JPH023293A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH023293A
JPH023293A JP63150092A JP15009288A JPH023293A JP H023293 A JPH023293 A JP H023293A JP 63150092 A JP63150092 A JP 63150092A JP 15009288 A JP15009288 A JP 15009288A JP H023293 A JPH023293 A JP H023293A
Authority
JP
Japan
Prior art keywords
crystal
crystal layer
type
layer
selectively
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63150092A
Other languages
Japanese (ja)
Inventor
Tetsuo Sadamasa
定政 哲雄
Toru Nishibe
徹 西部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63150092A priority Critical patent/JPH023293A/en
Publication of JPH023293A publication Critical patent/JPH023293A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To make it possible to do recovery from crystal damage generated at the time of impurity introduction in heat process at the time of second crystal growth and impurity diffusion at the same time, and to prevent abnormal diffusion by dividing crystal growth into twice so as to introduce impurity between the first time and the second time. CONSTITUTION:An n-type InGaAs crystal layer 12, an n-type InGaAsP crystal layer 13, an n-type InP crystal layer 14, an N-type InP crystal layer 15 are formed in order on an n-type InP substrate 11 by a vapor crystal growth method. An area 23 to which Be is introduced selectively by an ion implantation method is formed near the surface of the crystal layer 15. Next, an InGaAs layer 31 is selectively formed by crystal- growth on the area 23, In the process of this crystal growth, Be introduced already is diffused into the layer 31 and the crystal layer 15, and a P-type InP area 323 can be made. Next, after removing an SiN film 21 inside a ring once, Cd is diffused selectively in the vapor phase so as to form the second p-n junction 41, and after selectively forming a Sin film 42, electrodes 43 and 44 are formed. Hereby, a semiconductor element can be constituted that the diffusion of the impurity Be introduced in advance is also done, that the inclined type p-n junction 41 can be made at the same time, and that there is no abnormal diffusion at the junction interface of different kinds of layers.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、 インジウムリン(InP)材料を用いた
レーザダイオード、受光素子等の半導体素子の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing semiconductor elements such as laser diodes and light receiving elements using indium phosphide (InP) material.

(従来の技術) 半導体のpn接合にバイアスを印加して発光。(Conventional technology) Light is emitted by applying a bias to the pn junction of a semiconductor.

受光、増幅等の現象を利用する半導体装置には、オーミ
ック接触する電極金属が必要である。従来、InP材料
に良好なオーミック接触を得る事が困難な為に、InP
に格子整合が可能でエネルギーギャップの小さいInG
aAs 、■nGaAsP等混晶をInPと電極金属と
の間に設ける構造が一般化している。その−例として特
開昭58−125870号公報が既に提案されている。
Semiconductor devices that utilize phenomena such as light reception and amplification require electrode metals that make ohmic contact. Conventionally, it was difficult to obtain good ohmic contact with InP material, so InP
InG has a small energy gap and can be lattice matched to
A structure in which a mixed crystal such as aAs or nGaAsP is provided between InP and an electrode metal has become common. As an example, Japanese Patent Laid-Open No. 125870/1983 has already been proposed.

この場合、連続的結晶成長によって順次InP / I
nGaAsP / InP / InGaAsPの各層
を形成した後、イオン注入とアニーリングによるガード
リング部とCd拡散によるP+部を形成し、しかる後表
面のInGaAsP層をエツチングによって選択的に除
去したアバランシェホトダイオードを構成していた。
In this case, InP/I is sequentially grown by continuous crystal growth.
After forming each layer of nGaAsP/InP/InGaAsP, a guard ring part was formed by ion implantation and annealing, and a P+ part was formed by Cd diffusion, and then the InGaAsP layer on the surface was selectively removed by etching to form an avalanche photodiode. Ta.

(発明が解決しようとする課M) このような従来の半導体素子では素子表面に段差が生じ
集積化に馴染まない、配線切れによる通電不良が起こる
等の問題があった。又、InP /InGaAsPの異
種半導体接合を有する基体にイオン注入、アニーリング
、拡散方法等によって不純物を導入した場合、接合界面
全域にわたって異常拡散が発生することが知られている
。これは半導体内にpn接合を形成する際の不純物濃度
分布制御およびpn接合位置制御が不可能な事につなが
り、さらには半導体素子不良の原因となっている。
(Problem M to be Solved by the Invention) Such conventional semiconductor devices have problems such as step differences on the surface of the device, making them unsuitable for integration, and failures in conduction due to broken wires. Furthermore, it is known that when impurities are introduced into a substrate having a dissimilar semiconductor junction of InP/InGaAsP by ion implantation, annealing, diffusion, etc., abnormal diffusion occurs over the entire junction interface. This leads to the impossibility of controlling the impurity concentration distribution and the position of the pn junction when forming the pn junction in the semiconductor, and further causes defects in the semiconductor element.

この発明は、上記事情を考慮してなされたもので、その
目的とするところは、素子表面の段差をなくして通電不
良を防止し、且つ不純物導入時における異常拡散をなく
して素子特性の向上に寄与し得る半導体素子の製造方法
を提供することにある。
This invention was made in consideration of the above circumstances, and its purpose is to eliminate steps on the element surface to prevent conduction defects, and to improve element characteristics by eliminating abnormal diffusion when introducing impurities. The object of the present invention is to provide a method for manufacturing a semiconductor device that can contribute to the present invention.

〔発明の構成〕 (課題を解決するための手段) 本発明は、上記の課題を解決するために結晶成長を2回
に分割し、第1回目の結晶成長と第2回目の結晶成長と
の間に不純物導入を行ない、第2回目の結晶成長時の熱
工程によって不純物導入時に発生した結晶損傷の回復と
不純物拡散を合わせて行なうことが特徴である。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention divides crystal growth into two times, and separates the first crystal growth and the second crystal growth. The feature is that impurities are introduced in between, and the thermal process during the second crystal growth performs both recovery of crystal damage caused at the time of impurity introduction and impurity diffusion.

(作 用) 近年の半導体素子製作技術の進歩は目覚しく、例えば結
晶成長技術においては有機金属を用いた化学気相成長法
(MOCVD法)あるいは気相成長法により極めて制御
性が向上し、厚さの分布は例えば2インチのウェハで±
0.5%に至っている。 この発明はこの様な技術を適
用することによって、従来不可能とされていた構造の半
導体素子の製作が容易にできるところが要点となってい
る。
(Function) Recent advances in semiconductor device manufacturing technology have been remarkable. For example, in crystal growth technology, controllability has been greatly improved by chemical vapor deposition (MOCVD) or vapor phase growth using organic metals, and thickness For example, the distribution of is ± on a 2-inch wafer.
It has reached 0.5%. The key point of the present invention is that by applying such a technique, it is possible to easily manufacture a semiconductor element with a structure that was previously considered impossible.

本発明によれば、例えばn型InP結晶の主表面に絶縁
体を選択的に形成する工程、この絶縁体をマスクとして
p型不純物をInP中にイオン注入する工程、例えばI
nGaAs混晶をイオン注入された領域上に結晶成長す
る工程とからなっている。このうち結晶成長する工程は
通常650〜750℃の温度を必要とする。この熱工程
を利用してイオン注入時に損傷を受けた結晶の活性化と
、p型不純物の拡散を行なうことがこの発明の特徴であ
る。
According to the present invention, for example, a step of selectively forming an insulator on the main surface of an n-type InP crystal, a step of ion-implanting a p-type impurity into InP using the insulator as a mask, for example, an I
The method consists of a step of growing an nGaAs mixed crystal on the ion-implanted region. Among these, the step of crystal growth usually requires a temperature of 650 to 750°C. A feature of the present invention is that this thermal process is used to activate the crystal damaged during ion implantation and to diffuse p-type impurities.

このような工程によって、従来の課題であった異種半導
体接合界面における異常拡散を防止できる。これは、絶
縁体で保護されている部分を除く必要部分上にだけ選択
的結晶成長を行なうことによって、拡散構法がりを阻止
したことによるものである。 また、絶縁体の厚みと同
等のInGaAs混晶層を選択的に結晶成長することに
よって、素子表面に段差を生じない構成が可能となり配
線切れによる通電不良を防止でき、集積化も可能となる
Such a process can prevent abnormal diffusion at the junction interface of different types of semiconductors, which has been a problem in the past. This is because selective crystal growth is performed only on the necessary portions, excluding the portions protected by the insulator, thereby preventing diffusion. In addition, by selectively growing an InGaAs mixed crystal layer with a thickness equivalent to that of the insulator, it is possible to create a configuration in which no steps are formed on the element surface, thereby preventing conduction failures due to broken wires, and making it possible to integrate the device.

さらに、活性化の為に行なう熱工程時に発生するP型不
純物の飛散および再拡散を防止する効果もある。
Furthermore, it has the effect of preventing scattering and re-diffusion of P-type impurities generated during the thermal process performed for activation.

以上の技術的手段によって、比較的簡便な方法により段
差のない構造で、電極の接触抵抗の小さい半導体素子を
構成できる。
By the above technical means, it is possible to construct a semiconductor element with a step-free structure and low electrode contact resistance using a relatively simple method.

(実施例) 以下本発明の詳細を図面を参照して説明する。(Example) The details of the present invention will be explained below with reference to the drawings.

第1図はアバランシェホトダイオードの製造工程を示す
断面図である。まず、第1図(a)に示す如<、  n
型InP基板11上にn型InGaAs結晶層12.n
型InGaAsP結晶層13、n型InP結晶層14、
n−型InP結晶層15を気相結晶成長方法によって順
次形成する。各結晶層12〜15の不純物濃度は順次5
X10”am−37XIO”an−32XIO”am−
’  5 X10”1m−”に設定し、各結晶層の厚み
は順次2μm、 0.2μs、1μs、1.5μsとす
る。
FIG. 1 is a sectional view showing the manufacturing process of an avalanche photodiode. First, as shown in Fig. 1(a),
An n-type InGaAs crystal layer 12 is formed on the InP-type substrate 11 . n
type InGaAsP crystal layer 13, n-type InP crystal layer 14,
An n-type InP crystal layer 15 is sequentially formed by a vapor phase crystal growth method. The impurity concentration of each crystal layer 12 to 15 is sequentially 5.
X10"am-37XIO"an-32XIO"am-
' 5 x 10" and 1 m-", and the thickness of each crystal layer is sequentially 2 μm, 0.2 μs, 1 μs, and 1.5 μs.

次いで、第1図(b)に示す如く、n−型InP結晶層
15上にSiN膜21. SiO膜2膜製2々0.2p
、o、g趣の厚みで選択的に形成する。形成方法はプラ
ズマCVD装置によって一度形成した膜をホトレジスト
工程処理によって選択的に残した。エツチングによって
除去された窓部は内径50即、外径90μsのリング状
とし、 この窓部を通してn−型InP結晶層表面近傍
にInP結晶に対してp型不純物となるBeをイオン注
入方法によって選択的に導入した領域23を形成する。
Next, as shown in FIG. 1(b), a SiN film 21. is formed on the n-type InP crystal layer 15. Made of 2 SiO films 0.2p
, o, g thicknesses are selectively formed. The formation method was to selectively leave a film formed by a plasma CVD apparatus using a photoresist process. The window removed by etching has a ring shape with an inner diameter of 50 μs and an outer diameter of 90 μs, and through this window, Be, which becomes a p-type impurity for the InP crystal, is selected by ion implantation near the surface of the n-type InP crystal layer. A region 23 is formed in which the material is introduced.

Beイオン注入は200KeVの加速電圧で、3XIO
”C11−”のドーズ量で行なった。この状態ではBe
を導入した領域23の結晶はがなり損傷を受けており、
n−型InP結晶層15の活性化を図らなければならな
い。活性化には650℃以上の温度が必要とされており
、活性化する場合表面劣化を防止する目的で燐圧下で熱
工程を加える事が既に行なわれている。
Be ion implantation was carried out at an accelerating voltage of 200 KeV and 3XIO
The test was carried out at a dose of "C11-". In this state Be
The crystal in region 23 into which the
The n-type InP crystal layer 15 must be activated. Activation requires a temperature of 650° C. or higher, and in order to prevent surface deterioration during activation, a thermal process under phosphorous pressure has already been carried out.

次いで第1図(C)に示す如く、Beを導入した領域2
3上にInGaAs層31をSiN膜2膜上1等の厚さ
(0,2趨)で選択的結晶成長する。結晶成長は気相成
長方法によって行ない、結晶成長温度は700℃である
。この際Beのイオン注入時にマスクとして設けたSi
O膜22はあらかじめ除去しておく。InGaAs層3
1の結晶成長の過程において、既に導入したBeはIn
GaAs層31およびn−型InP結晶層15内に拡散
され、p型InP領域323ができる。このp型InP
領域323とn−型InP結晶層15との間には傾斜形
p−n接合33が形成され、p−n接合に逆バイアスを
印加した際に局所的降伏を防止するものである。即ちア
バランシェホトダイオードのガードリング接合である。
Next, as shown in FIG. 1(C), Be-introduced region 2
An InGaAs layer 31 is selectively crystal-grown on the SiN film 2 to a thickness of 1 (0, 2). Crystal growth is performed by a vapor phase growth method, and the crystal growth temperature is 700°C. At this time, Si was provided as a mask during Be ion implantation.
The O film 22 is removed in advance. InGaAs layer 3
In the process of crystal growth in step 1, the already introduced Be becomes In
It is diffused into the GaAs layer 31 and the n-type InP crystal layer 15 to form a p-type InP region 323. This p-type InP
A sloped p-n junction 33 is formed between the region 323 and the n-type InP crystal layer 15 to prevent local breakdown when a reverse bias is applied to the p-n junction. That is, it is a guard ring junction of an avalanche photodiode.

次いで、第1図(d)に示す如く、−旦リング内側のS
iN膜2膜上1去した後選択的にCdを気相拡散して第
2のp−n接合41を形成し、新たに反射防止膜となる
SiN暎42を選択的に形成した後、電極43、44を
形成してアバランシェホトダイオードを完成する。ここ
で、第2のp−n接合41は片側階段接合形となるよう
に580℃の温度で拡散を行ない、これを受光部接合と
する。電極43はInGaAs層31とSiN膜との境
界において段差がない状態で設けることができる。
Next, as shown in FIG. 1(d), the S inside the ring is
After removing the iN film 2, Cd is selectively diffused in a vapor phase to form a second p-n junction 41, and after selectively forming a new SiN layer 42 to serve as an anti-reflection film, the electrode 43 and 44 are formed to complete the avalanche photodiode. Here, the second p-n junction 41 is diffused at a temperature of 580 DEG C. so that it becomes a one-sided stepped junction type, and this is used as a light-receiving section junction. The electrode 43 can be provided without any step at the boundary between the InGaAs layer 31 and the SiN film.

触抵抗を低減する目的で設けるInGaAs層、或いは
InGaAsP層の選択的結晶成長と同時に損傷を受け
た領域の活性化を可能とした。選択的結晶成長によって
、予め導入した不純物の拡散も行ない傾斜形p−n接合
を同時に構成でき、しかも異種接合界面に異常拡散のな
い半導体素子を構成できる。
This enables selective crystal growth of an InGaAs layer or an InGaAsP layer provided for the purpose of reducing contact resistance, and activation of a damaged region at the same time. By selective crystal growth, it is possible to simultaneously form a sloped p-n junction by diffusing previously introduced impurities, and moreover, it is possible to form a semiconductor device without abnormal diffusion at the heterojunction interface.

また、この無段差プレーナ構造により、通電不良が防止
でき、駆動回路、増幅回路との集積化も可能となる。
Moreover, this stepless planar structure can prevent failures in conduction, and also enables integration with a drive circuit and an amplifier circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係るアバランシェホトダイオ
ードの製造工程を示す断面図である。 11・・・n型InP基板 12、31− n型InGaAs結晶層13−n型In
GaAsP結晶層 14・・・n型InP結晶層 15・・・n−型InP結晶層 21、42・・・SiN膜 22・・・SiO膜 23・・・p型不純物導入領域 323・P型InP領域 33、41・・p−n接合 43、44・・・電極 代理人 弁理士  則 近 憲 佑 同        松  山  光  之第1図
FIG. 1 is a sectional view showing the manufacturing process of an avalanche photodiode according to an embodiment of the present invention. 11...n-type InP substrate 12, 31-n-type InGaAs crystal layer 13-n-type In
GaAsP crystal layer 14...n-type InP crystal layer 15...n-type InP crystal layer 21, 42...SiN film 22...SiO film 23...p-type impurity introduced region 323/P-type InP Regions 33, 41...p-n junctions 43, 44...Electrode agent Patent attorney Noriyuki Chika Noriyuki Mitsuru Matsuyama Figure 1

Claims (1)

【特許請求の範囲】[Claims] 一導電型InP結晶と電極金属との間に、Inを構成元
素として含むIII−V族混晶層を設けてなる半導体素子
の製造方法において、前記InP結晶の表面に選択的に
絶縁体を形成する工程と、該絶縁体部を除くInP結晶
表面近傍に逆導電型不純物を選択的に導入する工程と、
該逆導電型不純物が導入された領域上にInを構成元素
として含むIII−V族混晶層を絶縁体と同等もしくはそ
れ以下の厚みで選択的結晶成長を行なう工程と該選択的
結晶成長とともに前記逆導電型不純物が導入された領域
を活性化し、且つ前記逆導電型不純物をIII−V族混晶
層内およびInP結晶内に拡散する工程とを具備したこ
とを特徴とする半導体素子の製造方法。
In a method for manufacturing a semiconductor device in which a group III-V mixed crystal layer containing In as a constituent element is provided between an InP crystal of one conductivity type and an electrode metal, an insulator is selectively formed on the surface of the InP crystal. a step of selectively introducing an opposite conductivity type impurity into the vicinity of the InP crystal surface excluding the insulator portion;
A step of selectively growing a group III-V mixed crystal layer containing In as a constituent element on the region into which the opposite conductivity type impurity is introduced to a thickness equal to or less than that of the insulator, and together with the selective crystal growth. Manufacturing a semiconductor device, comprising a step of activating a region into which the opposite conductivity type impurity is introduced, and diffusing the opposite conductivity type impurity into a III-V group mixed crystal layer and an InP crystal. Method.
JP63150092A 1988-06-20 1988-06-20 Manufacture of semiconductor element Pending JPH023293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63150092A JPH023293A (en) 1988-06-20 1988-06-20 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63150092A JPH023293A (en) 1988-06-20 1988-06-20 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPH023293A true JPH023293A (en) 1990-01-08

Family

ID=15489339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63150092A Pending JPH023293A (en) 1988-06-20 1988-06-20 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPH023293A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171678A (en) * 1989-11-29 1991-07-25 Hikari Keisoku Gijutsu Kaihatsu Kk Formation of electrode of semiconductor device
WO2019124497A1 (en) * 2017-12-22 2019-06-27 Dowaエレクトロニクス株式会社 Semiconductor light-emitting element and production method for same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171678A (en) * 1989-11-29 1991-07-25 Hikari Keisoku Gijutsu Kaihatsu Kk Formation of electrode of semiconductor device
WO2019124497A1 (en) * 2017-12-22 2019-06-27 Dowaエレクトロニクス株式会社 Semiconductor light-emitting element and production method for same
US11508875B2 (en) 2017-12-22 2022-11-22 Dowa Electronics Materials Co., Ltd. Semiconductor light-emitting device and method of manufacturing the same
US11996496B2 (en) 2017-12-22 2024-05-28 Dowa Electronics Materials Co., Ltd. Semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
US3534236A (en) Semiconductor integrated circuit structure
JPH01231317A (en) Manufacture of optical semiconductor element
US4341010A (en) Fabrication of electroluminescent semiconductor device utilizing selective etching and epitaxial deposition
JP2573201B2 (en) Method for forming diffusion layer of semiconductor device
US3473976A (en) Carrier lifetime killer doping process for semiconductor structures and the product formed thereby
JPH02252267A (en) Manufacture of semeconductor device
JPH023293A (en) Manufacture of semiconductor element
US3416047A (en) Opto-pn junction semiconductor having greater recombination in p-type region
JPS61136225A (en) Method of diffusing impurity into inp
Dautremont-Smith et al. Fabrication technologies for III-V compound semiconductor photonic and electronic devices
JPH0621503A (en) Semiconductor photodetector and manufacture thereof
JP2528877B2 (en) Semiconductor laser
JPH02202085A (en) Manufacture of semiconductor laser device
JPS60173882A (en) Semiconductor device
JPS6215876A (en) Manufacture of semiconductor light emitting device
JP2503263B2 (en) Method for manufacturing semiconductor light emitting device
JPH04246867A (en) Semiconductor photodetector
JPS6298721A (en) Zn solid-state diffusing method for iii-v compound semiconductor
JPS60213067A (en) Manufacture of semiconductor device
JPS616820A (en) Manufacture of compound semiconductor device
JPH022690A (en) Manufacture of infrared ray sensor
JPS5916330A (en) Manufacture of semiconductor device
JPS6259907B2 (en)
JPS6118126A (en) P-n junction forming method
JPH0277184A (en) Manufacture of semiconductor laser