JPS6118126A - P-n junction forming method - Google Patents

P-n junction forming method

Info

Publication number
JPS6118126A
JPS6118126A JP13964984A JP13964984A JPS6118126A JP S6118126 A JPS6118126 A JP S6118126A JP 13964984 A JP13964984 A JP 13964984A JP 13964984 A JP13964984 A JP 13964984A JP S6118126 A JPS6118126 A JP S6118126A
Authority
JP
Japan
Prior art keywords
type
impurities
junction
layer
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13964984A
Other languages
Japanese (ja)
Inventor
Yasuhito Nakagawa
中川 泰仁
Toshikimi Takagi
高木 俊公
Takeshi Sakurai
武 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP13964984A priority Critical patent/JPS6118126A/en
Publication of JPS6118126A publication Critical patent/JPS6118126A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To activate both conductive types of impurities simultaneously and to form a junction in the direction of the depth, by annealing a compound semiconductor device provided with protective film in which both the conductive types of p type and n type of impurities are ion-implanted. CONSTITUTION:n type impurities, for example Si<+> ions, are implanted onto a semi-insulating GaAs substrate 2 through a selective implanting mask 1 made of resist, forming an n type impurity Si<+> implanting layer 3. Next, onto the same region, p type impurities, for example Zn<+> ions are implanted through a selective implanting mask 4 made of resist, forming a p type impurity Zn<+> implanting layer. Thereafter, after an annealing protective film 6, for example a silicon nitride film with a thickness of 700Angstrom , is deposited over the GaAs substrate 2 using a plasma CVD method, the substrate 2 is annealed in a nitrogen atmosphere, for example at a temperature of 830 deg.C for 15min, so that the p type impurities and n type impurities are simultaneously activated to form an n type layer 7 and a p type layer 8 and thus to form a p-n junction in the direction of the depth.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明t/′1GaAs、InP等の化合物結晶中に、
イオン注入法を用すてp−n接合を形成する方法の改良
に関するものである。
[Detailed Description of the Invention] <Technical Field of the Invention> In the compound crystal of the present invention t/'1 GaAs, InP, etc.,
This invention relates to an improvement in a method of forming a pn junction using an ion implantation method.

〈発明の技術的背景とその問題点〉 GaAs半導体は、電子移動度や飽和ドリフト速度が大
きいので高周波用・高速演算用デバイスに適しており、
活発な開発が行われている。Si+イオン注入によるh
層の形成技術はすでに確立されており、nチャネル層を
有するGaAs1用いたMESFET t/i、例えば
高周波用デバイスとして多く用いられている。
<Technical background of the invention and its problems> GaAs semiconductors have high electron mobility and saturation drift velocity, so they are suitable for high-frequency and high-speed calculation devices.
Active development is underway. h due to Si+ ion implantation
The layer formation technology has already been established, and MESFET t/i using GaAs1 having an n-channel layer is often used as a high frequency device, for example.

一方、Zn+4オン注入によるp層の形成は、その大き
な熱拡散係数(よる濃度プロファイルの再現性不良や、
急峻な濃度プロファイルが得られにくいという問題があ
シ、赤外線ランプアニールやZn−ASの二重注入法、
あるいは砒素圧印加キャップレスアニールなどが試みら
れているが、満足すべき結果は得られていない。
On the other hand, formation of the p-layer by Zn+4 on-implantation has a large thermal diffusion coefficient (due to poor concentration profile reproducibility,
There is a problem that it is difficult to obtain a steep concentration profile, so infrared lamp annealing and Zn-AS double injection method,
Alternatively, capless annealing by applying arsenic pressure has been attempted, but satisfactory results have not been obtained.

又、イオン注入法によるp−n接合形成は、■ n型不
純物イオン注入→アニール→p型不M物イオン注入→ア
ニール ■ n型不純物イオン注入→p型不純物イオン注入→砒
素圧印加キャップレスアニール 等の工程によって行われるが、上記■の方法は工程上の
手間が多くかかり、かつ基板の熱変成が多くなって接合
特性が劣化するという問題がある。
In addition, p-n junction formation by the ion implantation method is as follows: ■ n-type impurity ion implantation → annealing → p-type impurity ion implantation → annealing ■ n-type impurity ion implantation → p-type impurity ion implantation → arsenic pressure application capless annealing However, the above-mentioned method (1) requires a lot of time and effort, and there is a problem that thermal deformation of the substrate increases, resulting in deterioration of bonding characteristics.

また■の方法//′1AsH(アルシンガス)の様な猛
毒ガスを用いる為安全上の問題がある、という欠点を有
していた。
In addition, method (2)//'1 has the drawback of using a highly poisonous gas such as AsH (arsine gas), which poses a safety problem.

上記■の工程を用いて形成した従来法での注入層のキャ
リア濃度プロファイルの例を第5図に示向に異常拡散し
てp =n接合が形成されていない事がわかる。
FIG. 5 shows an example of the carrier concentration profile of the injection layer formed by the conventional method using the process (2) above. It can be seen that no p=n junction is formed due to abnormal diffusion in the direction.

〈発明の目的〉 本発F!Aは上記の問題点全解決すべく、高品質のp−
n接合を少ない工程で再現性良く安全に形成するp−n
接合の形成方法を提供する←ニーーーこ七ヲ目的として
成されたものであり、この目的を達成するため、本発明
はp型及びn型の両導電型不純物をイオン注入した化合
物半導体に対し、保護膜付同時アニールを施すことにょ
シ、両導電型不純物を同時に活性化させ、深さ方向に接
合を形成せしめるように成されている。
<Purpose of the invention> The original F! In order to solve all of the above problems, A is a high quality p-
p-n that safely forms n-junctions with good reproducibility in fewer steps
The purpose of this invention is to provide a method for forming a junction, and in order to achieve this purpose, the present invention provides a method for forming a junction. By performing simultaneous annealing with a protective film, impurities of both conductivity types are simultaneously activated and a junction is formed in the depth direction.

即ち、本発8Aはp型、n型側導電型不純物を注入した
化合物半導体を保護膜(例えばプラズマCVDによる窒
化硅素膜)を付けて一度アニールすることによシ、注入
不純物固相拡散の少ないp−n接合を形成し、あわせて
工程数の削減や基板の熱変成の抑制、及び作業の安全性
を図るようにしたものである。
That is, in the present invention 8A, a compound semiconductor into which p-type and n-type conductivity type impurities are implanted is attached with a protective film (for example, a silicon nitride film by plasma CVD) and annealed once, thereby reducing the solid-phase diffusion of the implanted impurities. A pn junction is formed, and the number of steps is reduced, thermal deformation of the substrate is suppressed, and work safety is achieved.

〈発明の実施例〉 以下、図面を参照して本発明の一実施例を図面を参照し
て詳細に説明する。
<Embodiment of the Invention> Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図乃至第3図は本発明によるp−n接合の形成工程
の説明に供する図である。
FIGS. 1 to 3 are diagrams for explaining the process of forming a pn junction according to the present invention.

本発明によるp−n接合の形成工程は次の通りである。The steps for forming a pn junction according to the present invention are as follows.

まず、第1図に示すように半絶縁性GaAs基板2にn
型不純物として、例えばSt+イオン全レジストにより
形成された選択注入用マスク1を介して注入して   
   °     n型不純物Sけ注入層3を形成し、
次に第2図に示すように同一領域にp型不純物として、
例えばZn+イオンをレジストにより形成された選択注
入用マスク4を介して二重注入してp型不純物Z+注入
層全形成する。その後第3図に示すようにGaAs基板
2上に7二−ル用保護膜6、例えばプラズマcVD法に
よって厚さ700Aの窒化シリコン膜を付着させ、窒素
雰囲気中でアニールを、例えば880℃で15分間行な
い、p型不純物とn型不純物を同時に活性化させてn型
層7及びp型層8を形成して、深さ方向にp−n接合全
形成させる。上記の如き本発明による工程を用いて形成
したp−n接合のキャリア濃度プロファイルを第4図に
示す。
First, as shown in FIG. 1, a semi-insulating GaAs substrate 2 is
As a type impurity, for example, St+ ions are implanted through a selective implantation mask 1 formed entirely of resist.
° Forming an n-type impurity S injection layer 3,
Next, as shown in Figure 2, as a p-type impurity in the same region,
For example, Zn+ ions are double-implanted through a selective implantation mask 4 formed of resist to form the entire p-type impurity Z+ implanted layer. Thereafter, as shown in FIG. 3, a 700A silicon nitride film, for example, a silicon nitride film with a thickness of 700A, is deposited on the GaAs substrate 2 by plasma CVD method, and annealed in a nitrogen atmosphere at, for example, 880°C for 15 minutes. The p-type impurity and the n-type impurity are activated simultaneously to form the n-type layer 7 and the p-type layer 8, thereby forming the entire p-n junction in the depth direction. FIG. 4 shows a carrier concentration profile of a pn junction formed using the process according to the present invention as described above.

この第4図からも明らかなように、上記実施例によれば
注入不純物の理論分布に近い急峻なアクセプタ濃度分布
が得られており、イオン注入法によ多形成しtcp −
n接合として理想的な形状全実現している。更にウェハ
毎のキャリア濃度プロファイルの再現性も極めて良いこ
とが判明した。この理由としては ■ 熱処理が一度なので基板の熱変成が少なく、p型不
純物が異常拡散しにくい。
As is clear from FIG. 4, according to the above example, a steep acceptor concentration distribution close to the theoretical distribution of implanted impurities was obtained, and a large number of tcp −
The ideal shape for an n-junction has been realized. Furthermore, it was found that the reproducibility of the carrier concentration profile for each wafer was also extremely good. The reason for this is (1) Since the heat treatment is performed only once, there is little thermal transformation of the substrate, and p-type impurities are less likely to be abnormally diffused.

■ n型不純物の存在がp型不純物の拡散を補償してい
る。
■ The presence of n-type impurities compensates for the diffusion of p-type impurities.

などが挙げられる。Examples include.

なお、p型不純物、n型不純物の種類や注入条件を様々
に変化させても、上記の方法により、設計通りのp−n
接合を形成することが可能であった0 上記実施例においては、GaAs半導体について説明し
たが、本発F!Aはこれに限定されるものではなく、I
nP等の他の化合物半導体についても、同様に実施でき
ることは言うまでもない。
Note that even if the types and implantation conditions of the p-type impurity and n-type impurity are varied, the designed p-n
It was possible to form a junction.0 In the above embodiment, a GaAs semiconductor was explained, but the F! A is not limited to this, but I
It goes without saying that the same method can be applied to other compound semiconductors such as nP.

〈発明の効果〉 以上説明した様に、本発明のp−n接合の形成方法によ
れば、従来の実施例に比べて ■ p型不純物の異常拡散を防ぎ、設計通りの急峻なp
−n接合を再現性良く得ることができる。
<Effects of the Invention> As explained above, according to the method for forming a p-n junction of the present invention, it is possible to prevent abnormal diffusion of p-type impurities and form a steep p-p junction as designed, compared to conventional embodiments.
-N junctions can be obtained with good reproducibility.

@ 熱処理が一度なので、工程数が削減でき、かつ基板
の熱変成も最小限に抑えられ、従って、接合特性の劣化
を防止することができる。
@ Since the heat treatment is performed only once, the number of steps can be reduced, thermal transformation of the substrate can be minimized, and therefore deterioration of bonding characteristics can be prevented.

θ 保護膜を用いたキャップアニールなので、砒素圧を
加える必要がな(、作業全安全に行うことが出来る。
Since the cap annealing uses a θ protective film, there is no need to apply arsenic pressure (the work can be performed completely safely).

等の種々の効果を得ることが出来る。It is possible to obtain various effects such as.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明のp−n接合の形成方法の一
実施例の工程を示す断面図、第4図は本発明によるp−
n接合のキャリア濃度プロファイルの一例全示す図、%
5図は従来の二度アニール法により形成された瀘入4←
のキャリア濃度プロファイルの一例を示す図である。 2・・・半絶縁性GaAs基板、3・・・n型不純物S
i+注入層、5・・・p型不純物りn+注入層、6・・
・GaAs基板保護膜、7・・・n型層1.8・・・p
型層代理人 弁理士 福 士 愛 彦 (他2名)2n
+ 第2図 第3図 3粱ご シ仰〕 第4図 35i :   5pJn) 第5図
1 to 3 are cross-sectional views showing the steps of an embodiment of the method for forming a p-n junction according to the present invention, and FIG.
A diagram showing an example of the carrier concentration profile of an n-junction, %
Figure 5 shows the filtration hole 4 formed by the conventional twice-annealing method.
FIG. 3 is a diagram showing an example of a carrier concentration profile of FIG. 2...Semi-insulating GaAs substrate, 3...n-type impurity S
i+ injection layer, 5...p-type impurity n+ injection layer, 6...
・GaAs substrate protective film, 7...n-type layer 1.8...p
Type layer agent Patent attorney Aihiko Fukushi (and 2 others) 2n
+ Figure 2, Figure 3, Figure 3) Figure 4, 35i: 5pJn) Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、P型及びn型の両導電型不純物をイオン注入した化
合物半導体に対し、保護膜付同時アニールを施すことに
より、両導電型不純物を同時に活性化させ、深さ方向に
接合を形成せしめるように成したことを特徴とするp−
n接合の形成方法。
1. By applying simultaneous annealing with a protective film to a compound semiconductor into which both P-type and N-type conductivity type impurities are ion-implanted, both conductivity type impurities are simultaneously activated and a junction is formed in the depth direction. p-, which is characterized by having been achieved in
How to form an n-junction.
JP13964984A 1984-07-04 1984-07-04 P-n junction forming method Pending JPS6118126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13964984A JPS6118126A (en) 1984-07-04 1984-07-04 P-n junction forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13964984A JPS6118126A (en) 1984-07-04 1984-07-04 P-n junction forming method

Publications (1)

Publication Number Publication Date
JPS6118126A true JPS6118126A (en) 1986-01-27

Family

ID=15250186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13964984A Pending JPS6118126A (en) 1984-07-04 1984-07-04 P-n junction forming method

Country Status (1)

Country Link
JP (1) JPS6118126A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482618A (en) * 1987-09-25 1989-03-28 Nec Corp Heat treatment
JPS6482619A (en) * 1987-09-25 1989-03-28 Nec Corp Heat treatment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627972A (en) * 1979-08-17 1981-03-18 Oki Electric Ind Co Ltd Manufacture of compound semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627972A (en) * 1979-08-17 1981-03-18 Oki Electric Ind Co Ltd Manufacture of compound semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482618A (en) * 1987-09-25 1989-03-28 Nec Corp Heat treatment
JPS6482619A (en) * 1987-09-25 1989-03-28 Nec Corp Heat treatment

Similar Documents

Publication Publication Date Title
SE7606869L (en) WAY TO TREAT SEMICONDUCTOR DEVICES
JPH05234927A (en) Method of forming diffusion region of semiconductor device by solid-phase diffusion
JPS6118126A (en) P-n junction forming method
JPH03224241A (en) Insulated-gate field-effect transistor and manufacture thereof
JPS59175721A (en) Manufacture of semiconductor device
KR100215907B1 (en) Manufacturing method of a zener diode
JPH01245519A (en) Manufacture of semiconductor device
JPH03265131A (en) Manufacture of semiconductor device
JPH0661234A (en) Production of semiconductor device
JPS6236866A (en) Manufacture of semiconductor device
JPS6294926A (en) Manufacture of semiconductor device
JPS6123365A (en) Formation of constant voltage diode
JPS61144822A (en) Formation of gaas conductive layer
JPS60149125A (en) Method for impurity doping into semiconductor substrate
JPS63148616A (en) Manufacture of semiconductor device
JPS60219770A (en) Manufacture of semiconductor device
JPH0216008B2 (en)
JPS63273317A (en) Manufacture of semiconductor device
JPH01235333A (en) Heat treatment of iii-v compound semiconductor
JPH0322526A (en) Manufacture of silicon carbide semiconductor device
JPH0284718A (en) Impurity introduction into semiconductor film
JPH023293A (en) Manufacture of semiconductor element
JPH01274422A (en) Heat treatment method for semiconductor substrate
JPS59119761A (en) Manufactuer of semiconductor device
JPS63244842A (en) Ion implantation into compound semiconductor