JPS6129537B2 - - Google Patents

Info

Publication number
JPS6129537B2
JPS6129537B2 JP15800677A JP15800677A JPS6129537B2 JP S6129537 B2 JPS6129537 B2 JP S6129537B2 JP 15800677 A JP15800677 A JP 15800677A JP 15800677 A JP15800677 A JP 15800677A JP S6129537 B2 JPS6129537 B2 JP S6129537B2
Authority
JP
Japan
Prior art keywords
buried layer
layer
conductivity type
region
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15800677A
Other languages
Japanese (ja)
Other versions
JPS5491079A (en
Inventor
Gunji Mihashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP15800677A priority Critical patent/JPS5491079A/en
Publication of JPS5491079A publication Critical patent/JPS5491079A/en
Publication of JPS6129537B2 publication Critical patent/JPS6129537B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Description

【発明の詳細な説明】 本発明は特にバイポーラIC等の半導体装置の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a method for manufacturing semiconductor devices such as bipolar ICs.

従来バイポーラIC等に用いるエピタキシヤル
ウエハーとしてはN型又はP型の埋込層を形成
し、その後酸化膜を全面除去した後エピタキシヤ
ル成長を行なつていた。これらのN型又はP型の
埋込層は一般には高温度での熱拡散方法が利用さ
れるため外部からかなり汚れが入る。またエピタ
キシヤル成長は高温度で行なわれるためにエピタ
キシヤル成長のときにも汚れが導入される。この
ようにいろいろな工程で汚れが導入し特性に影響
を与える。更にエピタキシヤル成長後絶縁をとる
場合に一般にはエピタキシヤルウエハーの表面か
らP型の不純物を拡散させてP型基板とにより素
子間の分離を行なつている。しかしP型の不純物
を熱拡散方式で行なうために不純物は横方向に拡
散し集積度を悪るくしている。また高温度で熱拡
散を行なうために不純物の再分布が起り、バイポ
ーラICの特性の歩留りを悪るくしている。
Conventionally, in epitaxial wafers used for bipolar ICs and the like, an N-type or P-type buried layer is formed, and then epitaxial growth is performed after the oxide film is completely removed. These N-type or P-type buried layers generally receive considerable contamination from the outside because thermal diffusion methods at high temperatures are used. Furthermore, since epitaxial growth is carried out at high temperatures, dirt is introduced during epitaxial growth as well. In this way, dirt is introduced during various processes and affects the properties. Furthermore, when insulation is provided after epitaxial growth, P-type impurities are generally diffused from the surface of the epitaxial wafer to isolate elements from the P-type substrate. However, since the P-type impurity is introduced using a thermal diffusion method, the impurity is diffused in the lateral direction, which impairs the degree of integration. Furthermore, thermal diffusion at high temperatures causes redistribution of impurities, which impairs the yield of bipolar IC characteristics.

本発明の目的はバイポーラ等の半導体集積回路
用のエピタキシヤルウエハーに重金属などをゲツ
タリングする効果を持たせまた不純物の拡散係数
を大きくしできるだけ低温で絶縁をとることがで
るようにするため埋込形成後エピタキシヤル成長
前に40Ar+イオンなどをイオン注入することい
る。イオン注入は適当な注入量で選択的にシリコ
ン表面に歪層を形成させる。この歪層は次のエピ
タキシヤル成長のときに重要な効果をあたえる核
になる。
The purpose of the present invention is to provide an epitaxial wafer for bipolar and other semiconductor integrated circuits with the effect of gettering heavy metals, increase the diffusion coefficient of impurities, and provide insulation at as low a temperature as possible. After the epitaxial growth, ions such as 40 Ar + ions are implanted. Ion implantation selectively forms a strained layer on the silicon surface at an appropriate implantation dose. This strained layer becomes a core that provides an important effect during the next epitaxial growth.

本発明によればウエハー内に部分的に拡散係数
の大きい領域と部分的にゲツタリング効果を持つ
たエピタキシヤルウエハーをつくることができ
る。
According to the present invention, it is possible to produce an epitaxial wafer in which the wafer has a region with a large diffusion coefficient partially and a gettering effect partially.

以下図面を用いて本発明を詳細に説明する。ま
ず第1図に示すように、従来用いられている方法
によつてP型のシリコン基体1の上面にシリコン
の酸化膜4を1000〜1400℃程度の温度で成長さ
せ、ホトレジスト法を用いて選択的に酸化膜を取
除くことにより、選択的に拡散する領域を形成す
る。次に1200〜1230℃付近の温度でアンチモンマ
はヒ素の不純物を拡散させてN型の埋込層2を形
成し、次に同様な方法を用いてボロンの不純物を
拡散させてP型の埋込層3を形成する。次にホト
レジスト法を用いて選択的に酸化膜を除去し、N
型埋込層以外の場所とP型の埋込層との領域に適
当な注入量で40Ar+16O+14N+などのイオンを
注入し第2図に示すように表面付近に部分的に歪
層5,6を形成する。この場合いろいろな用途に
よつてシリコン酸化膜を完全に取除くことをしな
いで薄く残してイオン注入を行なつてもよい。た
だし半導体素子をつくる領域に完全にイオン注入
の影響はないようにしておく。次にエピタキシヤ
ル成長前に全面酸化膜4を除去し、適当な条件で
1000〜1200℃付近の温度でS1H4,SiC
SiH2C,SiHCなどを用いてシリコンを
エピタキシヤル成長させる。エピタキシヤル成長
させることにより結晶性の良い層9,10をつく
ることができる。同時に不純物の拡散係数の大き
い層7及びゲツタリング効果を持つた層8を同時
につくることができる。
The present invention will be explained in detail below using the drawings. First, as shown in FIG. 1, a silicon oxide film 4 is grown on the upper surface of a P-type silicon substrate 1 at a temperature of about 1000 to 1400°C by a conventional method, and then selected using a photoresist method. By selectively removing the oxide film, a region for selective diffusion is formed. Next, at a temperature around 1200 to 1230°C, antimony diffuses arsenic impurities to form an N-type buried layer 2, and then uses the same method to diffuse boron impurities to form a P-type buried layer 2. A layer 3 is formed. Next, the oxide film is selectively removed using a photoresist method, and the N
Ions such as 40 Ar + , 16 O + , and 14 N + are implanted at appropriate doses into areas other than the type buried layer and the P type buried layer, and are deposited near the surface as shown in Figure 2. Strain layers 5 and 6 are formed partially. In this case, depending on various uses, the silicon oxide film may not be completely removed, but a thin layer may be left and ion implantation may be performed. However, the region where the semiconductor element is to be made must be completely free from the influence of ion implantation. Next, before epitaxial growth, the entire oxide film 4 is removed and the oxide film 4 is grown under appropriate conditions.
S 1 H 4 , SiC 4 , at a temperature around 1000-1200℃
Silicon is epitaxially grown using SiH 2 C 2 , SiHC 3 or the like. The layers 9 and 10 with good crystallinity can be formed by epitaxial growth. At the same time, a layer 7 having a large impurity diffusion coefficient and a layer 8 having a gettering effect can be formed at the same time.

以上述べたように本発明によれば部分的に適当
な条件でイオン注入することによりボロンの拡散
係数を大きくすることができ横方向の広がりを少
なくすることができ集積度を向上させることがで
きる。また絶縁拡散の温度を低温にでき、拡散時
間も少なくできるので不純物の再分布を少なくで
きるので歩留りよくICをつくることができる。
更にゲツタリングの効果をもつた層を半導体素子
の近くに設置できるのでエピタキシヤル成長及び
その後の工程での汚れに対して非常に大きな効果
をもつためICをつくる時に信頼性向上、歩留り
向上を確保できる。
As described above, according to the present invention, by partially implanting ions under appropriate conditions, the diffusion coefficient of boron can be increased, the lateral spread can be reduced, and the degree of integration can be improved. . Furthermore, since the temperature of insulation diffusion can be lowered and the diffusion time can be shortened, redistribution of impurities can be reduced and ICs can be manufactured with high yield.
Furthermore, since a layer with a gettering effect can be placed near the semiconductor element, it has a very large effect on contamination during epitaxial growth and subsequent processes, ensuring improved reliability and yield when manufacturing ICs. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1と第2と第3図は本発明の一実施例の製造
工程を説明するための断面図である。 1…シリコン基板、2…N型埋込層、3…P型
の埋込層、4…シリコン酸化膜、5…P型の埋込
層にイオン注入した領域、6…シリコン基板にイ
オン注入した領域、7…イオン注入したP型の埋
込層上にできた生長層、8…イオン注入した表面
にできた生長層、9…N型埋込層上に生長したエ
ピタキシヤル層、10…シリコン基板上に生長さ
せた結晶性のよい領域。
1, 2, and 3 are cross-sectional views for explaining the manufacturing process of an embodiment of the present invention. 1...Silicon substrate, 2...N-type buried layer, 3...P-type buried layer, 4...silicon oxide film, 5...Ion-implanted region in the P-type buried layer, 6...Ion-implanted into the silicon substrate Region, 7... Growth layer formed on the ion-implanted P-type buried layer, 8... Growth layer formed on the ion-implanted surface, 9... Epitaxial layer grown on the N-type buried layer, 10... Silicon A region with good crystallinity grown on a substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基板に高不純物濃度の逆導
電型の第1の埋込層および該第1の埋込層の周辺
に一導電型の第2の埋込層を形成する工程と、該
第2の埋込層および該第2の埋込層と第1の埋込
層との間でこれら2つの埋込層とは離れた基板表
面に選択的にイオン注入を行なう工程と、イオン
注入後該基板表面を露出しその露出面上に逆導電
型のエピタキシヤル層を成長することによつて該
第2の埋込層上には不純物の拡散係数の大きい領
域を選択的に形成すると同時に該第1の埋込層と
該第2の埋込層との間のイオン注入された領域上
に選択的にゲツタリング能力を有する領域を形成
する工程とを有することを特徴とする半導体装置
の製造方法。
1. Forming a first buried layer of opposite conductivity type with high impurity concentration in a semiconductor substrate of one conductivity type and a second buried layer of one conductivity type around the first buried layer; a step of selectively implanting ions into a second buried layer and between the second buried layer and the first buried layer into a substrate surface separated from these two buried layers; and ion implantation. After that, by exposing the substrate surface and growing an epitaxial layer of the opposite conductivity type on the exposed surface, a region having a large impurity diffusion coefficient is selectively formed on the second buried layer. manufacturing a semiconductor device, comprising the step of: selectively forming a region having gettering ability on an ion-implanted region between the first buried layer and the second buried layer; Method.
JP15800677A 1977-12-28 1977-12-28 Manufacture of semiconductor device Granted JPS5491079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15800677A JPS5491079A (en) 1977-12-28 1977-12-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15800677A JPS5491079A (en) 1977-12-28 1977-12-28 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5491079A JPS5491079A (en) 1979-07-19
JPS6129537B2 true JPS6129537B2 (en) 1986-07-07

Family

ID=15662186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15800677A Granted JPS5491079A (en) 1977-12-28 1977-12-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5491079A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180145A (en) * 1981-04-30 1982-11-06 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor integrated circuit device
JPH09232324A (en) * 1996-02-23 1997-09-05 Nec Corp Semiconductor substrate and its manufacture

Also Published As

Publication number Publication date
JPS5491079A (en) 1979-07-19

Similar Documents

Publication Publication Date Title
US4875085A (en) Semiconductor device with shallow n-type region with arsenic or antimony and phosphorus
US4295898A (en) Method of making isolated semiconductor devices utilizing ion-implantation of aluminum and heat treating
JPH0245327B2 (en)
JP3199452B2 (en) Method of manufacturing P buried layer for PNP device
KR100189739B1 (en) Method of forming well for semiconductor wafer
JPH0395942A (en) Method of forming junction with fewdefects in semiconductor material
US3953255A (en) Fabrication of matched complementary transistors in integrated circuits
EP0417737B1 (en) Method of manufacturing a semiconductor device using ion implantation
JPH0817841A (en) Manufacture of semiconductor substrate and semiconductor device
US3825450A (en) Method for fabricating polycrystalline structures for integrated circuits
JPS6129537B2 (en)
US4113513A (en) Method of manufacturing a semiconductor device by non-selectively implanting a zone of pre-determined low resistivity
CA1131797A (en) Fabrication of a semiconductor device in a simulated epitaxial layer
JP3145694B2 (en) Semiconductor device
JP2664416B2 (en) Method for manufacturing semiconductor device
JPS6143858B2 (en)
JPS5854502B2 (en) Manufacturing method of semiconductor device
JP2656125B2 (en) Method for manufacturing semiconductor integrated circuit
JPH1098004A (en) Semiconductor device and manufacture thereof
JPS63144567A (en) Manufacture of semiconductor device
JPS6386565A (en) Manufacture of semiconductor device
KR100264210B1 (en) Method for separating active region of semiconductor device
JPH0533527B2 (en)
JPS60137072A (en) Manufacture of junction type field effect transistor
EP0482829A1 (en) Method for forming a composite oxide over a heavily doped region