JPH04246130A - Method for controlling flow rate of combustion gas in continuous annealing furnace - Google Patents

Method for controlling flow rate of combustion gas in continuous annealing furnace

Info

Publication number
JPH04246130A
JPH04246130A JP2787391A JP2787391A JPH04246130A JP H04246130 A JPH04246130 A JP H04246130A JP 2787391 A JP2787391 A JP 2787391A JP 2787391 A JP2787391 A JP 2787391A JP H04246130 A JPH04246130 A JP H04246130A
Authority
JP
Japan
Prior art keywords
flow rate
combustion gas
gas flow
heat transfer
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2787391A
Other languages
Japanese (ja)
Inventor
Ichiro Ueda
一郎 上田
Kazuaki Kita
和昭 北
Shinji Nishiyama
西山 眞次
Kazuhisa Goto
和久 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2787391A priority Critical patent/JPH04246130A/en
Publication of JPH04246130A publication Critical patent/JPH04246130A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately control temp. of the following material having strip width different from that of the preceding material by using the prescribed heat transmission model equation and obtaining an overall coefficient of heat transfer from combustion gas flow rate and the strip width to obtain the set value of combustion gas flow rate for the following material. CONSTITUTION:To a strip prepared by joining the preceding material and the following material different in size, the target temp. and quality, the combustion gas flow rate of the following material is controlled by using the prescribed heat transmitting model equation. In this control method, the plural overall coefficients of heat transfer from the above model equation are calculated through the specific arithmetic equation for each of the calculation conditions different in strip widths and in the combustion gas flow rates. Successively, based on this calculated result, the overall coefficient of heat transfer is obtd. as functions of the combustion gas flow rate and the strip width. Successively, by using a flow rate arithmetic equation obtd. from these relations, the overall coefficient of heat transfer for the following material is obtd., and based on these, the set value of combustion gas flow rate of the following material is obtd. from the above flow rate arithmetic equation.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、連続焼鈍炉の温度制御
を行うための燃焼ガス流量の制御方法に関する。 【0002】 【従来の技術】連続焼鈍炉においては、鋼板(以下スト
リップという)を連続的に熱処理するために、炉の入側
で通板中のストリップ(以下先行材という)の後端と、
次に通板されるストリップ(以下次行材という)の前端
とを溶接によって接合している。このように先行材と次
行材とを接合して熱処理を行う場合、夫々のストリップ
の寸法及び材質に応じた熱処理を行うことによって、炉
の出側におけるストリップの温度を所定の目標温度に制
御していた。 【0003】このような連続焼鈍炉の従来の温度制御と
しては、伝熱モデル式を用いて燃焼ガス流量を求め、求
められた燃焼ガス流量をその設定流量として定める方法
が用いられている。例えば、NKK技報NO.126,
P20,21 では、先行材と次行材との寸法, 材質
が異なる場合、下記(7)式に示す伝熱モデル式を用い
て燃焼ガス流量を求め、燃焼ガス流量の設定変更を行っ
ていた。 【0004】   60・V・ρ・h・(dQS /dx)=KS ・
〔UGS(u ,TG )・{(TG +273)4 
−                        
      (TS +273)4 }+UWS(u 
,TW )・{(TG               
                +273)4 −(
TS +273)4 }〕  …(7)   【000
5】但し、上記(7) 式において、ρは鋼板の密度(
kg/cm2 )、hは鋼板板厚(m) 、QS は鋼
板含熱量(kcal/kg) 、KS はモデルパラメ
ータ、UGSは燃焼ガスと鋼板との間の伝熱係数(kc
al/m 2 ・h・℃)、UWSは炉壁と鋼板との間
の伝熱係数(kcal/m 2 ・h・℃)、uは燃焼
ガス流量(Nm 3 /h) 、TG は燃焼ガス温度
 (℃)、TW は炉壁温度 (℃)、TS は鋼板温
度 (℃)、Vはライン速度(mpm) 、xは鋼板の
炉内位置(m) である。 【0006】 【発明が解決しようとする課題】ところが、前述の如き
(7) 式に示す伝熱モデル式を用いて燃焼ガス流量を
求める場合、伝熱形態として、炉壁からの輻射及び燃焼
ガスの輻射が考慮されており、実用的ではあるが、前記
(7) 式ではストリップの板幅が考慮されていない。 従って、先行材の板幅と次行材の板幅とが異なると、炉
の出側における次行材のストリップ温度が予め定められ
た目標温度に制御されなくなるという問題があった。 【0007】本発明は斯かる事情に鑑みてなされたもの
であり、先行材の板幅と次行材の板幅とが異なる場合で
も、次行材のストリップ温度が予め定められた目標温度
に良好な精度で制御できることを可能とする連続焼鈍炉
の燃焼ガス流量制御方法を提供することを目的とする。 【0008】 【課題を解決するための手段】本発明に係る連続焼鈍炉
の燃焼ガス流量制御方法は、寸法,目標温度,材質の少
なくとも1つが異なる先行材と次行材とを接合した帯材
の温度制御を行うために、所定の伝熱モデル式を用いて
次行材の燃焼ガス流量の設定値を求め、この設定値にな
すべく次行材の燃焼ガス流量を制御する連続焼鈍炉の燃
焼ガス流量制御方法において、前記伝熱モデル式の総括
熱伝達係数を、帯材の幅及び燃焼ガス流量が異なる算出
条件別に所定の演算式によって複数算出し、この算出結
果に基づいて総括熱伝達係数を燃焼ガス流量及び帯材の
幅の関数として求め、該関数より帯材の幅及び総括熱伝
達係数に関連して燃焼ガス流量の設定値を算出する流量
演算式を求めておき、前記所定の演算式によって次行材
の総括熱伝達係数を求め、次行材の幅及び求めた次行材
の総括熱伝達係数に基づき前記流量演算式にて次行材の
燃焼ガス流量の設定値を求めることを特徴とする。 【0009】 【作用】帯材への伝熱に関する種々の熱伝達係数を総括
的に表す総括熱伝達係数を燃焼ガス流量及び帯材の幅の
関数として求めると、この関数によって、帯材の幅が変
化した場合は総括熱伝達係数が変化することとなる。前
記関数より、次行材の燃焼ガス流量の設定値を次行材の
幅及び総括熱伝達係数に関連して求める流量演算式が得
られるが、この流量演算式に基づいて求められる次行材
の燃焼ガス流量の設定値は、帯材の幅が変化した場合の
総括熱伝達係数の変化を考慮して得られる値であるので
、この設定値になすべく次行材の燃焼ガス流量を制御す
ると、先行材から次行材への帯材の幅の変化に起因する
次行材の温度制御への影響が補償される。 【0010】 【実施例】以下本発明をその実施例を示す図面に基づい
て具体的に説明する。図1は本発明に係る連続焼鈍炉の
燃焼ガス流量制御方法を適用する連続焼鈍炉の燃焼ガス
流量制御装置の構成を示す模式的ブロック図である。 【0011】図中1は竪型の直火式の加熱炉であり、該
加熱炉1の内部にはストリップSを図中白抜き矢符にて
示される炉入側から炉出側へ向かう方向に移送するため
の複数のハースロール2,2が備えられている。加熱炉
1の内部はストリップSの上流側から下流側へ3つの領
域に領域分けされている。これらの各領域には夫々火炎
を放射するバーナ3,3,3が配設されており、各領域
のバーナ3,3,3には、燃料供給源(図示せず)から
夫々に対応する流量制御弁4,4,4を介して燃焼ガス
が供給され、バーナ3,3,3は火炎によって直接的に
ストリップSの加熱を行うようになっている。ストリッ
プSは前述の各領域にて加熱されつつ移送されるように
なっている。 【0012】流量制御弁4,4,4は夫々に対応する燃
焼ガス流量制御器40,40,40によって各別に制御
されるようになっている。流量制御弁4,4,4の出側
には燃焼ガスの流量を検出する流量検出器41,41,
41が夫々設けられており、該流量検出器41,41,
41の検出データは燃焼ガス流量制御器40,40,4
0に夫々与えられるようになっている。 【0013】また、前述の各領域には夫々の領域の燃焼
温度TG を検出する燃焼温度検出器7,7,7が設け
られており、これらの燃焼温度検出器7,7,7の検出
データは後述する第1演算器81及び第2演算器82に
与えられるようになっている。加熱炉1の入側にはスト
リップSの炉入側温度Ti を検出する入側温度検出器
51が設けられており、一方、加熱炉1の出側にはスト
リップSの炉出側温度To を検出する出側温度検出器
52と、ストリップSの移送速度Vを検出する移送速度
検出器6とが設けられている。入側温度検出器51及び
移送速度検出器6の検出データは前記第1演算器81及
び第2演算器82に与えられるようになっており、出側
温度検出器52の検出データは前記第1演算器81に与
えられるようになっている。 【0014】第1演算器81には、前述の各検出データ
の他にストリップSの先行材の板厚h及び比熱cのデー
タが、図示しないデータ入力装置から与えられるように
なっている。第1演算器81では前述の如く与えられた
各データに基づき、後述する演算方法によって、総括熱
伝達係数HC ( Q,W )を表す1次式を求め、求
められた1次式の係数をテーブル化してメモリ9に記憶
させるようになっている。 【0015】第2演算器82には、前述の如き各検出デ
ータ及びメモリ9に記憶された総括熱伝達係数HC の
他にストリップSの次行材の目標板温Tm ,板厚h1
 及び比熱c1 のデータが、図示しないデータ入力装
置から与えられるようになっている。第2演算器82で
はこのように与えられた各データに基づき、後述する演
算方法によって、目標総括熱伝達係数HC1を求め、求
めた目標総括熱伝達係数HC1に基づき、後述する演算
方法によって加熱炉1の総燃焼ガス流量Q1 を求め、
求めた総燃焼ガス流量Q1 のデータを燃焼ガス流量配
分設定器400 へ与える。 【0016】燃焼ガス流量配分設定器400 では、予
め定められた配分比に基づいて加熱炉1の各領域の燃焼
ガス流量の設定値を求め、求めた燃焼ガス流量の設定値
のデータを燃焼ガス流量制御器40,40,40へ夫々
与える。燃焼ガス流量制御器40,40,40は、夫々
の領域の燃焼ガス流量を与えられた設定値に一致させる
制御を行う。 【0017】次に、先行材と次行材との板幅が異なる場
合にストリップの温度制御に与える影響について説明す
る。例えば、横型の連続溶融亜鉛メッキラインの直火加
熱炉において、板幅のみが異なる先行材と次行材とを、
燃焼ガス流量及び移送速度を一定として実際に加熱し、
その先行材及び次行材の炉出側温度を検出した場合の結
果を図2に示す。図2は板幅のみが異なる先行材と次行
材とを同一条件下で加熱した場合のストリップの温度変
化の結果を示すタイムチャートであり、図中Aは前記直
火加熱炉の入側でのストリップの板幅、Bは直火加熱炉
の炉壁温度、Cは直火加熱炉の炉出側のストリップ温度
を夫々示してある。なお、この制御におけるライン速度
は96mpm 、ストリップの板厚は0.6mm とし
た。 【0018】図2のAに示す如くストリップの板幅が先
行材と次行材との継目において200mm 増加した場
合、Bに示す如く炉壁温度は25℃減少し、Cに示す如
く炉出側のストリップ温度は30℃減少した。このよう
に、先行材と次行材とで板幅が異なると、ストリップ温
度が影響を受けることが判る。 【0019】図2に示す結果より、直火加熱炉の伝熱形
態は下記(1) 式に示す伝熱式でモデル化できる。   60・V・c・ρ・h・(dTS /dx)=2H
(Q)・(TG −TS )+2Fse(W)・σ・〔
{(TW +273)/100}4 −{(TS +2
73)/100}4 〕…(1)   【0020】但
し、上記(1) 式において、cはストリップの比熱(
kcal/kg ℃) 、ρはストリップの密度(kg
/cm2 ) 、hはストリップの板厚(m) 、Wは
ストリップの板幅(m) 、Qは燃焼ガス流量(Nm 
3 /h) 、H(Q)は燃焼ガスとストリップとの間
の伝熱係数(kcal/m 2 ・h・℃)、Fse(
W)は炉壁とストリップとの間の形態係数、TG は燃
焼ガス温度 (℃)、TW は炉壁温度 (℃)、TS
 はストリップ温度(℃)、σはステファンボルツマン
定数、Vはライン速度(mpm) 、xはストリップの
炉内位置(m) である。 【0021】上記(1) 式の伝熱モデル式は、炉壁と
ストリップとの間の形態係数Fse(W)を板幅Wの関
数として用いている点が従来の伝熱モデル式と異なり、
また、上記(1) 式は等価的に下記(2) 式の如く
表すことができる。 【0022】 【数1】 【0023】前記(2) 式において、総括熱伝達係数
HC (Q ,W )は、燃焼ガス流量Qとストリップ
の板幅Wとの関数として表される。 【0024】次に、このように構成された燃焼ガス流量
制御装置の第1演算器81及び第2演算器82における
演算方法について説明する。第1演算器81では、下記
(3) 式を用いて総括熱伝達係数HC ( Q ,W
 )を求める。 【0025】   HC ( Q ,W )=〔(60・c・ρ・h・
V) /(2・L)〕・ln〔( TG −     
             Ti )/( TG −T
o )〕  …(3)   【0026】但し、上記(
3) 式において、LはストリップSの有効加熱長であ
る。このようにして得られる総括熱伝達係数HC ( 
Q,W )は、ストリップSの板幅及び燃焼ガス流量が
異なる多数の条件について求めておき、これらの結果に
基づいて重回帰計算の手法を用い、総括熱伝達係数HC
 ( Q ,W )を下記(4) 式に示す如き1次式
として求め、その係数A0 , A1 , A2を求め
る。 【0027】HC ( Q ,W )=A0 +A1 
・Q+A2 ・W  …(4)  【0028】そして、その係数A0 , A1 , A
2 をテーブルデータとしてメモリ9に記憶させる。前
記係数A0 , A1 , A2 はストリップSの材
質別に求めておき、メモリ9には材質別の係数A0 ,
 A1 , A2をストリップSの材質に応じた層別テ
ーブルのテーブルデータとして記憶させる。 【0029】第2演算器82では、先行材と材質が異な
る次行材が加熱炉1の入側に到達したとき、入側温度検
出器51にて検出した炉入側温度Ti ,移送速度検出
器6にて検出した移送速度V,燃焼温度検出器7,7,
7にて検出した燃焼温度TG 及び次行材の目標板温T
m ,板厚h1 ,比熱c1 に基づき、下記(5) 
式を用いて次行材の目標総括熱伝達係数HC1を求める
。 【0030】   HC1=〔(60・c1 ・ρ・h1 ・V) /
(2・L)〕・ln〔( TG −Ti )/    
    ( TG −Tm )  …(5)   【0
031】目標総括熱伝達係数HC1が求められると、次
行材の材質に応じた係数A0 , A1 , A2 の
データをメモリ9から読み出して、これと、目標総括熱
伝達係数HC1及び次行材の板幅W1 とに基づいて下
記(6) 式を用いて総燃焼ガス流量Q1 を求める。 【0032】 Q1 =(1/A1)・ (HC1−A0 −A2 ・
W1)  …(6) 【0033】このようにして求め
られた総燃焼ガス流量Q1 はストリップSの板幅Wの
条件を含んで求められた値であるので、次行材と先行材
とでストリップSの板幅Wのみが異なる場合でも温度制
御が精度良く行える。 【0034】次に、前述の如き連続焼鈍炉の燃焼ガス流
量制御方法を用いて実際に温度制御を行った場合の結果
について説明する。図3は板幅及び目標板温が異なる先
行材と次行材とを本発明の燃焼ガス流量制御方法で温度
制御した結果を示すタイムチャートであり、図中Aは前
記直火加熱炉の入側にでのストリップの板幅、Bは直火
加熱炉の総燃焼ガス流量、Cは直火加熱炉の炉出側のス
トリップ温度を夫々示してある。但し、前記Bにおける
破線は総燃焼ガス流量の設定値、実線は実績値であり、
また、前記Cにおける破線は目標板温、実線は実績値で
ある。なお、この制御におけるライン速度は60mpm
 、ストリップの板厚は2.3mm とした。 【0035】図3のAに示す如くストリップの板幅が先
行材と次行材との継目において150mm 増加した場
合でも、Bに示す如く総燃焼ガス流量を500 Nm 
3 /hだけ増加させることにより、Cに示す如く炉出
側のストリップ温度は目標板温に制御されていることが
判る。 【0036】なお、本実施例においては、竪型の直火式
の加熱炉を用いた連続焼鈍ラインで燃焼ガス流量制御を
行う場合について説明したが、これに限らず、本発明は
竪型の直火式の加熱炉を有する連続溶融亜鉛メッキライ
ン及び横型の直火式の加熱炉を有する連続溶融亜鉛メッ
キラインにおいても適用できる。 【0037】 【発明の効果】以上詳述した如く本発明に係る連続焼鈍
炉の燃焼ガス流量制御方法では、帯材への伝熱に関する
種々の熱伝達係数を総括的に表す総括熱伝達係数を燃焼
ガス流量及び帯材の幅の関数として求めると、この関数
によって、帯材の幅が変化した場合は総括熱伝達係数が
変化することとなり、前記関数から得られる、次行材の
燃焼ガス流量の設定値を次行材の幅及び総括熱伝達係数
に関連して求める演算式にて算出される次行材の燃焼ガ
ス流量の設定値は、帯材の幅が変化した場合の総括熱伝
達係数の変化を考慮して得られる値であるので、この設
定値になすべく次行材の燃焼ガス流量を制御すると、帯
材の幅の変化に起因する次行材の温度制御への影響が補
償でき、先行材の幅と次行材の幅とが異なる場合でも、
炉の出側における次行材の温度が予め定められた目標温
度に制御できることが可能となる等、本発明は優れた効
果を奏する。
Description: FIELD OF THE INVENTION The present invention relates to a method for controlling the flow rate of combustion gas for controlling the temperature of a continuous annealing furnace. [0002] In a continuous annealing furnace, in order to continuously heat treat a steel plate (hereinafter referred to as a strip), the rear end of a strip (hereinafter referred to as a preceding material) being passed at the entrance side of the furnace,
The front end of the strip to be passed next (hereinafter referred to as the next strip) is joined by welding. When the preceding material and the subsequent material are joined and heat treated in this way, the temperature of the strip at the exit side of the furnace can be controlled to a predetermined target temperature by performing heat treatment according to the dimensions and material of each strip. Was. Conventional temperature control for such continuous annealing furnaces involves determining the combustion gas flow rate using a heat transfer model equation and setting the determined combustion gas flow rate as the set flow rate. For example, NKK Technical Report No. 126,
In P20 and 21, when the dimensions and materials of the preceding material and the succeeding material were different, the combustion gas flow rate was determined using the heat transfer model equation shown in equation (7) below, and the setting of the combustion gas flow rate was changed. . 60・V・ρ・h・(dQS/dx)=KS・
[UGS(u, TG)・{(TG +273)4

(TS +273)4 }+UWS(u
,TW )・{(TG
+273)4 -(
TS +273)4 }] …(7) 000
5] However, in the above equation (7), ρ is the density of the steel plate (
kg/cm2), h is the steel plate thickness (m), QS is the heat content of the steel plate (kcal/kg), KS is the model parameter, UGS is the heat transfer coefficient between the combustion gas and the steel plate (kc
al/m 2 ・h・℃), UWS is the heat transfer coefficient between the furnace wall and the steel plate (kcal/m 2 ・h・℃), u is the combustion gas flow rate (Nm 3 /h), and TG is the combustion gas temperature (°C), TW is the furnace wall temperature (°C), TS is the steel plate temperature (°C), V is the line speed (mpm), and x is the position of the steel plate in the furnace (m). [0006] However, when determining the combustion gas flow rate using the heat transfer model equation (7) as described above, radiation from the furnace wall and combustion gas are considered as heat transfer forms. Although it is practical because it takes into account radiation, the width of the strip is not taken into account in equation (7). Therefore, if the width of the preceding material differs from the width of the next material, there is a problem in that the strip temperature of the next material on the exit side of the furnace is not controlled to a predetermined target temperature. The present invention has been made in view of the above circumstances, and even when the width of the preceding material and the width of the next material are different, the strip temperature of the next material can reach a predetermined target temperature. An object of the present invention is to provide a method for controlling the flow rate of combustion gas in a continuous annealing furnace, which enables control with good accuracy. Means for Solving the Problems [0008] A combustion gas flow rate control method for a continuous annealing furnace according to the present invention provides a method for controlling the flow rate of combustion gas in a continuous annealing furnace. In order to control the temperature of the continuous annealing furnace, the set value of the combustion gas flow rate of the next material is determined using a predetermined heat transfer model equation, and the combustion gas flow rate of the next material is controlled to reach this set value. In the combustion gas flow rate control method, the overall heat transfer coefficient of the heat transfer model equation is calculated by a predetermined calculation formula for each calculation condition with different strip width and combustion gas flow rate, and the overall heat transfer coefficient is calculated based on the calculation results. A coefficient is determined as a function of the combustion gas flow rate and the width of the band material, and a flow rate calculation formula is determined from the function to calculate a set value of the combustion gas flow rate in relation to the width of the band material and the overall heat transfer coefficient. The overall heat transfer coefficient of the next row material is determined by the calculation formula, and the set value of the combustion gas flow rate of the next row material is determined using the flow rate calculation formula based on the width of the next row material and the determined overall heat transfer coefficient of the next row material. Characterized by seeking. [Operation] When the overall heat transfer coefficient, which collectively represents various heat transfer coefficients related to heat transfer to the strip material, is determined as a function of the combustion gas flow rate and the width of the strip material, this function determines the width of the strip material. If this changes, the overall heat transfer coefficient will change. From the above function, a flow rate calculation formula for calculating the set value of the combustion gas flow rate of the next row material in relation to the width of the next row material and the overall heat transfer coefficient can be obtained. The set value of the combustion gas flow rate in is a value obtained by taking into account the change in the overall heat transfer coefficient when the width of the strip material changes, so the combustion gas flow rate of the next material is controlled to achieve this set value. This compensates for the effect on the temperature control of the subsequent material due to the change in the width of the strip from the preceding material to the subsequent material. [0010] The present invention will be specifically explained below based on the drawings showing the embodiments. FIG. 1 is a schematic block diagram showing the configuration of a combustion gas flow rate control device for a continuous annealing furnace to which a combustion gas flow rate control method for a continuous annealing furnace according to the present invention is applied. 1 in the figure is a vertical direct-fired heating furnace, and inside the heating furnace 1, a strip S is arranged in the direction from the furnace entry side to the furnace exit side, as indicated by the white arrow in the figure. A plurality of hearth rolls 2, 2 are provided for transferring to. The interior of the heating furnace 1 is divided into three regions from the upstream side to the downstream side of the strip S. Each of these areas is provided with a burner 3, 3, 3 that emits a flame, respectively, and the burner 3, 3, 3 of each area receives a corresponding flow rate from a fuel supply source (not shown). Combustion gas is supplied through the control valves 4, 4, 4, and the burners 3, 3, 3 heat the strip S directly by flame. The strip S is transferred while being heated in each of the above-mentioned areas. The flow rate control valves 4, 4, 4 are individually controlled by corresponding combustion gas flow rate controllers 40, 40, 40, respectively. On the outlet side of the flow control valves 4, 4, 4, there are flow rate detectors 41, 41, which detect the flow rate of combustion gas.
41 are provided respectively, and the flow rate detectors 41, 41,
The detection data of 41 is the combustion gas flow rate controller 40, 40, 4.
0 respectively. Furthermore, combustion temperature detectors 7, 7, 7 for detecting the combustion temperature TG of each region are provided in each of the aforementioned regions, and the detection data of these combustion temperature detectors 7, 7, 7 is is provided to a first arithmetic unit 81 and a second arithmetic unit 82, which will be described later. An inlet temperature detector 51 is provided on the inlet side of the heating furnace 1 to detect the inlet temperature Ti of the strip S, while an inlet temperature detector 51 is provided on the outlet side of the heating furnace 1 to detect the outlet temperature To of the strip S. An outlet temperature detector 52 for detecting the temperature and a transfer speed detector 6 for detecting the transfer speed V of the strip S are provided. The detection data of the inlet temperature detector 51 and the transfer speed detector 6 are given to the first arithmetic unit 81 and the second arithmetic unit 82, and the detection data of the outlet temperature detector 52 is given to the first arithmetic unit 81 and the second arithmetic unit 82. The signal is supplied to the arithmetic unit 81. In addition to the above-mentioned detection data, the first computing unit 81 receives data on the thickness h and specific heat c of the preceding material of the strip S from a data input device (not shown). The first calculator 81 calculates a linear equation representing the overall heat transfer coefficient HC (Q, W) based on each data given as described above and by a calculation method described later, and calculates the coefficients of the obtained linear equation. The table is made into a table and stored in the memory 9. In addition to the above-mentioned detection data and the overall heat transfer coefficient HC stored in the memory 9, the second computing unit 82 stores the target plate temperature Tm and plate thickness h1 of the next row material of the strip S.
and specific heat c1 are given from a data input device (not shown). The second computing unit 82 calculates a target overall heat transfer coefficient HC1 based on each data given in this manner using a calculation method described later, and calculates the heating furnace by using a calculation method described later based on the obtained target overall heat transfer coefficient HC1. Find the total combustion gas flow rate Q1 of 1,
The obtained data of the total combustion gas flow rate Q1 is provided to the combustion gas flow rate distribution setting device 400. The combustion gas flow rate distribution setter 400 determines the set value of the combustion gas flow rate for each region of the heating furnace 1 based on a predetermined distribution ratio, and uses the data of the determined combustion gas flow rate set value as the combustion gas flow rate. It is given to the flow rate controllers 40, 40, 40, respectively. The combustion gas flow rate controllers 40, 40, 40 control the combustion gas flow rate in each region to match a given set value. Next, the effect on temperature control of the strip when the widths of the preceding material and the succeeding material are different will be explained. For example, in a direct-fired heating furnace of a horizontal continuous hot-dip galvanizing line, a preceding material and a succeeding material differ only in sheet width.
Actual heating is performed with the combustion gas flow rate and transfer speed constant,
FIG. 2 shows the results of detecting the furnace exit temperatures of the preceding material and the subsequent material. Figure 2 is a time chart showing the results of strip temperature changes when a preceding material and a succeeding material differing only in sheet width are heated under the same conditions. , B is the furnace wall temperature of the direct-fired heating furnace, and C is the strip temperature on the outlet side of the direct-fired heating furnace. Note that the line speed in this control was 96 mpm, and the thickness of the strip was 0.6 mm. When the width of the strip increases by 200 mm at the joint between the preceding material and the succeeding material as shown in A of FIG. 2, the furnace wall temperature decreases by 25° C. as shown in B, and The strip temperature was reduced by 30°C. In this way, it can be seen that the strip temperature is affected when the widths of the preceding material and the succeeding material are different. From the results shown in FIG. 2, the heat transfer form of the direct-fired heating furnace can be modeled by the heat transfer equation shown in equation (1) below. 60・V・c・ρ・h・(dTS/dx)=2H
(Q)・(TG −TS )+2Fse(W)・σ・[
{(TW +273)/100}4 - {(TS +2
73)/100}4 ]...(1) [0020] However, in the above equation (1), c is the specific heat of the strip (
kcal/kg °C), ρ is the density of the strip (kg
/cm2), h is the strip thickness (m), W is the strip width (m), and Q is the combustion gas flow rate (Nm).
3/h), H(Q) is the heat transfer coefficient between the combustion gas and the strip (kcal/m 2 ・h・℃), Fse (
W) is the view factor between the furnace wall and the strip, TG is the combustion gas temperature (℃), TW is the furnace wall temperature (℃), TS
is the strip temperature (°C), σ is the Stefan Boltzmann constant, V is the line speed (mpm), and x is the position of the strip in the furnace (m). The heat transfer model equation (1) above differs from the conventional heat transfer model equation in that it uses the view factor Fse(W) between the furnace wall and the strip as a function of the strip width W.
Further, the above equation (1) can be equivalently expressed as the following equation (2). ##EQU1## In the above equation (2), the overall heat transfer coefficient HC (Q , W ) is expressed as a function of the combustion gas flow rate Q and the width W of the strip. Next, a calculation method in the first calculation unit 81 and the second calculation unit 82 of the combustion gas flow rate control device configured as described above will be explained. The first computing unit 81 calculates the overall heat transfer coefficient HC (Q, W
). HC (Q,W)=[(60・c・ρ・h・
V) /(2・L)]・ln[(TG −
Ti)/(TG-T
o )] … (3) 0026] However, the above (
3) where L is the effective heating length of the strip S. Overall heat transfer coefficient HC obtained in this way (
Q, W) are obtained under a number of conditions in which the width of the strip S and the combustion gas flow rate are different, and based on these results, a multiple regression calculation method is used to calculate the overall heat transfer coefficient HC.
(Q, W) is obtained as a linear equation as shown in equation (4) below, and its coefficients A0, A1, and A2 are obtained. [0027]HC(Q,W)=A0+A1
・Q+A2 ・W...(4) 0028] And the coefficients A0, A1, A
2 is stored in the memory 9 as table data. The coefficients A0, A1, A2 are determined for each material of the strip S, and the coefficients A0, A2 for each material are stored in the memory 9.
A1 and A2 are stored as table data of a layered table according to the material of the strip S. In the second computing unit 82, when the next material whose material is different from the preceding material reaches the entrance side of the heating furnace 1, the furnace entry side temperature Ti detected by the entrance side temperature detector 51 and the transfer speed are detected. The transfer speed V detected by the detector 6, the combustion temperature detector 7,
Combustion temperature TG detected in step 7 and target plate temperature T of the next material
Based on m, plate thickness h1, specific heat c1, the following (5)
The target overall heat transfer coefficient HC1 of the next material is determined using the formula. HC1=[(60・c1・ρ・h1・V)/
(2・L)]・ln[(TG-Ti)/
(TG - Tm) ...(5) 0
[031] When the target overall heat transfer coefficient HC1 is determined, the data of the coefficients A0, A1, and A2 corresponding to the material of the next material are read out from the memory 9, and this and the target overall heat transfer coefficient HC1 and the data of the next material are read out from the memory 9. Based on the plate width W1, the total combustion gas flow rate Q1 is determined using the following equation (6). Q1 = (1/A1)・(HC1−A0−A2・
W1) ...(6) [0033] Since the total combustion gas flow rate Q1 determined in this way is a value determined including the condition of the plate width W of the strip S, the following material and the preceding material are combined to form a strip. Even when only the plate width W of S differs, temperature control can be performed with high accuracy. Next, the results of actual temperature control using the method for controlling the flow rate of combustion gas in a continuous annealing furnace as described above will be explained. FIG. 3 is a time chart showing the results of temperature control of the preceding material and the succeeding material, which have different sheet widths and target sheet temperatures, using the combustion gas flow rate control method of the present invention, and A in the figure indicates the input temperature of the direct-fired heating furnace. B is the total combustion gas flow rate of the direct-fired heating furnace, and C is the strip temperature on the outlet side of the direct-fired heating furnace. However, the broken line in B above is the set value of the total combustion gas flow rate, and the solid line is the actual value.
Moreover, the broken line in C is the target plate temperature, and the solid line is the actual value. Note that the line speed in this control is 60 mpm.
The thickness of the strip was 2.3 mm. Even if the width of the strip is increased by 150 mm at the joint between the preceding material and the succeeding material as shown in FIG. 3A, the total combustion gas flow rate is increased by 500 Nm as shown in FIG.
It can be seen that by increasing the strip temperature by 3/h, the strip temperature on the exit side of the furnace is controlled to the target plate temperature as shown in C. [0036] In this embodiment, a case has been described in which combustion gas flow rate control is performed in a continuous annealing line using a vertical direct-fired heating furnace, but the present invention is not limited to this. It can also be applied to a continuous hot-dip galvanizing line having a direct-fired heating furnace and a continuous hot-dip galvanizing line having a horizontal direct-fired heating furnace. Effects of the Invention As detailed above, in the combustion gas flow rate control method for a continuous annealing furnace according to the present invention, an overall heat transfer coefficient that collectively represents various heat transfer coefficients related to heat transfer to the strip material is calculated. When calculated as a function of the combustion gas flow rate and the width of the strip material, if the width of the strip material changes, the overall heat transfer coefficient will change according to this function, and the combustion gas flow rate of the next material obtained from the above function. The set value of the combustion gas flow rate of the next material, which is calculated using the calculation formula in relation to the width of the next material and the overall heat transfer coefficient, is the overall heat transfer coefficient when the width of the strip material changes. This value is obtained by taking into account the change in the coefficient, so if the combustion gas flow rate of the next material is controlled to achieve this set value, the effect on the temperature control of the next material due to the change in the width of the strip material will be reduced. Even if the width of the preceding material and the width of the succeeding material are different,
The present invention has excellent effects such as being able to control the temperature of the next material on the exit side of the furnace to a predetermined target temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る連続焼鈍炉の燃焼ガス流量制御方
法を適用する連続焼鈍炉の燃焼ガス流量制御装置の構成
を示す模式的ブロック図である。
FIG. 1 is a schematic block diagram showing the configuration of a combustion gas flow rate control device for a continuous annealing furnace to which a combustion gas flow rate control method for a continuous annealing furnace according to the present invention is applied.

【図2】板幅のみが異なる先行材と次行材とを同一条件
下で加熱した場合のストリップの温度変化の結果を示す
タイムチャートである。
FIG. 2 is a time chart showing the results of temperature changes in a strip when a preceding material and a succeeding material differing only in sheet width are heated under the same conditions.

【図3】板幅及び目標板温が異なる先行材と次行材とを
本発明の燃焼ガス流量制御方法で温度制御した結果を示
すタイムチャートである。
FIG. 3 is a time chart showing the results of temperature control of a preceding material and a succeeding material having different sheet widths and target sheet temperatures using the combustion gas flow rate control method of the present invention.

【符号の説明】[Explanation of symbols]

81  第1演算器 82  第2演算器 S  ストリップ 81 First computing unit 82 Second computing unit S strip

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  寸法,目標温度,材質の少なくとも1
つが異なる先行材と次行材とを接合した帯材の温度制御
を行うために、所定の伝熱モデル式を用いて次行材の燃
焼ガス流量の設定値を求め、この設定値になすべく次行
材の燃焼ガス流量を制御する連続焼鈍炉の燃焼ガス流量
制御方法において、前記伝熱モデル式の総括熱伝達係数
を、帯材の幅及び燃焼ガス流量が異なる算出条件別に所
定の演算式によって複数算出し、この算出結果に基づい
て総括熱伝達係数を燃焼ガス流量及び帯材の幅の関数と
して求め、該関数より帯材の幅及び総括熱伝達係数に関
連して燃焼ガス流量の設定値を算出する流量演算式を求
めておき、前記所定の演算式によって次行材の総括熱伝
達係数を求め、次行材の幅及び求めた次行材の総括熱伝
達係数に基づき前記流量演算式にて次行材の燃焼ガス流
量の設定値を求めることを特徴とする連続焼鈍炉の燃焼
ガス流量制御方法。
[Claim 1] At least one of dimensions, target temperature, and material.
In order to control the temperature of a strip material made by joining a preceding material and a succeeding material with different values, a predetermined heat transfer model equation is used to determine the set value of the combustion gas flow rate of the succeeding material, and it is necessary to achieve this set value. In a combustion gas flow rate control method for a continuous annealing furnace that controls the combustion gas flow rate of a subsequent material, the overall heat transfer coefficient of the heat transfer model formula is calculated using a predetermined calculation formula for each calculation condition where the width of the strip material and the combustion gas flow rate are different. Based on the calculation results, the overall heat transfer coefficient is determined as a function of the combustion gas flow rate and the width of the strip material, and from this function, the combustion gas flow rate is set in relation to the width of the strip material and the overall heat transfer coefficient. A flow rate calculation formula for calculating the value is determined, the overall heat transfer coefficient of the next row material is determined using the predetermined calculation formula, and the flow rate is calculated based on the width of the next row material and the determined overall heat transfer coefficient of the next row material. A combustion gas flow rate control method for a continuous annealing furnace, characterized in that the set value of the combustion gas flow rate of the next material is determined by the formula.
JP2787391A 1991-01-28 1991-01-28 Method for controlling flow rate of combustion gas in continuous annealing furnace Pending JPH04246130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2787391A JPH04246130A (en) 1991-01-28 1991-01-28 Method for controlling flow rate of combustion gas in continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2787391A JPH04246130A (en) 1991-01-28 1991-01-28 Method for controlling flow rate of combustion gas in continuous annealing furnace

Publications (1)

Publication Number Publication Date
JPH04246130A true JPH04246130A (en) 1992-09-02

Family

ID=12233019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2787391A Pending JPH04246130A (en) 1991-01-28 1991-01-28 Method for controlling flow rate of combustion gas in continuous annealing furnace

Country Status (1)

Country Link
JP (1) JPH04246130A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196534A (en) * 2013-03-29 2014-10-16 Jfeスチール株式会社 Heat treatment temperature control method of steel plate
KR101676185B1 (en) * 2015-08-24 2016-11-15 주식회사 포스코 Gas furnace control apparatus and Gas furnace control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196534A (en) * 2013-03-29 2014-10-16 Jfeスチール株式会社 Heat treatment temperature control method of steel plate
KR101676185B1 (en) * 2015-08-24 2016-11-15 주식회사 포스코 Gas furnace control apparatus and Gas furnace control method

Similar Documents

Publication Publication Date Title
JPS6111289B2 (en)
JPS5848011B2 (en) Furnace combustion control method
JPS5947324A (en) Controlling method of heating in heating furnace
JPH04246130A (en) Method for controlling flow rate of combustion gas in continuous annealing furnace
JP3710572B2 (en) Heating furnace control device
CN101131572B (en) System for fast cooling temperature control
JPH01184233A (en) Sheet temperature control method for continuously annealing furnace
JP2715739B2 (en) Control method of alloying furnace in alloying hot-dip galvanized steel sheet manufacturing facility
KR100757670B1 (en) Method for controlling the temperature of the strip at the heating section of the annealing furnace
JPS5831373B2 (en) Temperature control method and device for continuous strip heat treatment furnace
JPS6345454B2 (en)
JPS629650B2 (en)
JP2005076935A (en) Billet heating furnace and operation method thereof
JPH04193913A (en) Method for controlling heating in continuous heating furnace
JP3411712B2 (en) Alloying furnace for hot-dip galvanized steel sheet and its operation method
JPH04283631A (en) Method for controlling cooling unit for continuous strip heat treatment equipment
JPH0759722B2 (en) Induction heating control method during subsequent induction heating of a slab previously gas-heated
JPH02175823A (en) Method for preventing heat buckle and deteriorated shape in strip in continuous annealing
JPH0440329A (en) Oxide film measuring instrument for heat treating furnace for steel belt
JPH06287643A (en) Device for controlling strip temperature of continuous steel strip heat treatment line
JPS6058764B2 (en) Continuous furnace plate temperature control method
JPH04333529A (en) Cooling device for strip continuous heat treatment equipment
JPH0684867B2 (en) Furnace temperature setting device for continuous heating furnace
JP2002060850A (en) Temperature control method for heating furnace
JPS61199022A (en) Method for controlling continuous heating furnace