to the operational stability of the hot blast stove. In the step of calculating the prediction model, the prediction model The control parameter corresponding to the first adjustment value during the second loop operation is also output. In the step of inputting the second adjustment values into the prediction model operation, the prediction model also outputs the respective control parameters during the second loop operation. The control parameters corresponding to the second adjustment values, in the step of selecting from the first adjustment values and the second adjustment values, the control parameters corresponding to the selected appropriate values must also meet the requirements of making the hot blast stove A stable range within which operation is stable. 如請求項5所述之熱風爐的控制方法,其中該熱風爐在每一次的循環包括一燃燒期及一送風期,該控制參數為一混冷閥終點開度,其為該送風期末期時該熱風爐的一混冷閥之開度。 The control method of the hot blast stove as described in claim 5, wherein each cycle of the hot blast stove includes a combustion period and an air supply period, and the control parameter is an end opening of a mixed cooling valve, which is at the end of the air supply period. The opening of a mixed cooling valve of the hot blast stove. 如請求項5所述之熱風爐的控制方法,其中該穩定範圍邊界的一極限值係隨著該熱風爐的一使用期限、一損壞頻率、或一損壞次數而調整。 The control method of the hot blast stove as described in claim 5, wherein a limit value of the stable range boundary is adjusted according to a service life, a damage frequency, or a number of damages of the hot blast stove. 如請求項5所述之熱風爐的控制方法,其中在該預測模型運算的步驟中,還將該第二循環操作的一燃料條件輸入該預測模型運算。 The control method of the hot blast stove as described in claim 5, wherein in the step of calculating the predictive model, a fuel condition of the second cycle operation is also input into the predictive model calculation. 如請求項8所述之熱風爐的控制方法,其中該預測模型是依據該熱風爐操作參數組所對應的複數組歷史值、該燃料條件所對應的複數個歷史值與該熱風需求參數組所對應的複數組歷史值,及對應的該預測熱風溫度所對應的複數個歷史值與對應的該控制參數所對應的複數個歷史值,經由機器學習演算法或統計方法建立該熱風爐操作參數組、該燃料條件、該熱風需求參數組,與該預測熱風溫度、該控制參數之間的對應關係。 The control method of a hot blast stove as described in claim 8, wherein the prediction model is based on a plurality of historical values corresponding to the hot blast stove operating parameter set, a plurality of historical values corresponding to the fuel conditions and the hot blast demand parameter set. The corresponding plural group of historical values, the corresponding plural historical values corresponding to the predicted hot air temperature and the corresponding plural historical values corresponding to the control parameter are used to establish the hot blast furnace operating parameter group through a machine learning algorithm or statistical method. , the correspondence relationship between the fuel condition, the hot air demand parameter group, the predicted hot air temperature, and the control parameters. 一種電腦程式產品,當一電腦載入該電腦程式產品並執行後,可完成如請求項1至9中任一項所述之 熱風爐的控制方法。 A computer program product that, when loaded into a computer and executed, can accomplish any of the tasks described in claims 1 to 9 Control method of hot blast furnace.
TW111142766A 2022-11-09 2022-11-09 Method and computer program product for controlling hot blast stove TWI817819B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111142766A TWI817819B (en) 2022-11-09 2022-11-09 Method and computer program product for controlling hot blast stove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111142766A TWI817819B (en) 2022-11-09 2022-11-09 Method and computer program product for controlling hot blast stove

Publications (2)

Publication Number Publication Date
TWI817819B true TWI817819B (en) 2023-10-01
TW202419791A TW202419791A (en) 2024-05-16

Family

ID=89857983

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111142766A TWI817819B (en) 2022-11-09 2022-11-09 Method and computer program product for controlling hot blast stove

Country Status (1)

Country Link
TW (1) TWI817819B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1557972A (en) * 2004-01-16 2004-12-29 冶金自动化研究设计院 Optimizing control method for hybrid type blast furnace hot blast stove
CN101408314A (en) * 2008-03-19 2009-04-15 首钢总公司 Automatic control system of blast furnace hot blast stove combustion process
CN111831719A (en) * 2020-07-22 2020-10-27 山东钢铁股份有限公司 Intelligent control method and system for blast furnace ironmaking production process
CN114657294A (en) * 2022-03-31 2022-06-24 北京科技大学 Experimental method and device for simulating combustion of blast furnace injection fuel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1557972A (en) * 2004-01-16 2004-12-29 冶金自动化研究设计院 Optimizing control method for hybrid type blast furnace hot blast stove
CN101408314A (en) * 2008-03-19 2009-04-15 首钢总公司 Automatic control system of blast furnace hot blast stove combustion process
CN111831719A (en) * 2020-07-22 2020-10-27 山东钢铁股份有限公司 Intelligent control method and system for blast furnace ironmaking production process
CN114657294A (en) * 2022-03-31 2022-06-24 北京科技大学 Experimental method and device for simulating combustion of blast furnace injection fuel

Also Published As

Publication number Publication date
TW202419791A (en) 2024-05-16

Similar Documents

Publication Publication Date Title
CN201737965U (en) Automatic optimizing combustion intelligent control system of hot blast stove
CN100445536C (en) Fuel gas heating control equipment and gas turbine power generation facility provided with the fuel gas heating control equipment
JP4734014B2 (en) Hot stove control method, control system, computer program, and computer-readable recording medium
CN101736111A (en) Intelligent control method for automatic optimization combustion of hot-blast stove
CN102453792B (en) Method and equipment for controlling furnace pressure of continuous annealing furnace
CN106019935B (en) Multiple target boiler combustion optimization based on constraint fuzzy association rules
CN101070477B (en) Multi-coke-oven gas-colluection-pipe pressure control apparatus and method
CN110205427A (en) A kind of intelligence hot-blast stove Optimal Control System and method
CN114675543B (en) Hot blast stove intelligent combustion control method based on optimized learning algorithm
TWI817819B (en) Method and computer program product for controlling hot blast stove
JP5286729B2 (en) Combustion control method and combustion control apparatus for hot stove
CN101749731A (en) Automatic optimal combustion intelligent control system for hot blast stove
CN106873377B (en) Coke oven heating-combustion process fire path temperature Automatic adjustment method under uncertain disturbance
JP2009084636A (en) Method and apparatus for controlling combustion in hot blast stove
JPS5814855B2 (en) Furnace temperature setting control method for multi-zone heating furnace
CN114198914B (en) Automatic combustion control method of hot blast stove based on dynamic tracking slope idea
JP5849612B2 (en) Combustion control method and combustion control apparatus for hot stove
JP5640689B2 (en) Combustion control device for hot stove and combustion control method for hot stove
JP5685899B2 (en) Combustion control device for hot stove and combustion control method for hot stove
CN111647701B (en) Hot blast stove automatic combustion control method based on fuzzy control idea
KR20220005110A (en) Drying Method for Electrode Plate of Secondary Battery and Drying System Thereof
JP5418375B2 (en) Hot stove control calculation apparatus, hot stove control method, and computer program
JP3723931B2 (en) Plant startup predictive control device
CN112413639B (en) Intelligent control method and system for combustion-supporting air volume of heating furnace group
JPH09296228A (en) Method for controlling combustion of continuous heating furnace and device therefor