JPH01281391A - Furnace temperature setting device for a continuous heating furnace - Google Patents

Furnace temperature setting device for a continuous heating furnace

Info

Publication number
JPH01281391A
JPH01281391A JP11176188A JP11176188A JPH01281391A JP H01281391 A JPH01281391 A JP H01281391A JP 11176188 A JP11176188 A JP 11176188A JP 11176188 A JP11176188 A JP 11176188A JP H01281391 A JPH01281391 A JP H01281391A
Authority
JP
Japan
Prior art keywords
temperature
furnace
piece
heated
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11176188A
Other languages
Japanese (ja)
Other versions
JPH0684867B2 (en
Inventor
Tadashi Kondo
正 近藤
Hisashi Ezure
江連 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11176188A priority Critical patent/JPH0684867B2/en
Publication of JPH01281391A publication Critical patent/JPH01281391A/en
Publication of JPH0684867B2 publication Critical patent/JPH0684867B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To perform a high accurate temperature control by a method wherein a baked condition of a steel piece within a heating furnace is discriminated in reference to material, manufacturing steps, a surface temperature and an estimated value of material temperature and the like, the most suitable steel piece to be noted is estimated to calculate a furnace temperature set value. CONSTITUTION:A furnace temperature setting device 10 may retrieve a target temperature of an inner-furnace steel piece with a retrieving means 16 in reference to a material from an inputting means 11, data of steps, an estimated present temperature data of a memory 12 revised in sequence by a temperature calculating means 15 and a present position of the steel piece to be calculated by a calculating means 14 form an extracted and planned pitch by a calculating means 13 and then a difference with a mean temperature estimated value when passed through an outlet of controlling band is calculated by a calculating means 17. The most-suitable furnace temperature determining means 18 may edit data with an editing part 19, estimate a steel piece to be noted in reference to a knowledge data of a memory part 20 and determine a furnace temperature set value of a heating furnace 2 for baking up the steep piece. In this way, even if the steel pieces having different baked condition are present, a temperature control of a high accuracy can be carried out.

Description

【発明の詳細な説明】 〔発明の構成〕 (産業上の利用分野) 本発明は、スラブまたはビレット等の被加熱材料片(以
下、鋼片という)を加熱する連続加熱炉の炉温設定装置
、より詳細には、鋼片が連続的に通過する複数の制御帯
の各炉温を個別に制御するために各制御帯の炉温を個別
に設定する連続加熱炉の炉温設定装置に関する。
[Detailed description of the invention] [Structure of the invention] (Industrial application field) The present invention provides a furnace temperature setting device for a continuous heating furnace that heats a piece of material to be heated (hereinafter referred to as a steel piece) such as a slab or billet. More specifically, the present invention relates to a furnace temperature setting device for a continuous heating furnace that individually sets the furnace temperature of each control zone in order to individually control the furnace temperature of each of a plurality of control zones through which steel billets continuously pass.

(従来の技術) 従来の代表的な連続加熱炉として、予熱帯、加熱帯及び
均熱帯の3つの制御帯を有する腹帯式連続加熱炉がある
(Prior Art) As a typical conventional continuous heating furnace, there is a belt-type continuous heating furnace having three control zones: a pre-heating zone, a heating zone, and a soaking zone.

この複帯式連続加熱炉は、各制御帯ごとに、噴射燃料を
燃焼させるバーナと、炉温を検出する炉温センサと、こ
の炉温センサによる炉温検出値及び炉温設定器等で与え
られる炉温設定値の偏差を零に近付けるように制御する
制御装置とをHし、各MgIJ帯で独立に温度制御がで
きるように構成されている。
This double-zone continuous heating furnace has a burner that burns the injected fuel, a furnace temperature sensor that detects the furnace temperature, a furnace temperature value detected by the furnace temperature sensor, a furnace temperature setting device, etc. for each control zone. The control device is configured to control the deviation of the furnace temperature setting value close to zero, so that the temperature can be controlled independently in each MgIJ band.

鋼片は予熱帯、加熱帯及び均熱帯を順次連続的に移動す
る間に加熱され、抽出口において抽出目標温度に到達す
るように焼き上げられる。これらの制御帯には複数の鋼
片が存在するのが普通であり、さらに、鋼片の寸法や材
質、抽出目標温度、表1Ija度制限値等は、必ずしも
同一ではない。鋼ハの寸法、材質、抽出目標温度、表面
温度制限値等が異なる場合、鋼片を抽出する度ごとに炉
温を設定し直さなければならず、その設定が適切でない
と、在炉しているMl’+を抽出目標温度に焼き上げる
ことができなかったり、逆に抽出時に焼は過ぎてしまっ
たりすることがある。
The steel piece is heated while successively moving through a pre-heating zone, a heating zone, and a soaking zone, and is baked at the extraction port so as to reach the extraction target temperature. It is common for a plurality of steel slabs to exist in these control zones, and furthermore, the dimensions and materials of the steel slabs, extraction target temperature, temperature limit values shown in Table 1Ija, etc. are not necessarily the same. If the dimensions, material, extraction target temperature, surface temperature limit value, etc. of the steel slab are different, the furnace temperature must be reset each time a steel slab is extracted, and if the settings are not appropriate, the furnace temperature may It may not be possible to bake the Ml'+ present to the extraction target temperature, or conversely, the baking may be overdone during extraction.

また、在炉している鋼片に対して、鋼片の寸法材質、抽
出目標温度及び表面温度制限値などを考慮して、適切な
炉温設定値を算出し、炉温制御装置に設定した場合にお
いても、加熱炉内の炉温が炉温17制御装置によって炉
温設定値に制御されるまでには、かなりの時間遅れがあ
る。そのため、個々の鋼片に注目してきめこまかい制御
を行うことは困難である。
In addition, for the steel slabs in the furnace, we calculated an appropriate furnace temperature setting value by considering the dimensions and material of the steel slab, extraction target temperature, surface temperature limit value, etc., and set it in the furnace temperature control device. Even in this case, there is a considerable time delay before the furnace temperature in the heating furnace is controlled to the furnace temperature set value by the furnace temperature 17 control device. Therefore, it is difficult to perform fine control by focusing on individual pieces of steel.

このような問題を解決するために、加熱炉の特性を考慮
しながら、加熱炉の中に混在している複数の鋼片の中で
最も焼は不足の鋼片に注目し、その鋼片が抽出される時
に抽出目標温度に到達できるように加熱炉の炉温を設定
する方式が考えられる。しかしながら、この炉温設定方
式では、加熱炉の同じ$1al帯の中に1本でも焼は不
足の鋼片が存在していると、その鋼片に注目して炉温を
より高く設定することになるため、同じ制御帯に存πし
て、焼は不足の鋼片に先行している鋼片及び後行してい
る鋼片の多くが各鋼片の抽出目標温度よりもかなり高く
焼き上げられてしまう。
In order to solve this problem, while considering the characteristics of the heating furnace, we focus on the steel slab that is least tempered among the multiple steel slabs mixed in the heating furnace, and A possible method is to set the furnace temperature of the heating furnace so that the extraction target temperature can be reached during extraction. However, with this furnace temperature setting method, if there is even one piece of steel that is insufficiently fired in the same $1al zone of the heating furnace, it is necessary to focus on that piece of steel and set the furnace temperature higher. Therefore, in the same control band, many of the billets leading and trailing the missing billet are fired to a temperature significantly higher than the extraction target temperature of each billet. It ends up.

また、別の炉温設定方式として、加熱炉の特性を考慮し
ながら、現在時刻から加熱炉の同じ制御帯に混在してい
る鋼片が抽出される時刻までの時間における各鋼片の抽
出温度を推定し、この抽出温度推定値と抽出目標温度と
の温度差の合計あるいは温度差の自乗合計を最小にする
ように、現在時刻から同じ制御帯に混在している綱片が
抽出されるまでの時間における炉温設定値を算出する方
式が考えられる。この炉温設定方式においては、加熱炉
の同じ制御帯に混在している鋼片の全部に注口して炉温
設定値を算出するため、求めた炉温設定値は平均的な炉
温設定値となる。このため、加熱炉の同じ制御帯に混在
している鋼片の中で最も焼は不足の鋼片に対しては、そ
の鋼片の抽出温度が抽出目標温度よりもかなり低くなる
場合がある。この時、その[の抽出温度が例えば次の工
程の圧延iT能許容抽出温度よりも低くなった場合には
、圧延可能許容抽出温度に鋼片が加熱されるまで抽出を
遅らせること、すなわち加熱炉待ちをしなければならな
くなる。この加熱炉待ちが発生すると圧延生産スケジュ
ールに大幅な変更を来たしてしまう。
In addition, as another furnace temperature setting method, the extraction temperature of each steel billet during the time from the current time to the time when billets mixed in the same control zone of the heating furnace are extracted, while taking into account the characteristics of the heating furnace. is estimated, and in order to minimize the sum of the temperature differences or the sum of the squares of the temperature differences between this estimated extraction temperature value and the extraction target temperature, the process is performed from the current time until the pieces of rope mixed in the same control zone are extracted. A possible method is to calculate the furnace temperature set value at the time of . In this furnace temperature setting method, the furnace temperature setting value is calculated by pouring into all the slabs mixed in the same control zone of the heating furnace, so the calculated furnace temperature setting value is the average furnace temperature setting. value. For this reason, the extraction temperature of the least-hardened steel billet among the steel billets coexisting in the same control zone of the heating furnace may be considerably lower than the extraction target temperature. At this time, if the extraction temperature of [ is lower than the rolling iT capacity allowable extraction temperature of the next process, for example, the extraction should be delayed until the steel billet is heated to the rolling iT capacity allowable extraction temperature, that is, the heating furnace. You will have to wait. If this waiting time for the heating furnace occurs, the rolling production schedule will be significantly changed.

(発明が解決しようとする課FXJ) 本発明は上述の間居点を解決するためになされたもので
、焼き上がり状態の異なる鋼片が制御帯に混在した場合
でも、焼は過ぎや焼は不足のない高精度の温度制御を可
能にし、しかもバラツキの少ない炉温設定の可能な連続
加熱炉の炉温設定装置を提供することを目的とする。
(The problem to be solved by the invention FXJ) The present invention has been made to solve the above-mentioned problem, and even when steel pieces with different fired states are mixed in the control zone, it is difficult to overheat or harden. It is an object of the present invention to provide a furnace temperature setting device for a continuous heating furnace that enables highly accurate temperature control without any deficiencies and can set the furnace temperature with little variation.

〔発明の構成〕[Structure of the invention]

(3題を解決するための手段) 本発明による連続加熱炉の炉温設定装置は、被加熱材料
片有の材料データ、工程固有の工程データ、及び過去の
演算結果として得られた被加熱材料片の推定温度データ
を記憶するメモリと、このメモリに記憶されている工程
データに基づいて炉内の被加熱材料りが連続加熱炉から
抽出されるまでの抽出予定ピッチを演算する第1の演算
手段と、この第1の演算手段によって演算された抽出予
定ピッチから算出される抽出r定時刻における被加熱材
料片の炉内の将来位置を演算する第2の演算手段と、各
制御帯の炉温検出値とメモリに記憶されている推定温度
データとに基づいて被加熱材料片の現在温度を推定し、
メモリの推定温度データを逐次更新させる第3の演算手
段と、被加熱材料片の炉内各位蓋における目標温度を目
標温度曲線として記憶し、第2の演算手段によって演算
された被加熱材料片の将来位置とメモリに記憶されてい
る材料データ及び工程データに基づいて被加熱材料片の
炉内各位蓋における目標温度を索引する口は温度索引手
段と、この目標温度索引手段によって索引された被加熱
材料片の炉内における目標温度、第3の演算手段によっ
て演算された被加熱材料片の現在温度、第1の演算手段
によって演算された抽出予定ピッチ、及び第2の演算手
段によって演算された被加熱材料の炉内の将来位置に基
づいて、被加熱材料片が加熱炉の帯出口を通過する時の
材料温度を予M1演算し、それと目標温度との偏差を演
算する第4のl寅等手段と、炉と設定値を算出するため
に注[1すべき最も適した被加熱材料を推論するための
ルール及び炉温設定値を算出するために/HJすべき最
も適した被加熱材料が帯出口を通過する時にちょうど1
」標温度になるように焼き上げるための炉温設定値を推
論するためのルールを記憶している知識記憶部と、メモ
リに記憶されている材料データ、第1の演算手段によっ
て演算された被加熱材料片の抽出予定ピッチ、第2の演
算手段によって演算された被加熱材料片の炉内位置、第
3の演算手段によって演算された被加熱材料片の現在温
度、及び第4の演算手段によって演算された帯出口温度
偏差、並びに知識記憶部に記憶されているルールに基づ
いて、炉温設定値を算出するために注目すべき最も適し
た被加熱材料片を見出し、その被加熱材料片が帯出口を
通過する時にそれを目標温度に焼き上げるための炉温設
定値を推論する推論部とを備えたことを特徴とする。
(Means for Solving the Three Problems) The furnace temperature setting device for a continuous heating furnace according to the present invention uses material data of the material to be heated, process data specific to the process, and material to be heated obtained as a result of past calculations. A memory for storing estimated temperature data of a piece, and a first calculation for calculating a scheduled extraction pitch until the material to be heated in the furnace is extracted from the continuous heating furnace based on the process data stored in this memory. means, a second calculation means for calculating the future position of the piece of material to be heated in the furnace at the extraction r fixed time calculated from the scheduled extraction pitch calculated by the first calculation means, and a furnace in each control zone. Estimating the current temperature of the piece of material to be heated based on the detected temperature value and estimated temperature data stored in the memory,
A third calculation means for sequentially updating the estimated temperature data in the memory, and a third calculation means for storing the target temperature at each lid of the furnace of the piece of material to be heated as a target temperature curve, and calculating the temperature of the piece of material to be heated calculated by the second calculation means. The port for indexing the target temperature of each piece of material to be heated at each lid in the furnace based on the future position and the material data and process data stored in the memory includes a temperature indexing means and a target temperature indexed by the target temperature indexing means. The target temperature of the material piece in the furnace, the current temperature of the material piece to be heated calculated by the third calculation means, the scheduled extraction pitch calculated by the first calculation means, and the target temperature calculated by the second calculation means. Based on the future position of the heating material in the furnace, the material temperature when the piece of material to be heated passes through the belt outlet of the heating furnace is pre-calculated M1, and the deviation between it and the target temperature is calculated. Rules for inferring the most suitable material to be heated and the rules for inferring the most suitable material to be heated to calculate the furnace temperature setting Exactly 1 when passing through the obi exit
A knowledge storage unit that stores rules for inferring a furnace temperature setting value for baking to a standard temperature, material data stored in the memory, and a heated object calculated by the first calculation means. The planned extraction pitch of the material pieces, the in-furnace position of the heated material piece calculated by the second calculation means, the current temperature of the heated material piece calculated by the third calculation means, and the calculation by the fourth calculation means. The most suitable piece of material to be heated that should be noted in order to calculate the furnace temperature setting value is found based on the band outlet temperature deviation determined and the rules stored in the knowledge storage unit. The apparatus is characterized in that it includes an inference section that infers a furnace temperature setting value for baking it to a target temperature when it passes through the outlet.

(作 用) 加熱炉の一つの制御帯に存在する鋼片Sが、第2図に示
すように、時刻t に位置X。に在炉し、時刻t に位
置X1に在炉したとする。この鋼片■ Sは、抽出口に向かう方向の各位置において材料平均温
度の目標値を持っており、この目標値を連ねたものが目
標温度曲線Aになっている。ここで位置X における目
標温度をT。、位置X1における1」ハ温度をT とす
れば、鋼片Sが位置X。
(Function) As shown in FIG. 2, a piece of steel S existing in one control zone of the heating furnace is at position X at time t. Assume that the furnace is located at position X1 at time t. This steel piece S has a target value of the material average temperature at each position in the direction toward the extraction port, and the target temperature curve A is a series of these target values. Here, the target temperature at position X is T. , if the temperature at position X1 is T, then the steel piece S is at position X.

■ から位置X に移動する時間Δt(−t、−1゜内で、
現在温度θ から目標温度T1まで加熱する必要がある
。この温度差Δθ(−71−θ。)だけ加熱するのに必
要な炉温θ は、材料の表面温度を用いることによって
次式で演算することができる。
■ Time to move from position X to position Δt (-t, within -1°,
It is necessary to heat from the current temperature θ to the target temperature T1. The furnace temperature θ necessary for heating by this temperature difference Δθ (−71−θ.) can be calculated by the following equation using the surface temperature of the material.

+Φ (θ+273)  l / fΦ +Φ l ]
 ]1/4−27LGI   I          
CGu   CGI・・・・・・(1) ただし、 C:比熱(にcal/)cg’c) ρ二密度(檀/rIt) b:鋼ハの幅(m) σ:ステファンボルツマン定数 Φ。。U:上部総括熱吸収率 Φ  :下部総括熱吸収率 CGI Δθ:温度偏差(−T1−θo)(”C)Δ :時間間
隔(=tl−to)  (hr)θ :炉温(℃ン θ :鋼片の上部表面温度(’C) θ1 :鋼片の下部表面温度(”C) である。
+Φ (θ+273) l / fΦ +Φ l ]
]1/4-27LGI I
CGu CGI...(1) However, C: Specific heat (cal/) cg'c) ρ density (dan/rIt) b: Width of steel (m) σ: Stefan Boltzmann constant Φ. . U: Upper overall heat absorption rate Φ: Lower overall heat absorption rate CGI Δθ: Temperature deviation (-T1-θo) ("C) Δ: Time interval (=tl-to) (hr) θ: Furnace temperature (℃-θ) : Upper surface temperature of the steel piece ('C) θ1 : Lower surface temperature of the steel piece ('C).

一方、加熱炉の一つの制御帯には、第3図に示すように
、n個の鋼片s、、s2.s3.−。
On the other hand, in one control zone of the heating furnace, as shown in FIG. 3, n steel pieces s, s2. s3. −.

S   S がそれぞれ抽出口(図上、右側)かn−1
’n ら順に(左側に)Mれた位置x、、x2.x3゜・・・
、X   、X  に存在し、しかも、これらの鋼ロー
In 片の抽出予定時刻が各々t、、t2.t3.・・・。
S S is the extraction port (on the right side of the figure) or n-1, respectively.
'n and M positions (to the left) in order x, , x2 . x3゜...
, t3. ....

1.1.これらの鋼片の現在温度が各々ロー1    
 1 θ 、θ  θ  ・・・、θ  2 θ 、これらの
1 2′ 3°   n−1n 鋼片の目標温度曲線がAであったとすれば、上記(1)
式を用いることによって、それぞれ抽出目標温度に加熱
するのに必要な炉温θ8□2 θ8□。
1.1. The current temperature of these pieces of steel is 1
1 θ , θ θ ..., θ 2 θ , if the target temperature curve of these 1 2' 3° n-1n steel pieces is A, the above (1)
By using the formulas, the furnace temperatures θ8□2 and θ8□ required to heat to the extraction target temperature, respectively.

θ  ・・・、θ   θ を演算することができるg
3’     gn−1’  gn これらの炉温θgl’  0g2’  0g3.°・−
1θgn−1’θ が、第3図に示すように、抽出口に
近いものgn が最も高く、抽出口から遠くなるに従って順に低くなる
場合があったり、第4図に示すように、狭い温度範囲で
わずかにばらついたり、あるいはまた、第5図に示すよ
うに、抽出口から遠くなるに従って順に低くなるものの
、鋼片S の炉温θgnのみが飛抜けて高くなったりす
ることがある。
θ..., g that can calculate θ θ
3'gn-1' gn These furnace temperatures θgl'0g2' 0g3. °・−
As shown in Figure 3, 1θgn-1'θ is highest in the gn closest to the extraction port, and decreases as the distance from the extraction port increases, or as shown in Figure 4, in a narrow temperature range. Alternatively, as shown in FIG. 5, only the furnace temperature θgn of the steel slab S may become extremely high, although it gradually decreases as the distance from the extraction port increases.

本発明は、加熱炉のオペレータの操業ノウハウを知識ベ
ースとして記憶して、加熱炉の中に混在する鋼片の帯出
口温度偏速、抽出予定時刻、材料データ、」−程データ
などの各種データを入力し、その類1ベースを用いて、
加熱炉に在炉する鋼片の焼き上がり状態から炉温設定値
を算出するために注目すべき最も適した鋼ハを推論し、
推論から求めたji4gが帯出口を通過する時にその目
標温度に焼き上げるように、最適な炉温設定値を推論し
で決定することにより、常時、加熱炉を最適な状、I!
!に制御することができる。
The present invention stores the operating know-how of a heating furnace operator as a knowledge base, and stores various data such as band exit temperature deviation of steel slabs mixed in the heating furnace, scheduled extraction time, material data, and process data. Input , and using that type 1 base,
Inferring the most suitable steel to be noted in order to calculate the furnace temperature setting value from the fired state of the steel billet in the heating furnace,
By determining the optimum furnace temperature setting value by inference so that the ji4g determined by inference is baked to the target temperature when passing through the band exit, the heating furnace is always kept in the optimum state, I!
! can be controlled.

このために、まず、人力手段を介して人力される材料デ
ータおよび工程データをメモリに記憶させる一Jj、第
2の演算手段により鋼片S1.S2S  ・・・、S 
  S のそれぞれの抽出時刻に3’       n
−1’    nおける制御帯の将来位置を演算する。
For this purpose, first, the material data and process data inputted by manual means are stored in a memory, and the steel billet S1. S2S...,S
3' n at each extraction time of S
-1' Calculate the future position of the control band at n.

そして、第3の演算手段により鋼片S1.S2.S3.
・・・。
Then, the third calculation means calculates the steel billet S1. S2. S3.
....

5n−1”’nの各々の現在温度を推定してメモリ1こ
S己憶させる。
The current temperature of each of 5n-1"'n is estimated and stored in the memory 1.

次に、目標温度曲線索引手段が鋼片Sl−S2S  ・
・・、S   、S  の将来位置と、材料デー3’ 
   n−I   n 夕及び工程データとに基づいて、鋼片の目標温度を索引
する。
Next, the target temperature curve indexing means calculates the steel billet Sl-S2S.
..., S , future position of S and material data 3'
A target temperature of the billet is indexed based on the n−I n temperature and process data.

一方、炉温設定値を算出するのに最も適した鋼片を推論
し、最適炉温設定値の演舞h゛法と最適炉温設定値を演
算する時に用いる最適重み係数とを決定するためのルー
ルを予め知識記憶部に記憶させておく。
On the other hand, in order to infer the most suitable steel billet for calculating the furnace temperature set value and determine the optimal furnace temperature set value performance method and the optimal weighting coefficient to be used when calculating the optimal furnace temperature set value, Rules are stored in the knowledge storage section in advance.

そこで、メモリに記憶されている材料データ、第1の演
算手段によって演算された鋼片の抽出予定ピッチ、第2
の演算手段によって演算された鋼片の炉内位置、第3の
演算手段によって演算された鋼片の現在温度、及び目標
温度曲線索引手段によって索引された鋼片の炉内′6位
置における目標温度、並びに知慮記憶部に記憶されてい
るルールに基づいて、炉温設定値を算出するのに最、も
適した鋼片を推論して、最適な炉温設定値のeL算算法
法最適な炉温設定値を演算する時に用いる最適重み係数
とが推論される。この推論のために用いられた各データ
と推論によって得られた最適な炉温設定値の演算方法及
び最適重み係数とに基づいて鋼Hが連続加熱炉から抽出
される時に個々の材料温度が抽出目標温度に[保される
ように各制御帯の炉温設定値が演算される。
Therefore, the material data stored in the memory, the planned extraction pitch of the steel billet calculated by the first calculating means, and the second
the in-furnace position of the steel billet calculated by the third calculation means, the current temperature of the steel billet calculated by the third calculation means, and the target temperature at the '6 position in the furnace of the steel billet indexed by the target temperature curve indexing means. , and the rules stored in the knowledge storage unit, infer the most suitable steel slab for calculating the furnace temperature set value, and determine the optimal eL calculation method for the optimal furnace temperature set value. Optimal weighting factors to be used when calculating the furnace temperature set point are deduced. The individual material temperatures are extracted when steel H is extracted from the continuous heating furnace based on each data used for this inference, the calculation method of the optimum furnace temperature setting value and the optimum weighting coefficient obtained by the inference. The furnace temperature setting value for each control zone is calculated so that the target temperature is maintained.

以上のように加熱炉オペレータの操業ノウハウを知識ベ
ースとして記憶し、これを用いて在炉する鋼片の焼き上
がり状態から炉温設定値を算出するのに最も適した鋼片
を推論することにより、たとえ焼き上がり状態の異なる
鋼片が加熱炉内に混在しているような場合であっても、
常時、最適な炉温設定値をj)ることができ、それによ
り、焼は過ぎや焼は不足のない高精度の温度制御を達成
することができる。
As described above, by storing the operational know-how of the heating furnace operator as a knowledge base and using this to infer the most suitable steel billet for calculating the furnace temperature setting value from the fired state of the steel billets in the furnace. , even if pieces of steel with different firing conditions are mixed in the heating furnace,
The optimum furnace temperature setting value can be set at all times, thereby achieving highly accurate temperature control without overbaking or underbaking.

(実施例) 第1図は本発明の一実施例を、連続加熱炉の制御系と併
せて示したブロック図である。同図において、予熱帯、
加熱帯および均熱帯の各制御帯にそれぞれバーナを備え
た連続加熱炉2は圧延スケジュールに従って抽出口から
鋼片を抽出する鋼片抽出手段3を備えている。また、連
続加熱炉2は各制御帯ごとに、炉温を検出する炉温セン
サ5とバーナの燃料噴射量を調節して炉温を制御する炉
温制御手段4とを備えている。さらに、炉温センサ5の
出力信号及び連続加熱炉2の鋼片抽出(2号を入力して
、炉温設定値を演算し、鋼片抽出手段3に鋼片抽出指令
を、炉温制御手段4に炉温設定信号を与える炉温設定装
2210が備えられている。
(Embodiment) FIG. 1 is a block diagram showing an embodiment of the present invention together with a control system for a continuous heating furnace. In the same figure, the preparatory zone,
The continuous heating furnace 2, which has burners in each control zone of the heating zone and the soaking zone, is equipped with a steel billet extraction means 3 for extracting steel billets from an extraction port according to a rolling schedule. Further, the continuous heating furnace 2 includes, for each control zone, a furnace temperature sensor 5 that detects the furnace temperature, and a furnace temperature control means 4 that controls the furnace temperature by adjusting the fuel injection amount of the burner. Furthermore, by inputting the output signal of the furnace temperature sensor 5 and the steel piece extraction (No. 2) of the continuous heating furnace 2, the furnace temperature setting value is calculated, and a steel piece extraction command is sent to the steel piece extraction means 3, and the steel piece extraction command is sent to the furnace temperature control means. 4 is provided with a furnace temperature setting device 2210 that provides a furnace temperature setting signal.

ここで、炉温設定装置10は鋼片抽出口を有する均熱帯
を制御対象としたもので、鋼片の寸法、材質、表面温度
制限値等の鋼片固有の材料データ、及び加熱工程の種類
、抽出目標温度、所要時間等の工程固有の工程データを
人力する入力手段11と、この人力11段11からの人
力データを記憶すると共に、現在温度を推定した現在温
度データを記憶するメモリ12と、鋼片が連続加熱炉2
の均熱帯から抽出されるまでの抽出予定ピッチを演算す
る抽出ピッチ演算手段13と、ここで算出された抽出予
定ピッチから求められる抽出予定時刻における鋼ハの炉
内での将来位置を演算する位置演算手段14と、鋼片の
現在温度を演算してメモリ12からの推定温度データを
逐次更新する温度演算手段15と、位置演算手段14か
ら得られる鋼片の炉内位置とメモリ12から得られる綱
片についてのデータとから加熱炉に在炉している鋼片の
目標温度を索引する目標温度索引手段16と、メモリ1
2に記憶されている鋼片の現在の平均温度及び鋼片につ
いてのデータ、抽出ピッチ演算手段13によって演算さ
れたある一定時間後までの抽出予定ピッチ、位置演算手
段14によって演算された鋼片の連続加熱炉2内の将j
位置、及び目標温度索引手段16によって索引された目
標温度に基づいて、鋼片が制御帯の出口を通過する時の
平均温度の推定値を演算し目標温度との偏差を求める帯
出口温度偏差演算手段17と、目標温度の分布状態に応
じて最適な炉温設定値を求めて出力する最適炉温決定手
段18とで構成されている。
Here, the furnace temperature setting device 10 is intended to control a soaking zone having a steel billet extraction port, and the material data specific to the steel billet, such as the dimensions, material, and surface temperature limit value of the steel billet, and the type of heating process. , an input means 11 for manually inputting process data specific to the process such as extraction target temperature and required time, and a memory 12 for storing the manual data from the 11 stages 11 and for storing current temperature data obtained by estimating the current temperature. , the steel billet is continuously heated in furnace 2
an extraction pitch calculation means 13 for calculating the scheduled extraction pitch until extraction from the soaking zone; and a position for calculating the future position of the steel in the furnace at the scheduled extraction time determined from the extraction scheduled pitch calculated here. a calculation means 14; a temperature calculation means 15 that calculates the current temperature of the steel billet and updates the estimated temperature data from the memory 12; and a temperature calculation means 15 that calculates the current temperature of the billet and updates the estimated temperature data from the memory 12; a target temperature indexing means 16 for indexing the target temperature of the steel slabs in the heating furnace from data regarding the steel slabs; and a memory 1
2, the current average temperature of the steel billet and data about the steel billet, the scheduled extraction pitch until a certain period of time computed by the extraction pitch computing means 13, and the pitch of the steel billet computed by the position computing means 14. General inside continuous heating furnace 2
Zone outlet temperature deviation calculation for calculating the estimated value of the average temperature when the steel billet passes through the outlet of the control zone based on the position and the target temperature indexed by the target temperature indexing means 16, and calculating the deviation from the target temperature. and an optimum furnace temperature determining means 18 which determines and outputs an optimum furnace temperature setting value according to the distribution state of the target temperature.

最適炉温決定手段18は、データ編集部19、知識記憶
部20、及び推論部21から成っている。
The optimum furnace temperature determining means 18 includes a data editing section 19, a knowledge storage section 20, and an inference section 21.

データ編集部19では、位置演算手段14によって演算
された鋼片の加熱炉内における将来位置データや、メモ
リ12に記憶保持された鋼片の現在温度、寸法、材質、
表面温度制限値等のデータ、帯出口温度偏差演算手段1
7によって演算された鋼片の帯出口温度偏差データ、抽
出ピッチ演算13によって演算された抽出r定ピッチデ
ータなどを編集して推論部21へ送る。推論部21は、
これらの編集されたデータと知識記憶部20に予め記憶
されているルールとに基づいて炉温設定値を算出するた
めに注目すべき最も適した鋼片はどれかを推論し決定す
る。そして、求めた鋼片が帯の出口を通過する時に、そ
の鋼片を目Il!温度に焼き上げるための炉温設定値を
推論し決定する。
In the data editing section 19, the future position data of the steel billet in the heating furnace calculated by the position calculation means 14, the current temperature, dimensions, material, etc. of the steel billet stored and held in the memory 12,
Data such as surface temperature limit value, zone outlet temperature deviation calculation means 1
The strip outlet temperature deviation data of the steel strip calculated in step 7, the extraction r constant pitch data calculated in extraction pitch calculation 13, etc. are edited and sent to the inference section 21. The inference unit 21 is
Based on these edited data and the rules stored in the knowledge storage unit 20 in advance, it is inferred and determined which steel billet is the most suitable to focus on in order to calculate the furnace temperature set value. Then, when the obtained piece of steel passes through the exit of the band, the piece of steel is seen! Infer and determine the oven temperature set point for baking to that temperature.

ここで知慮記憶部20に記憶されているルール群は、従
来、加熱炉のオペレータが操業ノウハウとして持ってい
たものを知識ベースとして記憶しているものである。ル
ール群を構成する各ルールの具体例について説明する。
Here, the rule group stored in the wisdom storage unit 20 is a knowledge base that has conventionally been possessed by a heating furnace operator as operating know-how. A specific example of each rule making up the rule group will be explained.

なお、△はAND (論理積)条件を示す論理式記号で
あるとする。
Note that Δ is a logical formula symbol indicating an AND (logical product) condition.

(1)どの鋼片に注口すべきかを決定するためのルール
例 N l; (制御帯出口温度偏差が他の鋼片と比較して大きい) △(残在炉時間が少ない) Δ(同じ制御帯に温度制限材が無い) △(在炉位置が制御帯の出口に近い) =(その鋼片に注目して炉温設定値を算出する)例 2
: (温度制限材である) △(同じ制御帯に他の温度制限材が無い)=(温度制限
材に注口して炉温設定値を算出する)(2)最適な炉温
設定値を決定するルール例N l; (材料寸法は標準寸法である) △(材質は苦通材である) Δ(残在炉時間は10分以内である) Δ(制御帯出口温度偏差は、−30℃から一15℃の間
である) △(温度制限材ではない) △(1,ij e !制御帯に温度制限材が無い)=(
炉温設定値を基準値より30℃上昇させる)このような
ルールを用いて決定された炉温設定値は炉温設定装置1
0の出力となり、この炉温設定値に基づいて、連続加熱
炉2の炉温は、炉温制御手段4によって制御される。
(1) Example rule for determining which slab should be poured into (There is no temperature limiting material in the control zone) △ (Furnace location is close to the exit of the control zone) = (Calculate the furnace temperature set value by paying attention to that steel piece) Example 2
: (It is a temperature limiting material) △ (There is no other temperature limiting material in the same control zone) = (Calculate the furnace temperature setting value by pouring into the temperature limiting material) (2) Calculate the optimal furnace temperature setting value Example of rule to determine Nl; (Material dimensions are standard dimensions) △ (Material is hard-wearing material) Δ (Remaining furnace time is within 10 minutes) Δ (Control zone outlet temperature deviation is -30 ℃ to -15℃) △(No temperature limiting material) △(1, ij e! There is no temperature limiting material in the control zone) = (
(Raise the furnace temperature set value by 30°C above the standard value) The furnace temperature set value determined using such a rule is the furnace temperature setting device 1
Based on this furnace temperature set value, the furnace temperature of the continuous heating furnace 2 is controlled by the furnace temperature control means 4.

次に、第1図の装置の動作について説明する。Next, the operation of the apparatus shown in FIG. 1 will be explained.

連続加熱炉2は挿入口から次々と挿入される鋼片を予熱
帯、加熱帯及び均熱帯の各制御帯でそれぞれ異なる態様
で加熱し、加熱し終った鋼片を鋼片抽出手段3によって
抽出口から順次抽出する。
The continuous heating furnace 2 heats the steel slabs that are successively inserted from the insertion port in different ways in each control zone of a pre-heating zone, a heating zone, and a soaking zone, and extracts the heated steel slabs by the billet extraction means 3. Extract sequentially from the mouth.

この時、均熱帯の炉温は炉温センサ5によって検出され
、その検出値に基づいて炉温設定装置10が最適炉温を
演算し設定すると、炉温制御手段4がその炉7R設定値
に従って炉温を独立に制御するここで、炉温設定するた
めに、人力手段11により、鋼片の寸法、材質、表面温
度制限値等の材料データと、工程の種類、抽出目標温度
、所要時間等の工程データを入力すると、これらのデー
タがメモリ12に記憶される。また、連続加熱炉2から
鋼片が抽出される度ごとに、抽出ピッチ演算−T段13
及び温度演算手段15に抽出信号が加えられる。抽出ピ
ッチ演算手段13は、この抽出信号とメモリ12にご己
憶された工11データとに基づいて、一定時間後までの
抽出予定ピッチを演算する。また、位置IfrLηf段
14は、この抽出予定ピッチから求められる抽出r定時
刻における鋼片の均熱潜の将来位置を演算する。
At this time, the furnace temperature in the soaking zone is detected by the furnace temperature sensor 5, and when the furnace temperature setting device 10 calculates and sets the optimum furnace temperature based on the detected value, the furnace temperature control means 4 operates according to the furnace 7R setting value. Independently Control the Furnace Temperature Here, in order to set the furnace temperature, the manual means 11 inputs material data such as the dimensions, material, and surface temperature limit of the steel billet, as well as process type, extraction target temperature, required time, etc. When process data is input, these data are stored in the memory 12. In addition, each time a steel billet is extracted from the continuous heating furnace 2, the extraction pitch calculation-T stage 13
And the extraction signal is added to the temperature calculation means 15. The extraction pitch calculating means 13 calculates the pitch to be extracted until after a certain period of time based on this extraction signal and the work 11 data stored in the memory 12. Further, the position IfrLηf stage 14 calculates the future position of the soaking latent of the steel billet at the fixed extraction time determined from this scheduled extraction pitch.

一方、lu度演算手段15においては、連続加熱炉2か
ら得られる抽出信号を受けて、炉温センサ5からの炉温
検出値と、過去にこの温度演算手段15で演算してメモ
リ12に記憶されている鋼片の・1ろ均温度演算値とか
ら、鋼Hの平均温度を演算推定し、その結果によりメモ
リ12の記憶内容を更新させる。さらに、dP4温度索
引手段16においては、位置演算手段14から得られる
鋼片の均熱帯内位置とメモリ12から得られる鋼片の材
料データとから、鋼片の目標温度を索引する。帯出口温
度偏差演算手段17においては、メモリ12に記憶され
ている鋼片の現在の平均温度及び鋼片についてのデータ
と、抽出ピッチ演算手段13によって演算されたある一
定時rl後までの抽出予定ピッチと、位置演算手段14
によって演算された鋼片の連続加熱炉2内の将来位置と
、目標温度索引手段16によって索引された目標温度と
から、鋼片が制御帯の出口を通過する時の平均温度を推
定値を演算し、目標温度との偏差を求める。
On the other hand, the lu degree calculating means 15 receives the extraction signal obtained from the continuous heating furnace 2, and calculates the detected value of the furnace temperature from the furnace temperature sensor 5 and the temperature calculated by the temperature calculating means 15 in the past and stores it in the memory 12. The average temperature of the steel H is calculated and estimated from the calculated value of the calculated average temperature of the steel slab, and the stored contents of the memory 12 are updated based on the result. Further, the dP4 temperature indexing means 16 indexes the target temperature of the steel billet from the position of the steel billet within the soaking zone obtained from the position calculation means 14 and the material data of the steel billet obtained from the memory 12. The band outlet temperature deviation calculation means 17 uses the current average temperature of the steel slab and data about the steel slab stored in the memory 12, and the extraction schedule until after a certain time rl calculated by the extraction pitch calculation means 13. Pitch and position calculation means 14
From the future position of the steel billet in the continuous heating furnace 2 calculated by and the target temperature indexed by the target temperature indexing means 16, an estimated value of the average temperature when the steel billet passes through the exit of the control zone is calculated. Then, find the deviation from the target temperature.

最適炉温決定手段18は、メモリ12、抽出ピッチ演算
f・段13、位置演算手段14、及び帯出口温度偏差演
算手段17からの各データをデータ編集部18が編集し
、そこから得られるデータと、すでに述べた知識記憶部
20に記憶されている知識ベースとに基づいて推論部2
1が炉温設定値を決定する。
The optimum furnace temperature determining means 18 is configured by a data editing section 18 editing each data from the memory 12, the extraction pitch calculation f/stage 13, the position calculation means 14, and the band outlet temperature deviation calculation means 17, and the data obtained therefrom. and the knowledge base stored in the knowledge storage unit 20 described above.
1 determines the furnace temperature setpoint.

かくして、本実施例によれば、均熱帯に混在している鋼
Hの焼き上がり状態等が変化しても、それを短時間で正
確に判断し、炉温設定値を算出するのに最も適した鋼片
を推論により決定し、この結果に基づいて最適な炉温設
定値を算出することができ、さらに加熱炉オペレータに
よる炉温設定値のバラツキを無くして鋼片の品質を均一
に制御することができる。
Thus, according to this embodiment, even if the baking state of the steel H mixed in the soaking zone changes, it is most suitable for accurately determining it in a short time and calculating the furnace temperature setting value. The optimum furnace temperature setting value can be calculated based on this result, and the quality of the steel slabs can be uniformly controlled by eliminating variations in the furnace temperature setting value by heating furnace operators. be able to.

なお、上記実施例では、特に均熱帯の炉温を制御するた
めの炉温設定装置について説明したが、予熱帯から加熱
帯への鋼片の移動、加熱帯から均熱帯への鋼片の移動を
それぞれ予熱帯、加熱帯からの鋼片の抽出と見なすこと
により、本発明は予熱:;)または加熱帯の温度制御に
も適用することができる。
In addition, in the above embodiment, the furnace temperature setting device for controlling the furnace temperature in the soaking zone in particular was explained, but the movement of the steel billet from the preheating zone to the heating zone, and the movement of the steel billet from the heating zone to the soaking zone. The present invention can also be applied to the temperature control of the preheating zone and the heating zone by considering them as the extraction of the steel billet from the preheating zone and the heating zone, respectively.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかなように、本発明によれば、
材料データや工程データ、さらには表面温度推定値及び
材料温度推定値などのデータから加熱炉内に存在する鋼
片の焼き上がり状態を短時間で正確に判断して、炉温設
定値を算出するために注目すべき最適の鋼片を推論し、
この推論結果に基づいて最適な炉温設定値を算出するこ
とができ、それにより、焼き上がり状態の異なる鋼片が
炉内に混在した場合でも、焼き過ぎや焼は不足のない高
精度の温度制御を達成することができる。
As is clear from the above description, according to the present invention,
Calculate the furnace temperature setting by quickly and accurately determining the fired state of the steel billet in the heating furnace from data such as material data, process data, and estimated surface temperature and material temperature. Infer the optimal billet to focus on,
Based on this inference result, it is possible to calculate the optimal furnace temperature setting, which allows you to maintain a highly accurate temperature that will not cause over-baking or under-baking, even when steel slabs with different firing states are mixed in the furnace. control can be achieved.

また本発明によれば、加熱炉オペレータによる炉温設定
値のバラツキを無くして鋼片の品質の均一化に寄与する
ことができる。
Further, according to the present invention, it is possible to eliminate variations in the furnace temperature set value by the heating furnace operator, thereby contributing to uniformity of the quality of the steel billets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図な
いし第5図は同実施例の原理を説明するための、鋼片の
位置と温度との関係を示す線図である。 10・・・炉温設定装置、11・・・入力手段、12・
・・メモリ、13・・・抽出ピッチ演算手段、14・・
・位置演算手段、15・・・温度演算手段、16・・・
目標温度索引手段、17・・・帯出口温度偏差演算手段
、18・・・最適炉温決定手段、19・・・データ編集
部、20・・・知識記憶部、21・・・推論部。 出願人代理人  佐  藤  −雄 第2図 第3図 第4図
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIGS. 2 to 5 are diagrams showing the relationship between the position of a steel billet and temperature for explaining the principle of the embodiment. 10...furnace temperature setting device, 11...input means, 12.
...Memory, 13...Extraction pitch calculation means, 14...
・Position calculation means, 15...Temperature calculation means, 16...
Target temperature indexing means, 17... Band outlet temperature deviation calculation means, 18... Optimal furnace temperature determining means, 19... Data editing section, 20... Knowledge storage section, 21... Reasoning section. Applicant's agent Mr. Sato Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 被加熱材料片が連続的に通過する複数の制御帯の各炉温
を個別に制御するために各制御帯の最適炉温を個別に設
定する連続加熱炉の炉温設定装置において、 被加熱材料固有の材料データ、工程固有の工程データ、
及び過去の演算結果として得られた被加熱材料片の推定
温度データを記憶するメモリと、このメモリに記憶され
ている工程データに基づいて炉内の被加熱材料片が連続
加熱炉から抽出されるまでの抽出予定ピッチを演算する
第1の演算手段と、 この第1の演算手段によって演算された抽出予定ピッチ
から算出される抽出予定時刻における被加熱材料片の炉
内の将来位置を演算する第2の演算手段と、 各制御帯の炉温検出値とメモリに記憶されている推定温
度データとに基づいて被加熱材料片の現在温度を推定し
、メモリの推定温度データを逐次更新させる第3の演算
手段と、 被加熱材料片の炉内各位置における目標温度を目標温度
曲線として記憶し、第2の演算手段によって演算された
被加熱材料片の将来位置とメモリに記憶されている材料
データ及び工程データに基づいて被加熱材料片の炉内各
位置における目標温度を索引する目標温度索引手段と、 この目標温度索引手段によって索引された被加熱材料片
の炉内における目標温度、第3の演算手段によって演算
された被加熱材料片の現在温度、第1の演算手段によっ
て演算された抽出予定ピッチ、及び第2の演算手段によ
って演算された被加熱材料片の炉内の将来位置に基づい
て、被加熱材料片が加熱炉の帯出口を通過する時の材料
温度を予測演算し、それと目標温度との偏差を演算する
第4の演算手段と、 炉温設定値を算出するために注目すべき最も適した被加
熱材料片を推論するためのルール及び炉温設定値を算出
するするために注目すべき最も適した被加熱材料片が帯
出口を通過する時にちょうど目標温度になるように焼き
上げるための炉温設定値を推論するためのルールを記憶
している知識記憶部と、 メモリに記憶されている材料データ、第1の演算手段に
よって演算された被加熱材料片の抽出予定ピッチ、第2
の演算手段によって演算された被加熱材料片の炉内位置
、第3の演算手段によって演算された被加熱材料片の現
在温度、及び第4の演算手段によって演算された帯出口
温度偏差、並びに知識記憶部に記憶されているルールに
基づいて、炉温設定値を算出するために注目すべき最も
適した被加熱材料片を見出し、その被加熱材料片が帯出
口を通過する時にそれを目標温度に焼き上げるための炉
温設定値を推論する推論部と を備えたことを特徴とする連続加熱炉の炉温設定装置。
[Claims] Furnace temperature setting for a continuous heating furnace in which the optimal furnace temperature of each control zone is individually set in order to individually control the furnace temperature of each of a plurality of control zones through which a piece of material to be heated continuously passes. In the equipment, material data specific to the material to be heated, process data specific to the process,
and a memory for storing estimated temperature data of the piece of material to be heated obtained as a result of past calculations, and the piece of material to be heated in the furnace is extracted from the continuous heating furnace based on the process data stored in this memory. a first calculating means for calculating a scheduled extraction pitch up to the scheduled extraction pitch; and a second calculation means for calculating the future position of the piece of material to be heated in the furnace at the scheduled extraction time calculated from the scheduled extraction pitch calculated by the first calculating means. a third calculating means for estimating the current temperature of the piece of material to be heated based on the furnace temperature detection value of each control zone and the estimated temperature data stored in the memory, and sequentially updating the estimated temperature data in the memory; a calculation means for storing the target temperature of the piece of material to be heated at each position in the furnace as a target temperature curve, and a future position of the piece of material to be heated calculated by the second calculation means and material data stored in the memory. and a target temperature indexing means for indexing the target temperature of the piece of material to be heated at each position in the furnace based on the process data; Based on the current temperature of the piece of material to be heated calculated by the calculation means, the scheduled extraction pitch calculated by the first calculation means, and the future position of the piece of material to be heated in the furnace calculated by the second calculation means. , a fourth calculation means for predicting and calculating the material temperature when the piece of material to be heated passes through the belt outlet of the heating furnace and calculating the deviation between it and the target temperature; Rules for inferring the most suitable piece of material to be heated and calculation of the furnace temperature set point.The most suitable piece of material to be heated should be baked so that it reaches the target temperature when it passes through the band exit. a knowledge storage section that stores rules for inferring a furnace temperature setting value for the heating; 2
The in-furnace position of the piece of material to be heated calculated by the calculation means, the current temperature of the piece of material to be heated calculated by the third calculation means, the band exit temperature deviation calculated by the fourth calculation means, and knowledge. Based on the rules stored in the memory unit, the most suitable piece of material to be heated that should be noted for calculating the furnace temperature set value is found, and when the piece of material to be heated passes through the band exit, it is set to the target temperature. 1. A furnace temperature setting device for a continuous heating furnace, comprising: an inference section that deduces a furnace temperature setting value for baking.
JP11176188A 1988-05-09 1988-05-09 Furnace temperature setting device for continuous heating furnace Expired - Lifetime JPH0684867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11176188A JPH0684867B2 (en) 1988-05-09 1988-05-09 Furnace temperature setting device for continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11176188A JPH0684867B2 (en) 1988-05-09 1988-05-09 Furnace temperature setting device for continuous heating furnace

Publications (2)

Publication Number Publication Date
JPH01281391A true JPH01281391A (en) 1989-11-13
JPH0684867B2 JPH0684867B2 (en) 1994-10-26

Family

ID=14569519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11176188A Expired - Lifetime JPH0684867B2 (en) 1988-05-09 1988-05-09 Furnace temperature setting device for continuous heating furnace

Country Status (1)

Country Link
JP (1) JPH0684867B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275631A (en) * 2009-04-22 2010-12-09 Nippon Steel Corp Heat treatment method for thick steel plate in direct fired roller-hearth type continuous heat treatment furnace and radiant-tube roller-hearth type continuous heat treatment furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103712440A (en) * 2013-12-24 2014-04-09 中国钢研科技集团有限公司 Tunnel-type ultra-high-temperature electric furnace for continuous production under oxidizing atmosphere and operation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275631A (en) * 2009-04-22 2010-12-09 Nippon Steel Corp Heat treatment method for thick steel plate in direct fired roller-hearth type continuous heat treatment furnace and radiant-tube roller-hearth type continuous heat treatment furnace

Also Published As

Publication number Publication date
JPH0684867B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
US4257767A (en) Furnace temperature control
US4606529A (en) Furnace controls
JPS5848011B2 (en) Furnace combustion control method
JPH01281391A (en) Furnace temperature setting device for a continuous heating furnace
JPH01246322A (en) Apparatus for setting furnace temperature in continuous heating furnace
KR101286558B1 (en) Method for Determining Set-point Temperature of Each Zone of Reheating Furnace
JPH02156017A (en) Combustion control method for continuous type heating furnace
JPS6254024A (en) Method for controlling automatic combustion in heating furnace
JP2006274401A (en) Method for automatically controlling combustion in continuous heating furnace
JP3982042B2 (en) Combustion control method for continuous heating furnace
JPS5812325B2 (en) Control method for continuous heating furnace
JPH0377851B2 (en)
JPS609087B2 (en) Heating control method for continuous heating furnace
JPH03140415A (en) Method for determining material heating-up curve in heating furnace
JPS62263927A (en) Controlling method for non-stationary heating of continuous heating furnace
JPH0469209B2 (en)
JPH03162526A (en) Method for determining temperature rising cure of material of heating furnace
JPH09157760A (en) Method of controlling furnace temperature in continuous heating furnace
JPH01177313A (en) Method for controlling continuous heating furnace
JPH0867918A (en) Method for deciding furnace temperature in continuous type heating furnace
JPS61199019A (en) Method for controlling continuous heating furnace
JPH09209044A (en) Operation of continuous type steel cast slab heating furnace
JPS63282212A (en) Method for controlling water cooling of wire bar stock
JPS5858229A (en) Method and device for heating with continuous heating furnace
JPH06271947A (en) Method for controlling heating in preheating furnace