JPS61198556A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPS61198556A
JPS61198556A JP60039841A JP3984185A JPS61198556A JP S61198556 A JPS61198556 A JP S61198556A JP 60039841 A JP60039841 A JP 60039841A JP 3984185 A JP3984185 A JP 3984185A JP S61198556 A JPS61198556 A JP S61198556A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
nickel
metal
lithium battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60039841A
Other languages
Japanese (ja)
Inventor
Kazunobu Matsumoto
和伸 松本
Tatsu Nagai
龍 長井
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP60039841A priority Critical patent/JPS61198556A/en
Publication of JPS61198556A publication Critical patent/JPS61198556A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Abstract

PURPOSE:To give high electron conductivity to a positive electrode by small amount of metal and obtain a lithium battery having small internal resistance and large discharge capacity by applying chemical plating of metal to positive active material powder. CONSTITUTION:By applying chemical plating of metal to positive active material powder having poor electron conductivity, high electron conductivity can be given to the active material powder in spite of smaller volume occupation compared with addition of nickel powder. Accordingly, a lithium battery having small internal resistance and large discharge capacity. For example, nickel, chromium, gold, or platinum is used as a metal for applying chemical plating to the positive active material. For example, V2O5, TiO2, V6O13, WO3 or CoO2 is used as the positive active material having poor electron conductivity.

Description

【発明の詳細な説明】 ゛〔産業上の利用分野〕 この発明はリチウム電池に関する。さらに詳しくは、電
子伝導性の乏しい正極活物質番こ無電解メ゛ツキを施す
ことにより、高い電子伝導性を付与して内部抵抗が小さ
く、放電容量を高めたリチウム電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to lithium batteries. More specifically, the present invention relates to a lithium battery that has high electronic conductivity, low internal resistance, and increased discharge capacity by applying electroless plating to a positive electrode active material having poor electronic conductivity.

〔従来の技術〕[Conventional technology]

従来、五酸化バナジウム(V20r、 )などの電子伝
導性の乏しい正極活物質を用いるリチウム電池では、正
極に電子伝導性を持たせるために、ニッケル粉末を電子
伝導助剤として正極活物質に添加することが行なわれて
いた(たとえば、B、C,H,5teele etal
、+5olid 5tate Ionics、 1月1
1,391(1983) )。
Conventionally, in lithium batteries that use positive electrode active materials with poor electronic conductivity such as vanadium pentoxide (V20r, ), nickel powder is added to the positive electrode active material as an electron conduction aid in order to give the positive electrode electron conductivity. (For example, B, C, H, 5teele etal
, +5olid 5tate Ionics, January 1
1,391 (1983)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記のようなニッケル粉末の添加により正極
に充分な電子伝導性を付与するには、正極中35体積%
にものぼるニッケル粉末を添加しなければならず、その
ため単位体積あたりの正極活物質の量が減少して実効エ
ネルギー密度が減少し、放電容量が低下するという問題
があった。
However, in order to impart sufficient electronic conductivity to the positive electrode by adding nickel powder as described above, it is necessary to add 35% by volume of the nickel powder in the positive electrode.
As a result, the amount of positive electrode active material per unit volume decreases, resulting in a decrease in effective energy density and a decrease in discharge capacity.

(問題点を解決するための手段〕 本発明は上述した従来技術の問題点を解消するもので、
正極活物質粒子に金属を無電解メッキすることにより、
ニッケル粉末を添加していた場合より少ない体積占有率
で正極に高い電子伝導性を付与して目的を達成したもの
である。
(Means for solving the problems) The present invention solves the problems of the prior art described above.
By electrolessly plating metal on positive electrode active material particles,
This objective was achieved by imparting high electronic conductivity to the positive electrode with a smaller volume occupancy than when nickel powder was added.

すなわち、正極活物質粒子にニッケルなどの金属を無電
解メッキした場合、正極中のニッケルなどの金属の分散
状態が極めて良好で、かつ正極活物質とニッケルなどの
電子伝導性を有する金属との接触状態が良好なため、少
量の金属で正極に高い電子伝導性を付与でき、それによ
って、内部抵抗が小さく、かつ放電容量の大きいリチウ
ム電池が得られるようになるものと考えられる。
In other words, when the positive electrode active material particles are electrolessly plated with a metal such as nickel, the dispersion state of the metal such as nickel in the positive electrode is extremely good, and the contact between the positive electrode active material and the metal with electronic conductivity such as nickel occurs. Since the condition is good, it is thought that high electronic conductivity can be imparted to the positive electrode with a small amount of metal, thereby making it possible to obtain a lithium battery with low internal resistance and high discharge capacity.

正極活物質に無電解メッキする金属としては、たとえば
ニッケル、クロム、金、白金などがあげられる。これら
の金属は導電率が高く、また化学的にも安定で、正極活
物質によっても酸化されず、正極中で高い電子伝導性を
発揮する。上記の金属のなかでも、ニッケルは化学的に
も安定で、かつ金、白金よりは安価で経済性においても
有利であることから、本発明において好用される。
Examples of metals to be electrolessly plated on the positive electrode active material include nickel, chromium, gold, and platinum. These metals have high electrical conductivity, are chemically stable, are not oxidized by the positive electrode active material, and exhibit high electronic conductivity in the positive electrode. Among the above-mentioned metals, nickel is preferably used in the present invention because it is chemically stable, cheaper than gold and platinum, and is economically advantageous.

無電解メッキによるメッキ厚は、薄すぎると充分な電子
伝導性を発揮できないので500 A以上が好ましい。
The plating thickness by electroless plating is preferably 500 A or more because if it is too thin, sufficient electron conductivity cannot be exhibited.

厚すぎる場合は電子伝導性の付与という面では何ら障害
はないが、それに伴って正極中への活物質の充填量が少
なくなるので、通常は1μm以下にするのが好ましい。
If it is too thick, there will be no problem in terms of imparting electronic conductivity, but the amount of active material packed into the positive electrode will decrease accordingly, so it is usually preferable to keep the thickness to 1 μm or less.

正極活物質には電子伝導性の乏しい正極活物質、たとえ
ば五酸化バナジウム(V2O3)、二酸化ヂタン(Ti
02)、十三酸化穴バナジウム(V6O13)、三酸化
タングステン(WO3)、二酸化コバル1−(Co02
)、ヨウ化鉛(Pb12)などが用いられる。これらは
一般に電子伝導性が1Ω−1・cm−1以下であるが、
電子伝導性が−に記より大きなものでも適用できること
はもちろんである。
The positive electrode active material contains positive electrode active materials with poor electronic conductivity, such as vanadium pentoxide (V2O3) and titanium dioxide (Ti).
02), vanadium trioxide (V6O13), tungsten trioxide (WO3), cobal dioxide 1-(Co02)
), lead iodide (Pb12), etc. are used. These generally have an electronic conductivity of 1 Ω-1 cm-1 or less,
Of course, it is also applicable to those having electronic conductivity greater than -.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail by giving examples.

実施例1 平均粒径30μmの五酸化バナジウム粒子にニッケルの
無電解メッキをしたものを正極材料に用いて非水溶媒リ
チウム電池を作製した。
Example 1 A nonaqueous solvent lithium battery was manufactured using vanadium pentoxide particles having an average particle size of 30 μm electrolessly plated with nickel as a positive electrode material.

ニッケルの無電解メッキは、メッキ浴中に五酸化バナジ
ウム粉末を入れ、攪拌しながら60℃で10分間行った
。メッキ浴は水ll中に硫化ニッケル40g 、クエン
酸ナトリウム24g、酢酸ナトリウム14g、次亜リン
酸ナトリウム20g、塩化アンモニウム5gを溶解して
作製した。メッキ厚みは約700人であった。
Electroless plating of nickel was carried out at 60° C. for 10 minutes while stirring vanadium pentoxide powder in a plating bath. A plating bath was prepared by dissolving 40 g of nickel sulfide, 24 g of sodium citrate, 14 g of sodium acetate, 20 g of sodium hypophosphite, and 5 g of ammonium chloride in 1 liter of water. The plating thickness was approximately 700.

無電解メッキしたのち、五酸化バナジウム粉末は、水洗
して乾燥した後、所定量を金型に充填し、200 kg
 / c+aで圧粉成拵して直径13mm、厚さ1.5
mmの成型体とし、これを正極として第1図に示す非水
溶媒リチウム電池を作製した。正極中のニッケルの体積
占有率は約1体積%であった。
After electroless plating, the vanadium pentoxide powder was washed with water, dried, and then filled in a predetermined amount into a mold to produce 200 kg of vanadium pentoxide powder.
/ C+A powder compaction diameter 13mm, thickness 1.5
A non-aqueous solvent lithium battery shown in FIG. 1 was fabricated using this as a positive electrode. The volume occupancy of nickel in the positive electrode was approximately 1% by volume.

第1図において、1は負極でリチウム金属よりなり、2
は上述の正極である。3は電解液で、この電解液3には
4−メチル−1,3−ジオキソランと1,2−ジメトキ
シエタンとへキサメチルホスホリックトリアミドとの容
量比60 : 35 : 5の混合溶媒に■、1PF6
をImol/j!の割合で溶解した。非水溶媒系の電解
質溶液が用いられている。4は微孔性ポリプロピレンフ
ィルムよりなるセパレータ、5はポリプロピレン不織布
よりなる電解液吸収体、6はポリプロピレン製の環状ガ
スケットである。7はステンレス鋼製で外面にニッケル
メッキを施した負極缶、8はステンレス鋼製で外面に二
・7ケルメツキを施した正極缶、9はステンレス鋼網よ
りなる負極集電体、10はステンレス鋼網よりなる正極
集電体である。
In FIG. 1, 1 is a negative electrode made of lithium metal, and 2
is the positive electrode mentioned above. 3 is an electrolytic solution, and this electrolytic solution 3 contains a mixed solvent of 4-methyl-1,3-dioxolane, 1,2-dimethoxyethane, and hexamethylphosphoric triamide in a volume ratio of 60:35:5. , 1PF6
Imol/j! It was dissolved at a rate of . A non-aqueous electrolyte solution is used. 4 is a separator made of microporous polypropylene film, 5 is an electrolyte absorber made of polypropylene nonwoven fabric, and 6 is an annular gasket made of polypropylene. 7 is a negative electrode can made of stainless steel and has a nickel plated outer surface; 8 is a positive electrode can made of stainless steel and has a 2.7 kelp plated outer surface; 9 is a negative electrode current collector made of a stainless steel mesh; 10 is stainless steel. This is a positive electrode current collector made of a mesh.

実施例2 五酸化バナジウムへのニッケル無電解メッキのメッキ時
間を30分としたほかは実施例1と同様にして非水溶媒
リチウム電池を作製した。メ・7キ厚みは3000Xで
あり、正極中のニッケルの体積占有率は約3体積%であ
った。
Example 2 A non-aqueous solvent lithium battery was produced in the same manner as in Example 1, except that the time for electroless nickel plating on vanadium pentoxide was 30 minutes. The thickness of the plate was 3000X, and the volume occupancy of nickel in the positive electrode was about 3% by volume.

実施例3 五酸化バナジウムへのニッケル無電解メッキのメッキ時
間を1時間としたほかは実施例1と同様”にして非水溶
媒リチウム電池を作製した。メッキ厚みは6000Xで
あり、正極中のニッケルの体積占有率は約6体積%であ
った。
Example 3 A non-aqueous solvent lithium battery was produced in the same manner as in Example 1, except that the plating time for electroless nickel plating on vanadium pentoxide was 1 hour.The plating thickness was 6000X, and the nickel in the positive electrode The volume occupancy was about 6% by volume.

比較例1 五酸化バナジウム粉末にニッケル粉末を混合し、200
 kg/cJで圧粉成型し、直径13mm、厚さ1.5
mmの成型体にし、これを正極に用いて実施例1と同様
に非水溶媒リチウム電池を作製した。ニッケルの五酸化
、バナジウムに対する混合比は体積比で25%とした。
Comparative Example 1 Nickel powder was mixed with vanadium pentoxide powder, and 200
Powder molded at kg/cJ, diameter 13mm, thickness 1.5
A non-aqueous solvent lithium battery was produced in the same manner as in Example 1 using this as a positive electrode. The mixing ratio of nickel to pentoxide and vanadium was 25% by volume.

比較例2 ニッケルの五酸化バナジウムに対する混合比を体積比で
30%としたほかは比較例1と同様にして非水溶媒リチ
ウム電池を作製した。
Comparative Example 2 A non-aqueous solvent lithium battery was produced in the same manner as Comparative Example 1 except that the mixing ratio of nickel to vanadium pentoxide was 30% by volume.

比較例3 ニッケルの五酸化バナジウムに対する混合比を体積比で
35%としたほかは比較例1と同様にして非水溶媒リチ
ウム電池を作製した。
Comparative Example 3 A non-aqueous solvent lithium battery was produced in the same manner as Comparative Example 1 except that the mixing ratio of nickel to vanadium pentoxide was 35% by volume.

比較例4 ニッケルの五酸化バナジウムに対する混合比を体積比で
45%としたほかは比較例1と同様にして非水溶媒リチ
ウム電池を作製した。
Comparative Example 4 A nonaqueous solvent lithium battery was produced in the same manner as Comparative Example 1 except that the mixing ratio of nickel to vanadium pentoxide was 45% by volume.

上記実施例1〜3の電池および比較例1〜4の電池につ
いて、単位体積あたりの放電容量と単位面積あたりの内
部抵抗を測定した結果を第1表に示す。放電容量は終止
電圧を2Vに設定し、1mA / c+Jの電流で放電
した時の容量である。内部抵抗値は電流−電圧曲線から
求めたものである。それぞれ25℃における値である。
Table 1 shows the results of measuring the discharge capacity per unit volume and internal resistance per unit area for the batteries of Examples 1 to 3 and the batteries of Comparative Examples 1 to 4. The discharge capacity is the capacity when the final voltage is set to 2V and the battery is discharged with a current of 1mA/c+J. The internal resistance value was determined from the current-voltage curve. Each value is at 25°C.

なお、負極活物質の電気量はいずれの電池においても正
極活物質の電気量より過剰にされている。
In addition, the amount of electricity of the negative electrode active material was made to be in excess of the amount of electricity of the positive electrode active material in any of the batteries.

第  1  表 (注)※1−は放電不可能をあられしている。Table 1 (Note) *1- indicates that discharge is not possible.

第1表に示すように、無電解メッキによる実施例の場合
は、ニッケルの体積占有率が約1体積%の実施例1の電
池ですでに内部抵抗が小さく、人きな放電容量が得られ
た。
As shown in Table 1, in the case of the example using electroless plating, the battery of Example 1 in which the volume occupancy rate of nickel is about 1% by volume already has a small internal resistance and an excellent discharge capacity. Ta.

これに対して、ニッケル粉末を添加する比較例の場合は
、ニッケル添加量が30体積%にも達する比較例2の電
池でも内部抵抗が高くて放電が不可能であった。そして
ニッケル粉末が35体積%の比較例3の電池で放電可能
となるが、それでも実施例2〜3に比べて内部抵抗が高
く、またニッケル粉末の添加量を45体積%に増加した
比較例4の場合でも実施例2〜3に比べて内部抵抗が高
かった。そして、比較例3〜4の電池はニッケル粉末の
添加量が多いため正極成型体(直径13mm、厚さ1゜
511II11)中の正極活物質の量が減り、実施例の
電池に比べて放電容量がはるかに小さかった。
On the other hand, in the case of the comparative example in which nickel powder was added, even the battery of comparative example 2, in which the amount of nickel added reached 30% by volume, had a high internal resistance and was unable to discharge. Although the battery of Comparative Example 3 containing 35% by volume of nickel powder can be discharged, it still has a higher internal resistance than Examples 2 and 3, and Comparative Example 4 in which the amount of nickel powder added is increased to 45% by volume. Even in this case, the internal resistance was higher than in Examples 2 and 3. In the batteries of Comparative Examples 3 and 4, since the amount of nickel powder added was large, the amount of positive electrode active material in the positive electrode molded body (diameter 13 mm, thickness 1°511II11) was reduced, and the discharge capacity was lower than that of the batteries of Examples. was much smaller.

なお、実施例では正極活物質として五酸化バナジウムを
用いたが、これに代えて二酸化チタン(Ti02)、十
三酸化穴バナジウム(V6O13)、二酸化タングステ
ン(WO3)、二酸化コバル)(Co02)などの酸化
物やヨウ化鉛(Pb12)などを用いてもよい。特に酸
化物は充放電可能で高電圧の電池が得られるが電子伝導
性に乏しいため、従来は多量のニッケル粉末を添加しな
ければならず、その結果、放電容量が低くならざるを得
なかったのに対し、本発明では少量のニッケルで高い電
子伝導性を付与できるので、酸化物を正極活物質として
用いる際に本発明の効果が顕著に発揮される。
In the examples, vanadium pentoxide was used as the positive electrode active material, but titanium dioxide (Ti02), trioxide vanadium (V6O13), tungsten dioxide (WO3), cobal dioxide (Co02), etc. An oxide, lead iodide (Pb12), or the like may also be used. In particular, oxides can be charged and discharged and produce high-voltage batteries, but because they have poor electronic conductivity, conventionally a large amount of nickel powder had to be added, resulting in a low discharge capacity. In contrast, in the present invention, high electronic conductivity can be imparted with a small amount of nickel, so the effects of the present invention are significantly exhibited when an oxide is used as a positive electrode active material.

〔発明の効果〕〔Effect of the invention〕

以」二説明したように、本発明では正極活物質粒子に金
属の無電解メッキを施すことにより、少量の金属で正極
に高い電子伝導性を付与でき、内部抵抗が小さく、放電
容量の大きいリチウム電池を提供することができた。
As explained below, in the present invention, by applying electroless metal plating to the positive electrode active material particles, high electronic conductivity can be imparted to the positive electrode with a small amount of metal, and lithium can be produced with low internal resistance and large discharge capacity. We were able to provide batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るリチウム電池の一例を示す断面図
である。 ■・・・負極、 2・・・正極、 3・・・電解液、 
4・・・セパレータ
FIG. 1 is a sectional view showing an example of a lithium battery according to the present invention. ■... Negative electrode, 2... Positive electrode, 3... Electrolyte,
4...Separator

Claims (1)

【特許請求の範囲】[Claims] (1)電子伝導性の乏しい正極活物質を用いるリチウム
電池において、正極活物質粒子に金属を無電解メッキす
ることにより電子伝導性を具備させたことを特徴とする
リチウム電池。
(1) A lithium battery using a positive electrode active material with poor electronic conductivity, characterized in that the positive electrode active material particles are electrolessly plated with metal to provide electronic conductivity.
JP60039841A 1985-02-27 1985-02-27 Lithium battery Pending JPS61198556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60039841A JPS61198556A (en) 1985-02-27 1985-02-27 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60039841A JPS61198556A (en) 1985-02-27 1985-02-27 Lithium battery

Publications (1)

Publication Number Publication Date
JPS61198556A true JPS61198556A (en) 1986-09-02

Family

ID=12564188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60039841A Pending JPS61198556A (en) 1985-02-27 1985-02-27 Lithium battery

Country Status (1)

Country Link
JP (1) JPS61198556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332338A2 (en) * 1988-03-11 1989-09-13 EIC Laboratories, Inc. Electrochemical cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332338A2 (en) * 1988-03-11 1989-09-13 EIC Laboratories, Inc. Electrochemical cell

Similar Documents

Publication Publication Date Title
KR100450463B1 (en) Electrode material for electrochemical element and method for production thereof, and electrochemical element
JPH1021898A (en) Lithium battery
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JPS61198556A (en) Lithium battery
JP2925672B2 (en) Non-aqueous electrolyte battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP3454274B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JP3443209B2 (en) Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same
JPS63138646A (en) Cylindrical nonaqueous electrolyte cell
JPH06260166A (en) Nickel electrode for alkaline storage battery
JPH0793138B2 (en) Positive electrode plate for battery and manufacturing method thereof
JPH1012233A (en) Manufacture of hydrogen storage alloy for alkaline storage battery
JPH02109261A (en) Active material for nickel electrode, nickel electrode, and alkaline battery using this electrode
JPH0745282A (en) Nickel electrode for alkaline storage battery
JP2562669B2 (en) Alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH10270017A (en) Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith
JP2794825B2 (en) Chemical formation method of nickel hydroxide electrode
JPS63158750A (en) Zink electrode for alkaline storage battery
JPH01272050A (en) Nickel electrode for alkaline battery
JPS6174258A (en) Lithium organic secondary battery
JP2958786B2 (en) Hydrogen storage electrode
JPH0565988B2 (en)
JPS62226561A (en) Lithium secondary battery
JPH04262367A (en) Hydrogen storage electrode