JPS6129537B2 - - Google Patents
Info
- Publication number
- JPS6129537B2 JPS6129537B2 JP15800677A JP15800677A JPS6129537B2 JP S6129537 B2 JPS6129537 B2 JP S6129537B2 JP 15800677 A JP15800677 A JP 15800677A JP 15800677 A JP15800677 A JP 15800677A JP S6129537 B2 JPS6129537 B2 JP S6129537B2
- Authority
- JP
- Japan
- Prior art keywords
- buried layer
- layer
- conductivity type
- region
- buried
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000009792 diffusion process Methods 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 6
- 238000005247 gettering Methods 0.000 claims description 5
- 238000005468 ion implantation Methods 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910003923 SiC 4 Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000501 effect on contamination Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
Landscapes
- Element Separation (AREA)
Description
【発明の詳細な説明】
本発明は特にバイポーラIC等の半導体装置の
製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a method for manufacturing semiconductor devices such as bipolar ICs.
従来バイポーラIC等に用いるエピタキシヤル
ウエハーとしてはN型又はP型の埋込層を形成
し、その後酸化膜を全面除去した後エピタキシヤ
ル成長を行なつていた。これらのN型又はP型の
埋込層は一般には高温度での熱拡散方法が利用さ
れるため外部からかなり汚れが入る。またエピタ
キシヤル成長は高温度で行なわれるためにエピタ
キシヤル成長のときにも汚れが導入される。この
ようにいろいろな工程で汚れが導入し特性に影響
を与える。更にエピタキシヤル成長後絶縁をとる
場合に一般にはエピタキシヤルウエハーの表面か
らP型の不純物を拡散させてP型基板とにより素
子間の分離を行なつている。しかしP型の不純物
を熱拡散方式で行なうために不純物は横方向に拡
散し集積度を悪るくしている。また高温度で熱拡
散を行なうために不純物の再分布が起り、バイポ
ーラICの特性の歩留りを悪るくしている。 Conventionally, in epitaxial wafers used for bipolar ICs and the like, an N-type or P-type buried layer is formed, and then epitaxial growth is performed after the oxide film is completely removed. These N-type or P-type buried layers generally receive considerable contamination from the outside because thermal diffusion methods at high temperatures are used. Furthermore, since epitaxial growth is carried out at high temperatures, dirt is introduced during epitaxial growth as well. In this way, dirt is introduced during various processes and affects the properties. Furthermore, when insulation is provided after epitaxial growth, P-type impurities are generally diffused from the surface of the epitaxial wafer to isolate elements from the P-type substrate. However, since the P-type impurity is introduced using a thermal diffusion method, the impurity is diffused in the lateral direction, which impairs the degree of integration. Furthermore, thermal diffusion at high temperatures causes redistribution of impurities, which impairs the yield of bipolar IC characteristics.
本発明の目的はバイポーラ等の半導体集積回路
用のエピタキシヤルウエハーに重金属などをゲツ
タリングする効果を持たせまた不純物の拡散係数
を大きくしできるだけ低温で絶縁をとることがで
るようにするため埋込形成後エピタキシヤル成長
前に40Ar+イオンなどをイオン注入することい
る。イオン注入は適当な注入量で選択的にシリコ
ン表面に歪層を形成させる。この歪層は次のエピ
タキシヤル成長のときに重要な効果をあたえる核
になる。 The purpose of the present invention is to provide an epitaxial wafer for bipolar and other semiconductor integrated circuits with the effect of gettering heavy metals, increase the diffusion coefficient of impurities, and provide insulation at as low a temperature as possible. After the epitaxial growth, ions such as 40 Ar + ions are implanted. Ion implantation selectively forms a strained layer on the silicon surface at an appropriate implantation dose. This strained layer becomes a core that provides an important effect during the next epitaxial growth.
本発明によればウエハー内に部分的に拡散係数
の大きい領域と部分的にゲツタリング効果を持つ
たエピタキシヤルウエハーをつくることができ
る。 According to the present invention, it is possible to produce an epitaxial wafer in which the wafer has a region with a large diffusion coefficient partially and a gettering effect partially.
以下図面を用いて本発明を詳細に説明する。ま
ず第1図に示すように、従来用いられている方法
によつてP型のシリコン基体1の上面にシリコン
の酸化膜4を1000〜1400℃程度の温度で成長さ
せ、ホトレジスト法を用いて選択的に酸化膜を取
除くことにより、選択的に拡散する領域を形成す
る。次に1200〜1230℃付近の温度でアンチモンマ
はヒ素の不純物を拡散させてN型の埋込層2を形
成し、次に同様な方法を用いてボロンの不純物を
拡散させてP型の埋込層3を形成する。次にホト
レジスト法を用いて選択的に酸化膜を除去し、N
型埋込層以外の場所とP型の埋込層との領域に適
当な注入量で40Ar+,16O+,14N+などのイオンを
注入し第2図に示すように表面付近に部分的に歪
層5,6を形成する。この場合いろいろな用途に
よつてシリコン酸化膜を完全に取除くことをしな
いで薄く残してイオン注入を行なつてもよい。た
だし半導体素子をつくる領域に完全にイオン注入
の影響はないようにしておく。次にエピタキシヤ
ル成長前に全面酸化膜4を除去し、適当な条件で
1000〜1200℃付近の温度でS1H4,SiC4,
SiH2C2,SiHC3などを用いてシリコンを
エピタキシヤル成長させる。エピタキシヤル成長
させることにより結晶性の良い層9,10をつく
ることができる。同時に不純物の拡散係数の大き
い層7及びゲツタリング効果を持つた層8を同時
につくることができる。 The present invention will be explained in detail below using the drawings. First, as shown in FIG. 1, a silicon oxide film 4 is grown on the upper surface of a P-type silicon substrate 1 at a temperature of about 1000 to 1400°C by a conventional method, and then selected using a photoresist method. By selectively removing the oxide film, a region for selective diffusion is formed. Next, at a temperature around 1200 to 1230°C, antimony diffuses arsenic impurities to form an N-type buried layer 2, and then uses the same method to diffuse boron impurities to form a P-type buried layer 2. A layer 3 is formed. Next, the oxide film is selectively removed using a photoresist method, and the N
Ions such as 40 Ar + , 16 O + , and 14 N + are implanted at appropriate doses into areas other than the type buried layer and the P type buried layer, and are deposited near the surface as shown in Figure 2. Strain layers 5 and 6 are formed partially. In this case, depending on various uses, the silicon oxide film may not be completely removed, but a thin layer may be left and ion implantation may be performed. However, the region where the semiconductor element is to be made must be completely free from the influence of ion implantation. Next, before epitaxial growth, the entire oxide film 4 is removed and the oxide film 4 is grown under appropriate conditions.
S 1 H 4 , SiC 4 , at a temperature around 1000-1200℃
Silicon is epitaxially grown using SiH 2 C 2 , SiHC 3 or the like. The layers 9 and 10 with good crystallinity can be formed by epitaxial growth. At the same time, a layer 7 having a large impurity diffusion coefficient and a layer 8 having a gettering effect can be formed at the same time.
以上述べたように本発明によれば部分的に適当
な条件でイオン注入することによりボロンの拡散
係数を大きくすることができ横方向の広がりを少
なくすることができ集積度を向上させることがで
きる。また絶縁拡散の温度を低温にでき、拡散時
間も少なくできるので不純物の再分布を少なくで
きるので歩留りよくICをつくることができる。
更にゲツタリングの効果をもつた層を半導体素子
の近くに設置できるのでエピタキシヤル成長及び
その後の工程での汚れに対して非常に大きな効果
をもつためICをつくる時に信頼性向上、歩留り
向上を確保できる。 As described above, according to the present invention, by partially implanting ions under appropriate conditions, the diffusion coefficient of boron can be increased, the lateral spread can be reduced, and the degree of integration can be improved. . Furthermore, since the temperature of insulation diffusion can be lowered and the diffusion time can be shortened, redistribution of impurities can be reduced and ICs can be manufactured with high yield.
Furthermore, since a layer with a gettering effect can be placed near the semiconductor element, it has a very large effect on contamination during epitaxial growth and subsequent processes, ensuring improved reliability and yield when manufacturing ICs. .
第1と第2と第3図は本発明の一実施例の製造
工程を説明するための断面図である。
1…シリコン基板、2…N型埋込層、3…P型
の埋込層、4…シリコン酸化膜、5…P型の埋込
層にイオン注入した領域、6…シリコン基板にイ
オン注入した領域、7…イオン注入したP型の埋
込層上にできた生長層、8…イオン注入した表面
にできた生長層、9…N型埋込層上に生長したエ
ピタキシヤル層、10…シリコン基板上に生長さ
せた結晶性のよい領域。
1, 2, and 3 are cross-sectional views for explaining the manufacturing process of an embodiment of the present invention. 1...Silicon substrate, 2...N-type buried layer, 3...P-type buried layer, 4...silicon oxide film, 5...Ion-implanted region in the P-type buried layer, 6...Ion-implanted into the silicon substrate Region, 7... Growth layer formed on the ion-implanted P-type buried layer, 8... Growth layer formed on the ion-implanted surface, 9... Epitaxial layer grown on the N-type buried layer, 10... Silicon A region with good crystallinity grown on a substrate.
Claims (1)
電型の第1の埋込層および該第1の埋込層の周辺
に一導電型の第2の埋込層を形成する工程と、該
第2の埋込層および該第2の埋込層と第1の埋込
層との間でこれら2つの埋込層とは離れた基板表
面に選択的にイオン注入を行なう工程と、イオン
注入後該基板表面を露出しその露出面上に逆導電
型のエピタキシヤル層を成長することによつて該
第2の埋込層上には不純物の拡散係数の大きい領
域を選択的に形成すると同時に該第1の埋込層と
該第2の埋込層との間のイオン注入された領域上
に選択的にゲツタリング能力を有する領域を形成
する工程とを有することを特徴とする半導体装置
の製造方法。1. Forming a first buried layer of opposite conductivity type with high impurity concentration in a semiconductor substrate of one conductivity type and a second buried layer of one conductivity type around the first buried layer; a step of selectively implanting ions into a second buried layer and between the second buried layer and the first buried layer into a substrate surface separated from these two buried layers; and ion implantation. After that, by exposing the substrate surface and growing an epitaxial layer of the opposite conductivity type on the exposed surface, a region having a large impurity diffusion coefficient is selectively formed on the second buried layer. manufacturing a semiconductor device, comprising the step of: selectively forming a region having gettering ability on an ion-implanted region between the first buried layer and the second buried layer; Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15800677A JPS5491079A (en) | 1977-12-28 | 1977-12-28 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15800677A JPS5491079A (en) | 1977-12-28 | 1977-12-28 | Manufacture of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5491079A JPS5491079A (en) | 1979-07-19 |
JPS6129537B2 true JPS6129537B2 (en) | 1986-07-07 |
Family
ID=15662186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15800677A Granted JPS5491079A (en) | 1977-12-28 | 1977-12-28 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5491079A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57180145A (en) * | 1981-04-30 | 1982-11-06 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of semiconductor integrated circuit device |
JPH09232324A (en) * | 1996-02-23 | 1997-09-05 | Nec Corp | Semiconductor substrate and its manufacture |
-
1977
- 1977-12-28 JP JP15800677A patent/JPS5491079A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5491079A (en) | 1979-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4875085A (en) | Semiconductor device with shallow n-type region with arsenic or antimony and phosphorus | |
US4295898A (en) | Method of making isolated semiconductor devices utilizing ion-implantation of aluminum and heat treating | |
JPH0245327B2 (en) | ||
JP3199452B2 (en) | Method of manufacturing P buried layer for PNP device | |
KR100189739B1 (en) | Method of forming well for semiconductor wafer | |
JPH0395942A (en) | Method of forming junction with fewdefects in semiconductor material | |
US3953255A (en) | Fabrication of matched complementary transistors in integrated circuits | |
EP0417737B1 (en) | Method of manufacturing a semiconductor device using ion implantation | |
JPH0817841A (en) | Manufacture of semiconductor substrate and semiconductor device | |
US3825450A (en) | Method for fabricating polycrystalline structures for integrated circuits | |
JPS6129537B2 (en) | ||
US4113513A (en) | Method of manufacturing a semiconductor device by non-selectively implanting a zone of pre-determined low resistivity | |
CA1131797A (en) | Fabrication of a semiconductor device in a simulated epitaxial layer | |
JP3145694B2 (en) | Semiconductor device | |
JP2664416B2 (en) | Method for manufacturing semiconductor device | |
JPS6143858B2 (en) | ||
JPS5854502B2 (en) | Manufacturing method of semiconductor device | |
JP2656125B2 (en) | Method for manufacturing semiconductor integrated circuit | |
JPH1098004A (en) | Semiconductor device and manufacture thereof | |
JPS63144567A (en) | Manufacture of semiconductor device | |
JPS6386565A (en) | Manufacture of semiconductor device | |
KR100264210B1 (en) | Method for separating active region of semiconductor device | |
JPH0533527B2 (en) | ||
JPS60137072A (en) | Manufacture of junction type field effect transistor | |
EP0482829A1 (en) | Method for forming a composite oxide over a heavily doped region |