JPS6386565A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6386565A
JPS6386565A JP23273386A JP23273386A JPS6386565A JP S6386565 A JPS6386565 A JP S6386565A JP 23273386 A JP23273386 A JP 23273386A JP 23273386 A JP23273386 A JP 23273386A JP S6386565 A JPS6386565 A JP S6386565A
Authority
JP
Japan
Prior art keywords
type
buried layer
ion implantation
mask
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23273386A
Other languages
Japanese (ja)
Inventor
Ken Meguro
目黒 謙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP23273386A priority Critical patent/JPS6386565A/en
Publication of JPS6386565A publication Critical patent/JPS6386565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To reduce cost by a method wherein a bipolar transistor and other elements are built in an integrated circuit without an epitaxial layer growing process. CONSTITUTION:An ion implantation mask 2 is selectively formed on the surface of a P-type silicon substrate 1, and ions are implanted in an opening in the mask 2 at a high acceleration energy of 2-10MeV. Annealing is accomplished for the removal of a damaged layer 4 produced in the ion implantation process. Then, an N-type buried layer 5 is formed. A thin oxide film 6 is attached to the surface of the P-type silicon substrate 1, and photolithography is applied for the patterning of a photoresist 7. A process follows wherein P ions of approximately 1X10<13>-1X10<14>atom/cm<2> are implanted at an acceleration energy of 10-100Kev through the thin oxide film 6 with the photoresist 7 serving as a mask. Annealing is performed, the damaged layer 4 is removed, and an N-type well 9 is formed to be in contact with the N-type buried layer 5. Next, in the N-type well 9, an N-type collector 10, P-type base 11, and an N-type emitter 12 are built for the completion of a transistor of this design.

Description

【発明の詳細な説明】 (発明の属する技術分野〕 本発明は、半導体装置、特に埋込層を持つ半導体装置の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to a semiconductor device, and particularly to a method for manufacturing a semiconductor device having a buried layer.

〔従来技術とその問題点〕[Prior art and its problems]

バイポーラトランジスタを集積回路内に構成する場合、
従来の一つの方法によれば、第3図に示すように、P型
シリコン基板1に拡散係数の小さいアンチモン又はヒ素
などのN型不純物を選択的に拡散してN型埋込N5を作
り、次いでその上にN型エピタキシャル層14を形成し
、さらにP型分離拡散1ii15を作り、その分離拡散
層の間のN型エピタキシャル層14中にN型コレクタ1
0、P型ベース11、N型エミッタ12、アルミニウム
電極13より成るバイポーラトランジスタを構成するよ
うにしている。このエピタキシャル層形成はCVD法に
より行われるが、同一バッチ内で少数しか処理できない
ため、コストが高いこと、水素ガスを大量に使用するた
め爆発の危険のあること、単結晶上に低温(1100〜
1200℃)で単結晶を形成するためスリップや突起な
どの結晶欠陥が発生し良品率を低下させることなどの欠
点がある。
When configuring bipolar transistors within an integrated circuit,
According to one conventional method, as shown in FIG. 3, N-type impurities such as antimony or arsenic with a small diffusion coefficient are selectively diffused into a P-type silicon substrate 1 to form an N-type buried N5. Next, an N-type epitaxial layer 14 is formed thereon, a P-type isolation diffusion 1ii15 is further formed, and an N-type collector 1 is formed in the N-type epitaxial layer 14 between the isolation diffusion layers.
0, a P-type base 11, an N-type emitter 12, and an aluminum electrode 13 constitute a bipolar transistor. This epitaxial layer formation is carried out by the CVD method, but it is expensive because only a small number can be processed in the same batch, there is a risk of explosion because a large amount of hydrogen gas is used, and the low temperature (1100 ~
Since a single crystal is formed at a temperature of 1,200° C.), crystal defects such as slips and protrusions occur, which reduces the yield rate.

一方、CMO3集積回路においては、ラッチアップ対策
の点からエピタキシャルウェーハを用いる方向もあり、
エピタキシャル成長技術も進歩はしているが、コスト高
の欠点はいまだ解消されていない。
On the other hand, in CMO3 integrated circuits, there is a tendency to use epitaxial wafers from the viewpoint of latch-up countermeasures.
Although progress has been made in epitaxial growth technology, the drawback of high cost has not yet been resolved.

〔発明の目的〕[Purpose of the invention]

本発明は、エピタキシャル層成長を行わずにバイポーラ
トランジスタ等の素子を集積回路内に構成することによ
り、コストを大幅に低下させ得る方法を得ることを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for configuring elements such as bipolar transistors in integrated circuits without epitaxial layer growth, thereby significantly reducing costs.

〔発明の要点〕[Key points of the invention]

本発明は、従来の集積回路内のバイポーラトランジスタ
はN型埋込層とこのN型埋込層の真上にN型エピタキシ
ャル層があること、イオン注入において加速エネルギー
がMeV領域まで可能になったことに着目したもので、
高加速エネルギーのイオン注入により半導体基板の深い
位置に選択的に不純物を導入して埋込層とし、次いで同
じフォトマスクを使用して表面より同じ導電型の不純物
を選択的に導入し、熱処理により埋込層と接触させるこ
とによりウェルを形成するものである。
The present invention is based on the fact that a bipolar transistor in a conventional integrated circuit has an N-type buried layer and an N-type epitaxial layer directly above the N-type buried layer, and that the acceleration energy in ion implantation can reach the MeV region. It focused on
Impurities are selectively introduced deep into the semiconductor substrate by ion implantation with high acceleration energy to form a buried layer, then impurities of the same conductivity type are selectively introduced from the surface using the same photomask, and heat treatment is performed. A well is formed by contacting the buried layer.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例を図面について説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明方法の製造工程を示すものである。先ず
第1図aにおいて、P型シリコン基板1の表面にイオン
注入用マスク2を選択的に形成する。イオン注入用マス
ク2としてはフォトレジストを2〜6μm程度の厚さに
塗布する方法や、金属を1〜3μm程度の厚さに蒸着す
る方法等がある。
FIG. 1 shows the manufacturing process of the method of the present invention. First, in FIG. 1a, an ion implantation mask 2 is selectively formed on the surface of a P-type silicon substrate 1. As shown in FIG. As the ion implantation mask 2, there are a method of applying a photoresist to a thickness of about 2 to 6 μm, a method of vapor depositing a metal to a thickness of about 1 to 3 μm, and the like.

次に第1図すにおいて、イオン注入用マスク2の開口部
より2〜10MeV程度の高加速エネルギーのイオン注
入を行う。3は注入イオン、4は表面側にイオン注入に
より生じたダメージ層を表わす。
Next, in FIG. 1, ion implantation is performed through the opening of the ion implantation mask 2 at a high acceleration energy of about 2 to 10 MeV. 3 represents implanted ions, and 4 represents a damaged layer caused by ion implantation on the surface side.

イオン注入法によりシリコン基板に入射したイオンは、
シリコン原子と次々に衝突しエネルギーを失いながら進
み、最後に静止する。加速エネルギーが大きくなると、
イオンは電子との衝突によりエネルギーを失って進む。
Ions incident on a silicon substrate using the ion implantation method are
It collides with silicon atoms one after another, losing energy as it moves forward, and finally comes to rest. As the acceleration energy increases,
Ions lose energy through collisions with electrons and move forward.

また注入イオンの質量が大きいほど原子核との衝突によ
るエネルギー損失が大きくなり深くは入りにくい。これ
らの現象はL S S (Lindhard、 5ch
arff+ 5chiftt)理論により正確に求めら
れるが、ここでは説明を省略する。2〜10MeVの加
速エネルギーの場合には、Pイオンは2〜10μm程度
の深さとなり、Asイオンでは1〜5μm程度の深さと
なる。なおドーズ量はlXl0′4〜IXIO15at
m/cdとする。
Furthermore, the greater the mass of the implanted ions, the greater the energy loss due to collision with the atomic nucleus, making it difficult for them to penetrate deeply. These phenomena are explained by LSS (Linhard, 5ch
arff+5chiftt) can be accurately determined by theory, but the explanation will be omitted here. In the case of acceleration energy of 2 to 10 MeV, the depth of P ions is about 2 to 10 μm, and the depth of As ions is about 1 to 5 μm. The dose is lXl0'4~IXIO15at
Let m/cd.

第1図Cにおいては、イオン注入によるダメージ層4を
除去するためアニールを行い、N型埋込N5を形成する
。アニールは600〜1200℃の温度で0.1〜数時
間行う。
In FIG. 1C, annealing is performed to remove the damaged layer 4 caused by ion implantation, and an N-type buried N5 is formed. Annealing is performed at a temperature of 600 to 1200°C for 0.1 to several hours.

第1図dにおいて、シリコン基板1の表面に薄い酸化膜
6を付け、第1図aの工程で用いたフォトマスクと同一
パターンのマスクによりフォトリソグラフィーを行いフ
ォトレジスト7をパターニングし、このフォトレジスト
7をマスクとし酸化PJ6を通して10〜100keV
程度の加速エネルギーによりPイオンをlXl0”〜l
Xl0”atm/−程度注入する。8は表面から0.0
1〜0.1μm程度の深さに打ち込まれた注入イオンを
示す。なおこの工程は、イオン注入でなく不純物拡散で
もよい。
In FIG. 1d, a thin oxide film 6 is applied to the surface of the silicon substrate 1, and photolithography is performed using a mask with the same pattern as the photomask used in the step of FIG. 1a to pattern a photoresist 7. 10 to 100 keV through oxidized PJ6 using 7 as a mask
With an acceleration energy of about
Inject about Xl0" atm/-. 8 is 0.0 from the surface
It shows implanted ions implanted to a depth of about 1 to 0.1 μm. Note that this step may be performed by impurity diffusion instead of ion implantation.

第1図eにおいて、アニール処理を行いダメージ層を除
去し、N型ウェル9を形成し、埋込層5と接触させる。
In FIG. 1e, an annealing process is performed to remove the damaged layer, and an N-type well 9 is formed and brought into contact with the buried layer 5.

アニールは1000から1200℃程度で0.1〜数時
間行う。
Annealing is performed at about 1000 to 1200° C. for 0.1 to several hours.

次に、N型ウェル9中に、第2図に示すように従来と同
様にN型コレクタ10、P型ベース11、N型エミッタ
12を形成してトランジスタを完成する。第2図と第3
図との比較から分るように、本発明によれば従来のN型
エピタキシャルN14とP型分離拡散1’1i15のか
わりにN型ウェル9が用いられており、これにより大幅
なコストダうンが達成される。
Next, as shown in FIG. 2, an N-type collector 10, a P-type base 11, and an N-type emitter 12 are formed in the N-type well 9, as in the conventional method, to complete the transistor. Figures 2 and 3
As can be seen from the comparison with the figure, according to the present invention, an N-type well 9 is used in place of the conventional N-type epitaxial N14 and P-type isolation diffusion 1'1i15, resulting in a significant cost reduction. achieved.

第4図は本発明により形成されたトランジスタの不純物
濃度プロファイルを示し、縦軸は不純物濃度Co(cm
−3)、横軸は深さXj (、um)を示す、、15は
N型エミッタの濃度曲線、16はP型ベースの濃度曲線
、17はN型埋込層の濃度曲線、18はN型ウェルの濃
度曲線であり、19は比較のため従来のエピタキシャル
層の濃度曲線である。従来のエピタキシャル層のプロフ
ァイルと本発明のN型ウェルのプロファイルに相違はあ
るが、基本的なトランジスタ特性は同一にすることは可
能であり、なんら問題はない。
FIG. 4 shows the impurity concentration profile of the transistor formed according to the present invention, and the vertical axis is the impurity concentration Co (cm
-3), the horizontal axis shows the depth Xj (, um), 15 is the concentration curve of N-type emitter, 16 is the concentration curve of P-type base, 17 is the concentration curve of N-type buried layer, 18 is N-type emitter concentration curve This is a concentration curve of a type well, and 19 is a concentration curve of a conventional epitaxial layer for comparison. Although there is a difference between the profile of the conventional epitaxial layer and the profile of the N-type well of the present invention, it is possible to make the basic transistor characteristics the same, and there is no problem.

なお本発明はバイポーラトランジスタに限らず、埋込層
とエピタキシャル層を持つ素子、例えばダイオード等に
も通用することができる。また、Bi−CMO3ICの
ようにバイポーラトランジスタ以外にMO3素子を含む
集積回路にも通用できることは云うまでもない。
Note that the present invention is applicable not only to bipolar transistors but also to elements having a buried layer and an epitaxial layer, such as diodes. It goes without saying that it can also be applied to integrated circuits such as Bi-CMO3 ICs that include MO3 elements in addition to bipolar transistors.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、バイポーラトランジスタの構成要素で
あるN型埋込層を高加速エネルギーで半導体基板の深い
位置に注入し、そのとき用いた同一パターンのマスクに
よりさらに基板表面より低加速エネルギーでN型不純物
を注入してN型ウェルを構成することにより、従来用い
ていたN型エピタキシャル層成長とP型分離拡散が不必
要となり、著しくコストを低減することができる。
According to the present invention, an N-type buried layer, which is a component of a bipolar transistor, is implanted deep into a semiconductor substrate with high acceleration energy, and using a mask with the same pattern used at the time, N-type buried By implanting type impurities to form an N-type well, the conventionally used N-type epitaxial layer growth and P-type separation diffusion are unnecessary, and costs can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の製造工程を示す断面図、第2
図は第1図の製造工程により得られたトランジスタの断
面図、第3図は従来のトランジスタの断面図、第4図は
本発明と従来の方法によるトランジスタの不純物濃度プ
ロファイルである。 1・・・シリコン基板、2・・・イオン注入マスク、3
・・・注入イオン、5・・・N型埋込層、7・・・フォ
トレジスト、8・・・注入イオン、9・・・N型ウェル
Figure 1 is a sectional view showing the manufacturing process of an embodiment of the present invention, Figure 2 is a sectional view showing the manufacturing process of an embodiment of the present invention.
3 is a sectional view of a transistor obtained by the manufacturing process shown in FIG. 1, FIG. 3 is a sectional view of a conventional transistor, and FIG. 4 is an impurity concentration profile of a transistor according to the present invention and a conventional method. 1... Silicon substrate, 2... Ion implantation mask, 3
... Injected ions, 5... N-type buried layer, 7... Photoresist, 8... Injected ions, 9... N-type well.

Claims (1)

【特許請求の範囲】[Claims] 1)埋込層を有する半導体装置の製造方法において、一
導電型の半導体基板上よりイオン注入により半導体基板
と反対導電型の不純物を選択的に導入して埋込層を形成
し、次いでこの埋込層の真上表面より埋込層と同一導電
型の不純物を埋込層より低濃度に導入してウェルを形成
し、熱処理を行うことによりウェルと埋込層とを接触さ
せることを特徴とする半導体装置の製造方法。
1) In a method for manufacturing a semiconductor device having a buried layer, a buried layer is formed by selectively introducing impurities of a conductivity type opposite to that of the semiconductor substrate by ion implantation onto a semiconductor substrate of one conductivity type, and then the buried layer is A well is formed by introducing an impurity of the same conductivity type as the buried layer at a lower concentration than the buried layer from directly above the buried layer, and the well and the buried layer are brought into contact by heat treatment. A method for manufacturing a semiconductor device.
JP23273386A 1986-09-30 1986-09-30 Manufacture of semiconductor device Pending JPS6386565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23273386A JPS6386565A (en) 1986-09-30 1986-09-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23273386A JPS6386565A (en) 1986-09-30 1986-09-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6386565A true JPS6386565A (en) 1988-04-16

Family

ID=16943927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23273386A Pending JPS6386565A (en) 1986-09-30 1986-09-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6386565A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174523A (en) * 1990-03-09 1992-06-22 Mitsubishi Electric Corp Bipolar transistor
US7714390B2 (en) 2005-04-01 2010-05-11 Stmicroelectronics S.A. Integrated circuit comprising a substrate and a resistor
US7910450B2 (en) * 2006-02-22 2011-03-22 International Business Machines Corporation Method of fabricating a precision buried resistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218158A (en) * 1982-06-11 1983-12-19 Toshiba Corp Complementary type metal oxide semiconductor device
JPS58218159A (en) * 1982-06-11 1983-12-19 Toshiba Corp Complementary type metal oxide semiconductor device
JPS6089939A (en) * 1983-10-21 1985-05-20 Toshiba Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218158A (en) * 1982-06-11 1983-12-19 Toshiba Corp Complementary type metal oxide semiconductor device
JPS58218159A (en) * 1982-06-11 1983-12-19 Toshiba Corp Complementary type metal oxide semiconductor device
JPS6089939A (en) * 1983-10-21 1985-05-20 Toshiba Corp Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174523A (en) * 1990-03-09 1992-06-22 Mitsubishi Electric Corp Bipolar transistor
US7714390B2 (en) 2005-04-01 2010-05-11 Stmicroelectronics S.A. Integrated circuit comprising a substrate and a resistor
US7910450B2 (en) * 2006-02-22 2011-03-22 International Business Machines Corporation Method of fabricating a precision buried resistor

Similar Documents

Publication Publication Date Title
JP2746499B2 (en) Semiconductor device and manufacturing method thereof
JPS63174355A (en) Semiconductor device
JPS6063961A (en) Manufacture of semiconductor device
EP0076106A2 (en) Method for producing a bipolar transistor
JP2617177B2 (en) Integrated circuit isolation structure and method of forming the same
JPS5917243A (en) Manufacture of semiconductor device
JPS6386565A (en) Manufacture of semiconductor device
JPH0521448A (en) Manufacture of semiconductor device
JPH04264724A (en) Manufacture of semiconductor substrate
JP3125789B2 (en) Method for manufacturing semiconductor device
JP2994667B2 (en) Method of forming SOI structure
JP2664416B2 (en) Method for manufacturing semiconductor device
JPH0590272A (en) Semiconductor device and manufacture thereof
JPH0396228A (en) Ion implanting method
JP2892436B2 (en) Method for manufacturing semiconductor device
JPH04242958A (en) Manufacture of semiconductor device
JP2743451B2 (en) Method for manufacturing semiconductor device
JPH0362015B2 (en)
JPH03209816A (en) Manufacture of semiconductor device
JPH04184918A (en) Impurities deffusion method on insulating substrate
JPS6129537B2 (en)
JPH07201873A (en) Manufacture of semiconductor device
JPS63144567A (en) Manufacture of semiconductor device
JPH061815B2 (en) Method for manufacturing semiconductor device
JPS59194431A (en) Ion implantation of semiconductor substrate