JPS63273317A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63273317A
JPS63273317A JP10853187A JP10853187A JPS63273317A JP S63273317 A JPS63273317 A JP S63273317A JP 10853187 A JP10853187 A JP 10853187A JP 10853187 A JP10853187 A JP 10853187A JP S63273317 A JPS63273317 A JP S63273317A
Authority
JP
Japan
Prior art keywords
film
diffusion layer
wet etching
low
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10853187A
Other languages
Japanese (ja)
Inventor
Yoshinari Enomoto
良成 榎本
Yoshio Tsuruta
鶴田 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10853187A priority Critical patent/JPS63273317A/en
Publication of JPS63273317A publication Critical patent/JPS63273317A/en
Pending legal-status Critical Current

Links

Landscapes

  • Weting (AREA)

Abstract

PURPOSE:To reduce the depth of the impurity diffusion region to a predetermined value by manufacturing a title device, after diffusing an impurity into a predetermined region of a substrate, by the use of a low-temperature selective oxidation process at a predetermined temperature or less, and a process for removing the oxide film having grown in the above process by a wet etching method. CONSTITUTION:With a resist pattern 3 as a mask BF2 ions are implanted into a dose substrate 1 to form a region 4. Then the pattern 3 is removed and an anneal is performed, forming a P-type diffusion layer 5 of, for instance, 2000Angstrom . And with a CVD nitride film 6 as a mask a thermal oxide film 2 immediately above the layer 5 is removed by a wet etching. Then, again with the film 6 as a mask a low-temperature selective oxide Si film 7 is grown at a predetermined temperature. Further, again an oxide film 7 on the whole surface is grown. Moreover, when the film 7 on the whole surface is removed by a wet etching, the layer is reduced and becomes shallow, whereby a very shallow diffusion layer 51 of, for instance, 1500Angstrom is formed. Further, by repetition of the low-temperature selective oxidation process and the wet etching process of the oxide Si film, a shallower P-type diffusion layer can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体基板中に極浅の拡@、層を形成する半導
体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device in which an extremely shallow layer is formed in a semiconductor substrate.

〔従来の技術〕[Conventional technology]

従来半導体基板内に浅い拡散層を形成するためには、不
純物導入としてのイオン注入法と、その後の活性化熱処
理(以下、アニールと呼ぶ)としての高温短時間アニー
ルまたは低温長時間アニールとの組み合わせ技術を用い
るのが一般的である。
Conventionally, in order to form a shallow diffusion layer in a semiconductor substrate, a combination of ion implantation to introduce impurities and subsequent activation heat treatment (hereinafter referred to as anneal) with high-temperature short-time annealing or low-temperature long-time annealing is required. It is common to use technology.

第2図はN形シリコン基板にP形の浅い拡散層を形成す
る工程の一例を示すもので、まず第2図aに示すように
、N形シリコン基板1の表面のP形シリコン形成予定領
域または該予定領域を含む領域に200人程度の熱酸化
膜2を形成する。これはその後のイオン注入による基板
表面のダメージと基板内での注入イオンのチャネリング
とを抑制するために行う工程である。次いで第2図すに
示すように、P形シリコン形成予定領域以外の基板表面
を公知のフォトリソグラフィー技術によりレジストパタ
ーン3で覆い、このレジストパターン3をイオン注入の
マスクとして、前記P形シリコン形成予定領域にP形不
純物であるBF、”イオンを30keVの加速エネルギ
ーで、ドーズ量5 X 10 ’ /ctRだけ注入し
、領域4を形成する。
FIG. 2 shows an example of the process of forming a P-type shallow diffusion layer on an N-type silicon substrate. First, as shown in FIG. Alternatively, a thermal oxide film 2 of about 200 layers is formed in an area including the planned area. This step is performed to suppress damage to the substrate surface due to subsequent ion implantation and channeling of implanted ions within the substrate. Next, as shown in FIG. 2, the surface of the substrate other than the area where the P-type silicon is to be formed is covered with a resist pattern 3 using a known photolithography technique, and this resist pattern 3 is used as a mask for ion implantation to remove the area where the P-type silicon is to be formed. BF ions, which are P-type impurities, are implanted into the region at an acceleration energy of 30 keV and a dose of 5×10′/ctR to form region 4.

この時点ですでにBF、の打込み深さは2000人程度
にまで達している。ここでイオン種としてBF、”を用
いるのは、単体のボロンB゛にくらべてBF、”は同じ
加速電圧でのシリコン中の飛程がはるかに短く、実効的
にボロンB゛の低加速イオン注入が実現できるためで、
現在広く用いられているものである。また加速電圧を3
0kVにしたのは、イオン注入装置としての制約で、こ
れ以下の加速電圧ではビーム電流が極端に減少し、その
分だけ注入処理時間が極端に増加するため処理に支障を
きたすことによる。次に第2図Cに示すように、BF、
”イオンを注入した領域4をP形シリコンに変え、P形
拡散N5を形成するために、レジストパターン3を除去
し、アニールを行う。十分な活性化を得るためには炉ア
ニールの場合最低900″C130分のアニールは必要
で、そのときボロンは拡散してしまい、結果として形成
されたPN接合位置は基板表面から約3000人のとこ
ろにきてしまう、また近年用いられ始めている高温短時
間アニール装置で1000℃110秒のアニールをした
場合でも、接合位置は2000Å以下には決してならな
い。
At this point, the depth of BF has already reached around 2,000 people. Here, BF,'' is used as an ion species because compared to single boron B, BF,'' has a much shorter range in silicon at the same acceleration voltage, and is effectively a low-acceleration ion of boron B. This is because injection can be achieved.
This is currently widely used. Also, increase the acceleration voltage to 3
The reason for setting the voltage to 0 kV is due to the limitations of the ion implantation apparatus, since if the acceleration voltage is lower than this, the beam current will be extremely reduced, and the implantation processing time will be increased accordingly, which will cause problems in the processing. Next, as shown in FIG. 2C, BF,
``In order to change the ion-implanted region 4 to P-type silicon and form a P-type diffusion N5, the resist pattern 3 is removed and annealing is performed. ``Annealing for 130 minutes is necessary, and at that time boron is diffused, and the resulting PN junction position is approximately 3,000 minutes from the substrate surface. Even when annealing is performed at 1000° C. for 110 seconds using an apparatus, the bonding position never becomes less than 2000 Å.

以上のように現状のイオン注入法とその後のアニールと
の組み合せによる限り、N形基板中のP膨拡散層は20
00人より浅くすることができない。P形基板にN膨拡
散層を形成する場合も、P膨拡散層はどではないが、同
じような問題があり、1000Å以下の浅い拡散層の形
成は困難である。
As described above, as long as the current ion implantation method and subsequent annealing are combined, the P swelling diffusion layer in the N type substrate is 20
It cannot be made shallower than 00 people. When forming an N-swelled diffusion layer on a P-type substrate, similar problems exist, and it is difficult to form a shallow diffusion layer of 1000 Å or less, although this is not the case with P-swelled diffusion layers.

ところが近年のICの微細化に伴って、P形、N形によ
らず、1000Å以下の浅い拡散層の形成が必要となっ
てきている。またフォトダイオードなどでは光電流を増
し、感度を上げるために、より多くの光を接合位置にと
り入れなければならない。その点から接合位置を100
0Å以下の極性にする必要がある。これらの素子に対し
、従来の接合形成法には上述のような限界があった。
However, with the recent miniaturization of ICs, it has become necessary to form a shallow diffusion layer of 1000 Å or less, regardless of whether it is P type or N type. Furthermore, in order to increase the photocurrent and sensitivity of photodiodes and the like, it is necessary to introduce more light into the junction position. From that point, set the joining position to 100
It is necessary to set the polarity to 0 Å or less. Conventional bond forming methods for these elements have the above-mentioned limitations.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上述の欠点を除去し、1000Å以下の極性拡
散層を形成する方法を提供することを目的とする。
It is an object of the present invention to eliminate the above-mentioned drawbacks and provide a method for forming a polar diffusion layer with a thickness of 1000 Å or less.

〔問題点を解決するための手段〕[Means for solving problems]

この目的は本発明によれば、半導体基板の所定領域に不
純物を拡散した後、800℃以下の低温選択酸化工程と
、この低温選択酸化工程によって成長した酸化膜をウェ
ットエツチング法により除去する工程とを交互に繰り返
し、不純物拡散領域の深さを所定の値に低下させること
により達成される。
According to the present invention, this purpose is achieved by a step of diffusing impurities into a predetermined region of a semiconductor substrate, followed by a low-temperature selective oxidation step of 800°C or less, and a step of removing the oxide film grown by the low-temperature selective oxidation step by wet etching. This is achieved by alternately repeating the above steps to reduce the depth of the impurity diffusion region to a predetermined value.

〔作用〕[Effect]

本発明の方法においては、従来技術で形成した深さ10
00Å以上の拡散層を基板表面からエツチングすること
により、拡散層の深さを1000Å以下にするものであ
り、そのエツチング法として低温選択酸化とウェットエ
ツチングという低温処理を用い、基板にダメージを全く
与えることなく、かつ既に形成された接合位置を変える
ことなく拡散深さを減少させるものである。
In the method of the present invention, a depth of 10
By etching a diffusion layer of 00 Å or more from the substrate surface, the depth of the diffusion layer is reduced to 1000 Å or less.The etching method uses low-temperature selective oxidation and wet etching, which causes no damage to the substrate. This method reduces the diffusion depth without changing the bonding position that has already been formed.

〔実施例〕〔Example〕

次に本発明の実施例を図面について説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図はN形シリコン基板にP形のフォトダイオードを
形成する実施例を示し、第1図aに示すように、まずN
形シリコン基板1の表面のフォトダイオード形成予定領
域または該予定領域を含む領域に200人程度の熱酸化
膜2を形成し、さらにその上に1000人の化学的気相
成長法(以下CVD法と呼ぶ)による窒化シリコン膜6
を堆積させる。
Figure 1 shows an example of forming a P-type photodiode on an N-type silicon substrate.
A thermal oxide film 2 of about 200 layers is formed on the surface of the silicon substrate 1 where the photodiode is to be formed or a region including the area where the photodiode is to be formed. silicon nitride film 6
deposit.

次に第1図すに示すように、公知のフォトエツチング技
術によりレジストパターン3を用いてフォトダイオード
形成予定領域上の窒化シリコン膜6をエツチングして取
り除(。
Next, as shown in FIG. 1, the silicon nitride film 6 on the area where the photodiode is to be formed is etched and removed using the resist pattern 3 using a known photoetching technique.

次いで第1図Cに示すように、レジストパターン3をマ
スクとしてBF、’″イオン30keVで5X1014
/C11lのドーズ量注入し領域4を形成する。
Next, as shown in FIG.
A region 4 is formed by implanting a dose of /C11l.

次いで第1図dに示すように、レジストパターン3を除
去し1000 ’C110秒のアニールを行うと、深さ
約2000人のP形波散層5が形成される。なお、ここ
までは従来技術とほぼ同様である。
Next, as shown in FIG. 1d, the resist pattern 3 is removed and annealing is performed for 1000'C for 110 seconds, thereby forming a P-type wave dispersion layer 5 with a depth of about 2000 layers. Note that the process up to this point is almost the same as the conventional technology.

つぎに第1図gに示すように、P膨拡散層5の直上の熱
酸化膜2を、CVD窒化シリコン膜6をマスクとして公
知のウェットエツチングで除去する。
Next, as shown in FIG. 1g, the thermal oxide film 2 directly above the P expansion diffusion layer 5 is removed by known wet etching using the CVD silicon nitride film 6 as a mask.

次いで第1図fに示すように、再びCVD窒化シリコン
膜6をマスクとして800℃で低温選択酸化シリコン膜
7を成長させる。このときの条件は水素3.5 I!、
/min 、酸素6.21/min中で6時間酸化して
酸化シリコン膜厚750人を得る。
Next, as shown in FIG. 1f, a low-temperature selective silicon oxide film 7 is grown at 800° C. again using the CVD silicon nitride film 6 as a mask. The conditions at this time are hydrogen 3.5 I! ,
/min, and oxygen for 6 hours at 6.21/min to obtain a silicon oxide film with a thickness of 750 mm.

さらに第1図gに示すように、再び全面の酸化シリコン
膜7をウェットエツチングで除去すると、P膨拡散層5
は約500人程けずられて浅くなり、結果として150
0人の極性P形拡散層51が形成される。
Furthermore, as shown in FIG.
About 500 people were displaced and became shallower, resulting in 150 people.
A zero polarity P type diffusion layer 51 is formed.

さらに第1図fに示す低温選択酸化工程及び第1図gに
示す酸化シリコン膜のウェットエツチング工程を繰り返
せば、より浅いP膨拡散層の形成が可能であり、100
0Å以下の極性接合も可能となる。
Furthermore, by repeating the low-temperature selective oxidation step shown in FIG. 1f and the wet etching step of the silicon oxide film shown in FIG.
Polar junctions of 0 Å or less are also possible.

なお上述の例はN形基板へのP膨拡散層形成について述
べたが、本発明はP形基板へのN膨拡散層の形成及び基
板と同一導電形層の形成にも適用できることは明らかで
ある。
Although the above example describes the formation of a P-swelled diffusion layer on an N-type substrate, it is clear that the present invention can also be applied to the formation of an N-swelled diffusion layer on a P-type substrate and the formation of a layer of the same conductivity type as the substrate. be.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、イオン注入およびその後のアニールと
いう従来技術で形成された深さ1000Å以上の拡散層
を、800℃以下の低温選択酸化技術と、公知のウェッ
トエツチング技術との繰り返しにより、従来技術では得
られなかった深さ1000Å以下の極性不純物拡散層の
形成が可能となり、しかも酸化及びエツチングによる基
板内不純物の再分布と基板表面のダメージはほとんどな
い状態でエツチングを進行させることが可能である。
According to the present invention, a diffusion layer with a depth of 1000 Å or more, which was formed by the conventional technique of ion implantation and subsequent annealing, is etched using the conventional technique by repeating a low-temperature selective oxidation technique of 800° C. or less and a known wet etching technique. It is now possible to form a polar impurity diffusion layer with a depth of 1000 Å or less, which could not be achieved with etching, and furthermore, it is possible to proceed with etching with almost no redistribution of impurities in the substrate and damage to the substrate surface due to oxidation and etching. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図g −gは本発明の一実施例を示す工程断面図、
第2図axcは従来方法の工程断面図である。 l・・・N形シリコン基板、 5・・・P膨拡散層、5
1・・・浅くなったP膨拡散層、 6・・・CVD窒化
シリコン膜、 7・・・低温選択酸化シリコン膜。 5ノ′1゜ 第1図
FIG. 1g-g is a process sectional view showing an embodiment of the present invention;
FIG. 2 axc is a process sectional view of the conventional method. l...N type silicon substrate, 5...P swelling diffusion layer, 5
1... Shallow P swelling diffusion layer, 6... CVD silicon nitride film, 7... Low temperature selective silicon oxide film. 5'1゜Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1)半導体基板の所定領域に不純物を拡散した後、80
0℃以下の低温選択酸化工程と、該低温選択酸化工程に
よって成長した酸化膜をウェットエッチング法により除
去する工程とを交互に繰り返し、前記不純物拡散領域の
深さを所定の値に低下させることを特徴とする半導体装
置の製造方法。
1) After diffusing impurities into a predetermined region of a semiconductor substrate,
The depth of the impurity diffusion region is reduced to a predetermined value by alternately repeating a low-temperature selective oxidation step at 0° C. or lower and a step of removing the oxide film grown by the low-temperature selective oxidation step by wet etching. A method for manufacturing a featured semiconductor device.
JP10853187A 1987-05-01 1987-05-01 Manufacture of semiconductor device Pending JPS63273317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10853187A JPS63273317A (en) 1987-05-01 1987-05-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10853187A JPS63273317A (en) 1987-05-01 1987-05-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63273317A true JPS63273317A (en) 1988-11-10

Family

ID=14487164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10853187A Pending JPS63273317A (en) 1987-05-01 1987-05-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63273317A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149813A (en) * 1989-11-07 1991-06-26 Rohm Co Ltd Manufacture of semiconductor device
KR100560819B1 (en) 2004-08-02 2006-03-13 삼성전자주식회사 Method of forming semiconductor device having PMOS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149813A (en) * 1989-11-07 1991-06-26 Rohm Co Ltd Manufacture of semiconductor device
KR100560819B1 (en) 2004-08-02 2006-03-13 삼성전자주식회사 Method of forming semiconductor device having PMOS

Similar Documents

Publication Publication Date Title
US4272880A (en) MOS/SOS Process
EP0015677A1 (en) Method of producing semiconductor devices
JPH0697665B2 (en) Method of manufacturing integrated circuit structure
US5106768A (en) Method for the manufacture of CMOS FET by P+ maskless technique
JPS63273317A (en) Manufacture of semiconductor device
JPS63144567A (en) Manufacture of semiconductor device
JPH04152670A (en) Manufacture of photodetector
JPH01309320A (en) Manufacture of semiconductor device
JP2571449B2 (en) Manufacturing method of bipolar IC
KR0178994B1 (en) Method for forming an isolation region of junction
KR940002779B1 (en) Manufacturing method of high-voltage transistor
JPS6294924A (en) Manufacture of semiconductor device
JP2576513B2 (en) Method for manufacturing bipolar transistor
JPH0579186B2 (en)
JPH04354328A (en) Production of semiconductor device
JPS63177513A (en) Manufacture of semiconductor device
JPS60149125A (en) Method for impurity doping into semiconductor substrate
JPS6129537B2 (en)
JPS6211504B2 (en)
JPH02307227A (en) Manufacture of semiconductor device
JPS62243361A (en) Manufacture of semiconductor device
JPH061815B2 (en) Method for manufacturing semiconductor device
JPS59119761A (en) Manufactuer of semiconductor device
JPH03116829A (en) Manufacture of semiconductor device
JPH0582743A (en) Manufacture of semiconductor device