JPH03223417A - Successive estimation of parameter in combustion control of continuous heating furnace and its utilization - Google Patents

Successive estimation of parameter in combustion control of continuous heating furnace and its utilization

Info

Publication number
JPH03223417A
JPH03223417A JP1850390A JP1850390A JPH03223417A JP H03223417 A JPH03223417 A JP H03223417A JP 1850390 A JP1850390 A JP 1850390A JP 1850390 A JP1850390 A JP 1850390A JP H03223417 A JPH03223417 A JP H03223417A
Authority
JP
Japan
Prior art keywords
term
values
value
long
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1850390A
Other languages
Japanese (ja)
Other versions
JPH0723507B2 (en
Inventor
Naoharu Yoshitani
芳谷 直治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1850390A priority Critical patent/JPH0723507B2/en
Publication of JPH03223417A publication Critical patent/JPH03223417A/en
Publication of JPH0723507B2 publication Critical patent/JPH0723507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Tunnel Furnaces (AREA)

Abstract

PURPOSE:To improve the accuracy of combustion control and to allow a stabler and more efficient operation by successively estimating the unknown parameters included in the simulation model of a continuous type heating furnace operation in accordance with the observed values of a very short term near the present time and a long term. CONSTITUTION:The combustion control of the continuous type heating furnace is executed by simulating the furnace operations at the point of the present time and from now-on by using a simulation model. The optimum operation quantity of the operations and the intended schedules, etc., of materials are determined in this way. The values of the unknown parameters contained in this model are successively estimated from the various observed values. Further, a short-term estimated values based on the short-term observation near the present time and a long-term estimated values based on the long-term observation are successively determined in parallel in this estimation. The weighted average values of the short- and long-term estimated values or the values obtd. after prescribed correction values are added to these values are used at the time of utilizing these estimated values. In addition, the values are so changed according to time intervals that the value is near to the short-term estimated value near the point of the present time and is more to more near to the long-term estimated value furtherer from the point of the present time. The combustion control of high accuracy can thus be executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続式加熱炉の燃焼制御に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to combustion control of a continuous heating furnace.

〔従来の技術〕[Conventional technology]

連続式加熱炉の燃焼制御において、燃料流量または炉内
温度の時系列と、被加熱材料の炉への装入、炉内進行、
および炉からの抽出の予定スケジュールとを与えて炉の
操業をシミュレーションするシミュレーションモデル(
数学モデル式)を用いて炉の将来の操業をシミュレーシ
ョンすることにより操業量などを求める方法は、従来が
ら提案されている。ここで用いる数学モデルは、一般に
、炉の特性、操業状態、または周vII環境などに依存
して不規則に変動するパラメータを含んでいる。
In the combustion control of a continuous heating furnace, the time series of fuel flow rate or temperature inside the furnace, the charging of the material to be heated into the furnace, the progress inside the furnace,
A simulation model (
A method of determining the operating amount by simulating the future operation of the furnace using a mathematical model (mathematical model formula) has been proposed in the past. The mathematical model used here generally includes parameters that vary randomly depending on the characteristics of the furnace, operating conditions, or surrounding environment.

またはモデルで予測できない未知の外乱も、実操業にお
いては無視できない。このようなパラメータや外乱の値
は、未知パラメータとして、炉温や燃料流量などの実際
の観測値を用いて逐次推定する方が、計算精度が向上す
る。
Also, unknown disturbances that cannot be predicted by models cannot be ignored in actual operations. Calculation accuracy improves when the values of such parameters and disturbances are sequentially estimated using actual observed values such as furnace temperature and fuel flow rate as unknown parameters.

たとえば特願昭63−309573号においては、操業
シミュレーションのための数学モデルは加熱炉シミュー
レータと呼ばれ、そこでの未知パラメータは、炉長方向
各帯の熱バランス式における損失熱の係数である。損失
熱は次式で表わされる。
For example, in Japanese Patent Application No. 63-309573, the mathematical model for operation simulation is called a heating furnace simulator, and the unknown parameter there is the coefficient of heat loss in the heat balance equation for each zone in the furnace length. The heat loss is expressed by the following formula.

QLj=λA1・TFi+λ81   ・・・(1)こ
こで、l:帯番号 Q Li :第1帯の損失熱 TFi:第1帯の炉温 λAl、λ81:未知パラメータ(λBiには未知外乱
も含ませる) 未知パラメータλA1.λBiの値は、所定の周期で炉
温、燃料流量などめ観測値が得られるたびに、これら観
測値を用いて逐次推定される。推定方法としては、たと
えば、推定計算に用いる過去から現在までの観測値の重
みを、過去に観測されたものほど小さくするような重み
付き逐次型最小2乗法や、あるいは固定ゲイン法などの
公知の方法を用いる。
QLj=λA1・TFi+λ81...(1) Here, l: zone number Q Li: heat loss in the first zone TFi: furnace temperature in the first zone λAl, λ81: unknown parameter (λBi also includes unknown disturbance) ) Unknown parameter λA1. The value of λBi is sequentially estimated using observed values such as the furnace temperature and fuel flow rate each time the observed values are obtained at a predetermined period. Estimation methods include, for example, a weighted sequential least squares method in which the weight of observed values from the past to the present used for estimation calculations is reduced as the value is observed in the past, or a known method such as a fixed gain method. Use methods.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のような将来操業のシミュレーションにおいては、
最適操業量を求めるためには、現時点から、炉内の最も
装入側の燃焼帯(燃料を燃焼させる帯)に近い将来入る
予定の材料が、炉から抽出される将来時点までの、数十
分以上にわたるシミュレーションを行なう必要がある。
In the simulation of future operations as mentioned above,
In order to find the optimal operating amount, it is necessary to calculate several tens of times from the present moment to the future point in time when the material that is scheduled to enter the combustion zone on the furthest charging side (the zone where fuel is burned) is extracted from the furnace in the near future. It is necessary to perform a simulation for more than 1 minute.

一方、このようなかなりの時間間隔(数十分以上)にお
いては、加熱炉の数学モデルの未知パラメータの値は、
操業条件や材料条件などの短期的な変動によりかなり変
動し、また、この短期の変動に加えて、これらの条件の
長期的な変動や設備の経年変化などにより長期変動も生
じる。たとえば前述の特願昭63−309573号にお
ける損失熱係数λB2の、実操業における値は、第1図
のように変動する。
On the other hand, in such a considerable time interval (several tens of minutes or more), the value of the unknown parameter of the mathematical model of the heating furnace is
It fluctuates considerably due to short-term fluctuations in operating conditions and material conditions, and in addition to these short-term fluctuations, long-term fluctuations also occur due to long-term fluctuations in these conditions and aging of equipment. For example, the value of the heat loss coefficient λB2 in the above-mentioned Japanese Patent Application No. 63-309573 during actual operation varies as shown in FIG.

したがってシミュレーション中の将来時点が現時点に近
い場合は、上記の短期の変動の影響を大きく反映させ、
その後将来時点と現時点との差が大きくなるほど、短期
の変動の影響を少なくしていき、この差が短期的変動の
影響範囲を超える場合は、長期的変動の影響のみ反映さ
せるようにするへきである。
Therefore, if the future point in the simulation is close to the present time, the influence of the short-term fluctuations mentioned above will be largely reflected,
After that, as the difference between the future point in time and the present time increases, the effect of short-term fluctuations will be reduced, and if this difference exceeds the range of influence of short-term fluctuations, only the effects of long-term fluctuations will be reflected. be.

しかしながら従来の方法においてはいずれも、パラメー
タ推定値はただ1種類のみである。この推定値は、推定
値の修正ゲインを大きくするほど(重み付き逐次型最小
2乗法の場合は、過去にさかのぼるほど1重みをより急
速に小さくすることに対応する)、短期的変動の影響を
大きく反映し、現時点に近い将来時点のシミュレーショ
ンに適しているが、ffi時点から離れた将来時点のシ
ミュレーションには適さず、一方修正ゲインを小さくし
た場合はこれと逆になる。したがって修正ゲイン大の場
合は、短期的変動の影響により、大きな時間間隔のシミ
ュレーション結果が、実時間の推移とともに不必要に変
動し、操作量や予定スケジュールなどの頻繁な変動を招
いて、安定操業、省エネルギーなどに悪影響を与え、ま
た修正ゲイン小の場合は、短期的変動の影響が現時点近
くのシミュレーションに反映されず、制御精度の低下か
ら省エネルギーなどに反する結果となる。すなわち、現
時点から、数十分以上離れた将来時点までの、大きな時
間間隔のシミュレーションにおける、異なる時点にそれ
ぞ九適したパラメータ値を、従来方法のように1種類の
推定値のみを用いて求める場合には、上記いずれかの問
題を生じる。
However, in all conventional methods, there is only one type of parameter estimate. This estimate becomes more sensitive to the effects of short-term fluctuations as the correction gain of the estimate increases (in the case of the weighted sequential least squares method, this corresponds to decreasing the 1 weight more rapidly as you go back into the past). It is suitable for simulating a future point in time close to the present time, but is not suitable for simulating a future point in time far from the ffi point; on the other hand, if the correction gain is made small, the opposite is true. Therefore, when the correction gain is large, the simulation results at large time intervals will fluctuate unnecessarily due to the influence of short-term fluctuations as the real time changes, leading to frequent fluctuations in the manipulated variables and scheduled schedules, resulting in stable operation. If the correction gain is small, the effects of short-term fluctuations will not be reflected in simulations near the current moment, resulting in a decrease in control accuracy, which will be detrimental to energy savings. In other words, in a simulation over a large time interval from the present moment to a future point several tens of minutes away, parameter values suitable for each different point in time are determined using only one type of estimated value, as in the conventional method. In this case, any of the above problems will occur.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前述のような従来方法の問題点を解決するもの
であり、未知パラメータの推定値として、直近の短期間
の観測値に基づいて速く変化する短期間推定値と、長期
間の観測値に基づいてゆっくりと変化する長期推定値と
の、2種類の推定値を並行して逐次求め、シミュレーシ
ョン中の各将来時点におけるパラメータ値には、短期推
定値と。
The present invention solves the problems of the conventional method as described above, and uses short-term estimated values that change rapidly based on the most recent short-term observed values and long-term observed values as estimated values of unknown parameters. Two types of estimated values are sequentially obtained in parallel, a long-term estimated value that changes slowly based on

長期推定値、またはそれに所定の補正値を加えた値との
重み付き平均値を用い、この値は現時点に近いほど短期
推定値に近い値とし、現時点から離れるほど長期推定値
またはそれに補正値を加えた値に近い値とするように、
現時点からの時間間隔に依存して変化させる。
A weighted average value of the long-term estimated value or a value obtained by adding a predetermined correction value to it is used. The closer this value is to the present moment, the closer it is to the short-term estimated value, and the farther away from the present moment, the longer the long-term estimated value or the corrected value to it. So that the value is close to the added value,
Varies depending on the time interval from the current moment.

〔作用〕[Effect]

以下本発明について詳しく説明する。 The present invention will be explained in detail below.

本発明の対象とするのは、連続式加熱炉の燃焼制御にお
いて、従来より実施されている操業シミュレーションの
ために未知パラメータの逐次推定を行なう場合である。
The subject of the present invention is a case where unknown parameters are sequentially estimated for conventional operation simulation in combustion control of a continuous heating furnace.

このような燃焼制御の機能構成の一例が特願昭63−3
09573号に述べられている。その構成を第5図に示
す。以下、この図に基づいて説明する。
An example of the functional configuration of such combustion control is disclosed in Japanese Patent Application No. 63-3.
No. 09573. Its configuration is shown in FIG. The following will explain based on this figure.

第5図において、まず1の実績処理機能(第1機能)は
、所定の周期で起動され、プラント実績φ(加熱炉炉温
、燃料流量など)を入力して、直接観測できない材料温
度などを推定し、それをφに加えてφ′とするとともに
、プラントモデルの未知パラメータを逐次推定し、推定
値會を求める。
In Fig. 5, the first actual performance processing function (first function) is started at a predetermined period and inputs plant actual results φ (heating furnace furnace temperature, fuel flow rate, etc.) to calculate material temperatures that cannot be directly observed. The estimated values are added to φ and set as φ', and the unknown parameters of the plant model are successively estimated to obtain the estimated values.

次に2の燃料流量設定計算・高力機能(第2機能)は、
第1機能から起動され、加熱炉各帯の燃料流量設定値F
svを計算し結果を出力する。
Next, the fuel flow setting calculation/high force function (second function) of 2 is as follows.
Started from the first function, the fuel flow rate setting value F for each zone of the heating furnace
Calculate sv and output the result.

一方、3の目標昇温曲線最適化機能(第3機能)は、第
2機能で用いる材料の目標昇温曲線A*を、所定の評価
関数を用いて逐次最適化する。
On the other hand, the third target temperature increase curve optimization function (third function) successively optimizes the target temperature increase curve A* of the material used in the second function using a predetermined evaluation function.

第2及び第3機能においては、現在の炉の状況を起点と
して将来の炉の操業を予測するシミュレーション計算を
、プラントモデルを用いて行なう。
In the second and third functions, a plant model is used to perform simulation calculations for predicting future furnace operations based on the current furnace status.

ここで、未知パラメータ逐次推定値宕が用いられる。Here, unknown parameter sequential estimates are used.

以下、第1機能で行なわれる逐次推定について述べる。The sequential estimation performed in the first function will be described below.

逐次推定のためには一般に、プラントモデルは未知パラ
メータ(一般に複数)に関して線形な次式で表わされる
For sequential estimation, the plant model is generally expressed by the following equation that is linear with respect to the unknown parameter(s).

y  (t)= A (t)  x (t)     
        ・・・(2)ただし、 t:時刻(サ
ンプリング周期単位)n:未知パラメータの個数 、ベクトル、行列の転値 y (Lx)、 x (t) :時刻tにおける観測値
、または観測値に基づいた計算値 (y t i、  x t Rrlx’ ト’tル)A
(t):時刻tにおける未知パラメータの値(At良T
lX1 とする) たとえば(1)式においては、n+ y+ Xg Aが
それぞれ2 w QL 1+  [TFl、 1 ]”
 p [λAi、λBi]”となる。
y (t) = A (t) x (t)
...(2) However, t: Time (sampling period unit) n: Number of unknown parameters, vector, transformed value of matrix y (Lx), x (t): Observed value at time t, or based on observed value Calculated value (y t i, x t Rrlx't)A
(t): Value of unknown parameter at time t (At good T
For example, in equation (1), n+ y+ Xg A is 2 w QL 1+ [TFl, 1 ]"
p [λAi, λBi]”.

本発明においては、Aの推定値として、直近の短期間の
観測値に基づく短期推定値Asと、長期間の観測値に基
づく長期推定値ALとの、2種類の推定値を並行して、
以下の式により逐次求める。
In the present invention, as the estimated value of A, two types of estimated values are used in parallel: a short-term estimated value As based on the most recent short-term observation value, and a long-term estimated value AL based on the observed value over a long period of time.
It is calculated sequentially using the following formula.

As(t)=As(t−1)+ks(t)  (y(t
、)−As(t−1)”x(t))       −−
・(3)AL  (t、)=AL (j−1)+kL 
(t)  (y(t)   AL  (t−1)  x
(t))   ・・・(4)t= タL、k 5(t)
、 k L (t)(t Rnx’ )L;!修正’F
’ イ’Jベクトルであり、重み付き逐次型最小2乗法
や、あるいは固定ゲイン法などの公知の方法を用いて、
値を計算する。
As(t)=As(t-1)+ks(t) (y(t
,)-As(t-1)"x(t)) --
・(3) AL (t,)=AL (j-1)+kL
(t) (y(t) AL (t-1) x
(t)) ... (4) t= TaL, k 5(t)
, k L (t) (t Rnx')L;! Modification 'F
'I'J vector, using a known method such as the weighted sequential least squares method or the fixed gain method,
Calculate the value.

以後簡単な固定ゲイン法を用いるとすると、ks(t)
=  Psx(t)/  (1+x(t)T Psx(
t))  ・・・(5)のようにしてksの値を求める
。ここでPs(εR)は固定対角行列(ゲイン行列)で
あり、対角要素psi(i=1.−、n; psi>O
)がAsの各要素の修正ゲインの値を定める。kLにつ
いても同様であり、(5)式でks、Psの代りにkL
If we use a simple fixed gain method hereafter, ks(t)
= Psx(t)/(1+x(t)T Psx(
t)) ...The value of ks is determined as in (5). Here, Ps (εR) is a fixed diagonal matrix (gain matrix), and diagonal element psi (i=1.-, n; psi>O
) determines the value of the modified gain of each element of As. The same is true for kL, and in equation (5), kL is used instead of ks and Ps.
.

PL(ε良nxn )とおけばよい。It is sufficient to set it as PL(εgoodnxn).

さて、ここで行列Psの値は、短期推定値Asが未知パ
ラメータAの短期的な変動に十分速く追従できるような
大きさに定め、一方、行列PLの値は、長期推定値AL
がAの短期的な変動の影響を受けず、かつ長期的変動に
対してのみゆっくりと追従するように、十分小さく定め
る。
Now, here, the value of the matrix Ps is set to a size that allows the short-term estimated value As to follow short-term fluctuations of the unknown parameter A sufficiently quickly, while the value of the matrix PL is set so that the long-term estimated value AL
is set sufficiently small so that A is not affected by short-term fluctuations in A and slowly follows only long-term fluctuations.

次に、実時刻tにおける将来操業のシミュレーションに
おいては、シミュレーション上の将来時刻(を十u)で
の計算に用いるAの推定値A(t、u)の値を、次式で
求める。
Next, in the simulation of future operation at actual time t, the value of the estimated value A(t, u) of A used for calculation at future time (10 u) on the simulation is determined by the following equation.

A(t、、u)=  [(u&lx−um)As(t)
+ur  (AL  (t)+h71 )  ]  八
m・・・(6) ただし、u 曽=+5in(u wax、 u )ここ
でumaスはU謬の上限であり、Asのおよその変動周
期の半分程度とする。また hACt Rnx” )はALの補正値であ6.hAt
7)値は0でもよいが、tより将来の実時刻τにおける
未知パラメータの値A(τ)が、長期推定値AL(t、
)と異なる場合に生じる可能性のある重大問題(抽出時
の材料の焼き不足など)を防ぐためには、たとえばAs
の短期的変動の振幅程度の、所定の値を設定する。たと
えば(1)式においては、λBiの値が将来何かの原因
でもし増加する場合は、損失熱が増加し材料が事前のシ
ミュレーションどうりには昇温しないことになる。この
ような場合に起こりうる焼き不足を防ぐためには、λB
1に対する補正値として適当な正数を設定するとよい。
A(t,,u)=[(u&lx-um)As(t)
+ur (AL (t)+h71) ] 8m...(6) However, u so = +5 in (u wax, u ) Here, uma is the upper limit of U error, and is about half of the approximate fluctuation period of As. shall be. Also, hACt Rnx”) is the AL correction value 6.hAt
7) Although the value may be 0, the value A(τ) of the unknown parameter at the actual time τ in the future from t becomes the long-term estimated value AL(t,
), for example, As
Set a predetermined value approximately equal to the amplitude of short-term fluctuations. For example, in equation (1), if the value of λBi increases for some reason in the future, the heat loss will increase and the temperature of the material will not rise as per the previous simulation. To prevent undercooking that may occur in such cases, λB
It is preferable to set an appropriate positive number as a correction value for 1.

上式かられかるように、将来時点(t + u)でのシ
ミュレーションで用いる推定値A (t、u)は、短期
推定値As(t)と、長期推定値+補正値(AL (t
)+hA)との重み付き平均値であり、Uが小さいほど
前者に近く、Uが大きいほど後者に近づく。
As can be seen from the above equation, the estimated value A (t, u) used in the simulation at the future point in time (t + u) is the short-term estimated value As(t) and the long-term estimated value + correction value (AL (t
)+hA), the smaller U is, the closer it is to the former, and the larger U is, the closer it is to the latter.

Uに対するA(t、u)のグラフを第2図に示す。A graph of A(t, u) versus U is shown in FIG.

〔実施例〕〔Example〕

以下、本発明の実施例として、特願昭63−30957
3号に記載された加熱炉の燃焼制御方法にしたがって行
なった、制御のシミュレーション結果について説明する
。ここでの対象プラントは、製鐵所連続熱延工場におけ
る鋼片スラブの連続式加熱炉であり、焼煙帯は抽出側よ
り、均熱帯(Sz)、第3加熱帯(3Hz)、及び第2
加熱帯(2Hz)の3帯である。シミュレーションは第
1図と同じ実操業データに基づいて行ない、(1)式に
示す損失熱係数(未知パラメータ)の値は、実操業どう
りに変化させた。ここでの制御方式は、所定の評価関数
の最小化による最適制御方式であり、この評価関数は、
各抽出スラブの平均温度が目標温度以上。
Hereinafter, as an example of the present invention, Japanese Patent Application No. 63-30957
The results of a control simulation conducted in accordance with the heating furnace combustion control method described in No. 3 will be described. The target plant here is a continuous heating furnace for steel billet slabs in a continuous hot rolling mill of a steel works. 2
There are three heating zones (2Hz). The simulation was performed based on the same actual operation data as in FIG. 1, and the value of the heat loss coefficient (unknown parameter) shown in equation (1) was changed as in the actual operation. The control method here is an optimal control method by minimizing a predetermined evaluation function, and this evaluation function is
The average temperature of each extraction slab is above the target temperature.

かつそのときのスラブ内偏熱(表面と中心との温度差)
が所定値(50℃)以内、との制約条件のもとで、燃料
流量最小化を狙うように設定した。
And the uneven heat inside the slab at that time (temperature difference between the surface and center)
The fuel flow rate was set to be minimized under the constraint that the temperature was within a predetermined value (50° C.).

二のような制御において、本発明を取り入れた場合の結
果を第3a図、第3b図、第3c図および第3d図に、
取り入れずに長期推定値も短期推定値と全く同じ値とし
て頻繁に変化させた従来例の結果を第4a図、第4b図
、第4c図および第4d図に示す、このプラントでは、
燃料流量最小化のためには、炉温か設備上およびスラブ
品質上許容されろ上限値を超えない範囲で、 3)1z
の燃料をなるべく多くし、2Hzの燃料をなるべく少な
くするのが効果的である。本発明を取り入れた例(第3
a図〜第3d図)では、そのような制御が、上記制約条
件を守りながらほぼ実現されている。
3a, 3b, 3c, and 3d show the results when the present invention is incorporated in the control described in 2.
Figures 4a, 4b, 4c, and 4d show the results of a conventional example in which the long-term estimated value was made exactly the same as the short-term estimated value without incorporating the short-term estimated value, and was frequently changed. In this plant,
In order to minimize the fuel flow rate, within the range that does not exceed the upper limit allowed by furnace temperature equipment and slab quality, 3) 1z
It is effective to increase the amount of fuel for 2Hz as much as possible and decrease the amount of fuel for 2Hz as much as possible. Example incorporating the present invention (third example)
In Figures a to 3d), such control is almost achieved while observing the above constraints.

しかし従来例(第4a図〜第4d図)では本発明を実施
した場合に比べて、3Hzの燃料流量は少なく変動も大
きい反面、2Hzの燃料流量は大きく増加していて熱効
率が低い。このため炉全体の燃料流量は、第4a図〜第
4d図の方が第3a図〜第3d図の例より4%程度増加
した。これにより1本発明が、加熱炉燃焼制御において
安定操業及び省エネルギーに効果のあることが示された
However, in the conventional example (FIGS. 4a to 4d), compared to the case where the present invention is implemented, the fuel flow rate at 3 Hz is small and the fluctuation is large, but the fuel flow rate at 2 Hz is greatly increased and the thermal efficiency is low. Therefore, the fuel flow rate of the entire furnace increased by about 4% in the examples shown in FIGS. 4a to 4d compared to the examples shown in FIGS. 3a to 3d. This demonstrated that the present invention is effective in stable operation and energy saving in heating furnace combustion control.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、連続式加熱炉の燃焼
制御において、現時点に近い将来時点のシミュレーショ
ンには直近の観測値の影響を大きく反映させて制御精度
を上げ、一方現時点から離れた将来時点のシミュレーシ
ョンには、長期間の観測値の影響を反映させて、短期推
定値の変動によるシミュレーション結果の不必要な変動
を防止するとともに、補正値を加えることにより、将来
の未知パラメータの変動に起因する予測はずれから生じ
る可能性のある重大問題(材料の焼き不足など)を防止
する。これにより、燃焼制御において省エネルギー、操
業安定化、焼き不足防止などを実現することができる。
As described above, according to the present invention, in the combustion control of a continuous heating furnace, the influence of the most recent observed values is greatly reflected in the simulation at a point in the near future to improve control accuracy, while In future simulations, the influence of long-term observed values is reflected to prevent unnecessary fluctuations in simulation results due to fluctuations in short-term estimated values, and by adding correction values, future fluctuations in unknown parameters can be reduced. Prevent serious problems (such as under-baking of materials) that can result from mispredictions caused by This makes it possible to save energy, stabilize operations, and prevent under-cooking in combustion control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は未知パラメータの変動を表わすグラフ、第2図
は本発明の方法におけるUとA(t、u)との相関を示
すグラフ、第3a図、第3b図、第3c図および第3d
図は1本発明を用いた場合のシミュレーション結果を表
わすグラフ、第4a図、第4b図、第4c図および第4
d図は1本発明を用いなかった場合のシミュレーション
結果を表わすグラフ、第5図は焼煙制御の機能構成を表
わすブロック図である。 声 図 300.0 400.0 500.0 600.0 Mm(mtn) 700.0 声38図 声3b図 埼閘 (min) 第4d図 声4b図 埼閲 (min) 声3c図 時開(min) 声4c図 吟関(min )
Fig. 1 is a graph showing the fluctuation of unknown parameters, Fig. 2 is a graph showing the correlation between U and A(t, u) in the method of the present invention, Figs. 3a, 3b, 3c, and 3d.
Figure 1 shows graphs representing simulation results when the present invention is used, Figures 4a, 4b, 4c, and 4.
FIG. 1 is a graph showing the simulation results when the present invention is not used, and FIG. 5 is a block diagram showing the functional configuration of smoking control. Voice figure 300.0 400.0 500.0 600.0 Mm (mtn) 700.0 Voice 38 figure Voice 3b figure Saitaku (min) 4d figure Voice 4b figure Sight review (min) Voice 3c figure Time opening (min ) Voice 4c illustration Ginseki (min)

Claims (1)

【特許請求の範囲】 連続式加熱炉の燃焼制御において、燃料流量または炉内
温度の時系列と、被加熱材料の炉への装入、炉内進行、
および炉からの抽出の予定スケジュールとを与えて炉の
操業をシミュレーションするシミュレーションモデルを
有し、かつ、該モデルを用いて、現時点以降、所定の材
料が抽出されるかなり将来の時点までの操業のシミュレ
ーションを行なうことにより、燃料流量または炉温の最
適な操作量や材料の予定スケジュールなどを求め、また
同時に、該モデルに含まれる未知パラメータの値は、炉
温、燃料流量などの観測値から逐次推定する方法におい
て; 未知パラメータに関して、直近の短期間の観測値に基づ
く短期推定値と、長期間の観測値に基づく長期推定値と
の、2種類の推定値を並行して逐次求め、シミュレーシ
ョン中の各将来時点におけるパラメータ値には、短期推
定値と、長期推定値、またはそれに所定の補正値を加え
た値との重み付き平均値を用い、この値は現時点に近い
ほど短期推定値に近い値とし、現時点から離れるほど長
期補正推定値に近い値とするように、現時点からの時間
間隔に依存して変化させることを特徴とする、連続式加
熱炉の燃焼制御におけるパラメータ逐次推定とその利用
方法。
[Claims] In combustion control of a continuous heating furnace, the time series of fuel flow rate or furnace temperature, charging of the material to be heated into the furnace, progress in the furnace,
a simulation model for simulating the operation of a furnace given a scheduled schedule for extraction from the furnace; By performing simulations, we can determine the optimal manipulated variables for fuel flow rate or furnace temperature, material schedule, etc. At the same time, the values of unknown parameters included in the model can be calculated sequentially from observed values such as furnace temperature and fuel flow rate. In the estimation method: Regarding unknown parameters, two types of estimated values are successively obtained in parallel: a short-term estimated value based on the most recent short-term observed values, and a long-term estimated value based on long-term observed values, and the two types of estimated values are sequentially obtained during the simulation. For the parameter values at each future point in time, we use the weighted average of the short-term estimated value and the long-term estimated value, or the value obtained by adding a predetermined correction value to it. Sequential parameter estimation and its use in combustion control of a continuous heating furnace, characterized in that the value is changed depending on the time interval from the current time so that the value becomes closer to the long-term corrected estimated value as the distance from the current time increases. Method.
JP1850390A 1990-01-29 1990-01-29 Sequential parameter estimation and its application in combustion control of continuous heating furnace Expired - Fee Related JPH0723507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1850390A JPH0723507B2 (en) 1990-01-29 1990-01-29 Sequential parameter estimation and its application in combustion control of continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1850390A JPH0723507B2 (en) 1990-01-29 1990-01-29 Sequential parameter estimation and its application in combustion control of continuous heating furnace

Publications (2)

Publication Number Publication Date
JPH03223417A true JPH03223417A (en) 1991-10-02
JPH0723507B2 JPH0723507B2 (en) 1995-03-15

Family

ID=11973431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1850390A Expired - Fee Related JPH0723507B2 (en) 1990-01-29 1990-01-29 Sequential parameter estimation and its application in combustion control of continuous heating furnace

Country Status (1)

Country Link
JP (1) JPH0723507B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06266407A (en) * 1992-12-08 1994-09-22 Kawasaki Heavy Ind Ltd Parameter adjusting device of combustion simulation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06266407A (en) * 1992-12-08 1994-09-22 Kawasaki Heavy Ind Ltd Parameter adjusting device of combustion simulation system

Also Published As

Publication number Publication date
JPH0723507B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
CN106636610B (en) A kind of double dimension walking beam furnace heating curve optimal setting methods based on time and furnace superintendent
CN106636606B (en) A kind of method for controlling furnace temperature of heating furnace based on simulation model
US4257767A (en) Furnace temperature control
KR101956365B1 (en) System for control temperature pattern of strip in continuous annealing line and the method of the same
JP2006518669A (en) Method for adjusting the temperature of a metal strip, especially in the cooling zone
CN103506406B (en) A kind of heating-furnace method for controlling temperature inner of fast automatic adaptation milling train rhythm
JPH02166235A (en) Method for controlling sheet temperature in metallic sheet heating furnace
JPH03223417A (en) Successive estimation of parameter in combustion control of continuous heating furnace and its utilization
CA1118074A (en) Method of controlling a heating furnace for steel ingots
JPS5822325A (en) Optimum control means for heating oven for bloom
JPH09242507A (en) Start controller for steam turbine
JPH066735B2 (en) Combustion control method for continuous heating furnace
Andreev et al. Evaluation of constraints influence on optimal control of billet heating before rolling
Staalman et al. On-line slab temperature calculation and control
JP3537215B2 (en) Heating furnace temperature controller
JPH09209044A (en) Operation of continuous type steel cast slab heating furnace
JPS61141787A (en) Control of oven temperature in coke oven
JP3982042B2 (en) Combustion control method for continuous heating furnace
JP3796808B2 (en) Combustion control method and apparatus for continuous heating furnace
JP4110780B2 (en) Estimation method of hot metal temperature and disturbance in blast furnace
JPH05230526A (en) Temperature control method for continuous heating furnace
Cook et al. Algorithms for on-line computer control of steel ingot processing
JPS5818401B2 (en) Continuous heating furnace control method
JPS609087B2 (en) Heating control method for continuous heating furnace
JPS6051536B2 (en) Optimal control device for billet heating furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees